1
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
3
|
Hu S, Xiao Q, Gao R, Qin J, Nie J, Chen Y, Lou J, Ding M, Pan Y, Wang S. Identification of BGN positive fibroblasts as a driving factor for colorectal cancer and development of its related prognostic model combined with machine learning. BMC Cancer 2024; 24:516. [PMID: 38654221 PMCID: PMC11041013 DOI: 10.1186/s12885-024-12251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Medicine, Southeast University, 210009, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, 210006, Nanjing, Jiangsu, China
| | - Qianni Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, 210009, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, 210006, Nanjing, Jiangsu, China
| | - Junjie Nie
- School of Medicine, Southeast University, 210009, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, 210006, Nanjing, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, 210006, Nanjing, Jiangsu, China.
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, 211100, Nanjing, Jiangsu, China.
| | - Shukui Wang
- School of Medicine, Southeast University, 210009, Nanjing, Jiangsu, China.
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, 210006, Nanjing, Jiangsu, China.
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211122, Nanjing, Jiangsu, China.
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, 211100, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Lin PY, Chang YT, Huang YC, Chen PY. Estimating genome-wide DNA methylation heterogeneity with methylation patterns. Epigenetics Chromatin 2023; 16:44. [PMID: 37941029 PMCID: PMC10634068 DOI: 10.1186/s13072-023-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND In a heterogeneous population of cells, individual cells can behave differently and respond variably to the environment. This cellular diversity can be assessed by measuring DNA methylation patterns. The loci with variable methylation patterns are informative of cellular heterogeneity and may serve as biomarkers of diseases and developmental progression. Cell-to-cell methylation heterogeneity can be evaluated through single-cell methylomes or computational techniques for pooled cells. However, the feasibility and performance of these approaches to precisely estimate methylation heterogeneity require further assessment. RESULTS Here, we proposed model-based methods adopted from a mathematical framework originally from biodiversity, to estimate genome-wide DNA methylation heterogeneity. We evaluated the performance of our models and the existing methods with feature comparison, and tested on both synthetic datasets and real data. Overall, our methods have demonstrated advantages over others because of their better correlation with the actual heterogeneity. We also demonstrated that methylation heterogeneity offers an additional layer of biological information distinct from the conventional methylation level. In the case studies, we showed that distinct profiles of methylation heterogeneity in CG and non-CG methylation can predict the regulatory roles between genomic elements in Arabidopsis. This opens up a new direction for plant epigenomics. Finally, we demonstrated that our score might be able to identify loci in human cancer samples as putative biomarkers for early cancer detection. CONCLUSIONS We adopted the mathematical framework from biodiversity into three model-based methods for analyzing genome-wide DNA methylation heterogeneity to monitor cellular heterogeneity. Our methods, namely MeH, have been implemented, evaluated with existing methods, and are open to the research community.
Collapse
Affiliation(s)
- Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Ya-Ting Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan.
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Song Q, Yang Y, Jiang D, Qin Z, Xu C, Wang H, Huang J, Chen L, Luo R, Zhang X, Huang Y, Xu L, Yu Z, Tan S, Deng M, Xue R, Qie J, Li K, Yin Y, Yue X, Sun X, Su J, He F, Ding C, Hou Y. Proteomic analysis reveals key differences between squamous cell carcinomas and adenocarcinomas across multiple tissues. Nat Commun 2022; 13:4167. [PMID: 35851595 PMCID: PMC9293992 DOI: 10.1038/s41467-022-31719-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (AC) are two main histological subtypes of solid cancer; however, SCCs are derived from different organs with similar morphologies, and it is challenging to distinguish the origin of metastatic SCCs. Here we report a deep proteomic analysis of 333 SCCs of 17 organs and 69 ACs of 7 organs. Proteomic comparison between SCCs and ACs identifies distinguishable pivotal pathways and molecules in those pathways play consistent adverse or opposite prognostic roles in ACs and SCCs. A comparison between common and rare SCCs highlights lipid metabolism may reinforce the malignancy of rare SCCs. Proteomic clusters reveal anatomical features, and kinase-transcription factor networks indicate differential SCC characteristics, while immune subtyping reveals diverse tumor microenvironments across and within diagnoses and identified potential druggable targets. Furthermore, tumor-specific proteins provide candidates with differentially diagnostic values. This proteomics architecture represents a public resource for researchers seeking a better understanding of SCCs and ACs.
Collapse
Affiliation(s)
- Qi Song
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yufeng Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Subei Tan
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Minying Deng
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ruqun Xue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingbo Qie
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kai Li
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanan Yin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuetong Yue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaogang Sun
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Chen Ding
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Gu HY, Qu WQ, Peng HH, Yu YF, Jiang ZZ, Qi BW, Yu AX. Stemness Subtypes and Scoring System Predict Prognosis and Efficacy of Immunotherapy in Soft Tissue Sarcoma. Front Immunol 2022; 13:796606. [PMID: 35464409 PMCID: PMC9022121 DOI: 10.3389/fimmu.2022.796606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor stemness has been reported to play important roles in cancers. However, a comprehensive analysis of tumor stemness remains to be performed to investigate the specific mechanisms and practical values of stemness in soft tissue sarcomas (STS). Here, we applied machine learning to muti-omic data of patients from TCGA-SARC and GSE21050 cohorts to reveal important roles of stemness in STS. We demonstrated limited roles of existing mRNAsi in clinical application. Therefore, based on stemness-related signatures (SRSs), we identified three stemness subtypes with distinct stemness, immune, and metabolic characteristics using consensus clustering. The low-stemness subtype had better prognosis, activated innate and adaptive immunity (e.g., infiltrating B, DC, Th1, CD8+ T, activated NK, gamma delta T cells, and M1 macrophages), more enrichment of metabolic pathways, more sites with higher methylation level, higher gene mutations, CNA burdens, and immunogenicity indicators. Furthermore, the 16 SRS-based stemness prognostic index (SPi) was developed, and we found that low-SPi patients with low stemness had better prognosis and other characteristics similar to those in the low-stemness subtype. Besides, low-stemness subtype and low-SPi patients could benefit from immunotherapy. The predictive value of SPi in immunotherapy was more accurate after the addition of MSI into SPi. MSIlowSPilow patients might be more sensitive to immunotherapy. In conclusion, we highlighted mechanisms and practical values of the stemness in STS. We also recommended the combination of MSI and SPi which is a promising tool to predict prognosis and achieve precise treatments of immunotherapy in STS.
Collapse
Affiliation(s)
- Hui-Yun Gu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Qiang Qu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hai-Heng Peng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi-Feng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe-Zhen Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bai-Wen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ai-Xi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
MiRNA-29b and miRNA-497 Modulate the Expression of Carboxypeptidase X Member 2, a Candidate Gene Associated with Left Ventricular Hypertrophy. Int J Mol Sci 2022; 23:ijms23042263. [PMID: 35216380 PMCID: PMC8880112 DOI: 10.3390/ijms23042263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is a major risk factor for adverse cardiovascular events. Recently, a novel candidate gene encoding the carboxypeptidase X member 2 (CPXM2) was found to be associated with hypertension-induced LVH. CPXM2 belongs to the M14 family of metallocarboxypeptidases, yet it lacks detectable enzyme activity, and its function remains unknown. Here, we investigated the impact of micro (mi)RNA-29b, miRNA-195, and miRNA-497 on the posttranscriptional expression control of CPXM2. Candidate miRNAs for CPXM2 expression control were identified in silico. CPXM2 expression in rat cardiomyocytes (H9C2) was characterized via real-time PCR, Western blotting, and immunofluorescence. Direct miRNA/target mRNA interaction was analysed by dual luciferase assay. CPXM2 was expressed in H9C2 and co-localised with z-disc associated protein PDZ and LIM domain 3 (Pdlim3). Transfection of H9C2 with miRNA-29b, miRNA-195, and miRNA-497 led to decreased levels of CPXM2 mRNA and protein, respectively. Results of dual luciferase assays revealed that miRNA-29b and miRNA-497, but not miRNA-195, directly regulated CPXM2 expression on a posttranscriptional level via binding to the 3′UTR of CPXM2 mRNA. We identified two miRNAs capable of the direct posttranscriptional expression control of CPXM2 expression in rat cardiomyocytes. This novel data may help to shed more light on the—so far—widely unexplored expression control of CPXM2 and its potential role in LVH.
Collapse
|
8
|
Grabowski K, Herlan L, Witten A, Qadri F, Eisenreich A, Lindner D, Schädlich M, Schulz A, Subrova J, Mhatre KN, Primessnig U, Plehm R, van Linthout S, Escher F, Bader M, Stoll M, Westermann D, Heinzel FR, Kreutz R. Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 2022; 45:292-307. [PMID: 34916661 PMCID: PMC8766285 DOI: 10.1038/s41440-021-00826-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.
Collapse
Affiliation(s)
- Katja Grabowski
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Laura Herlan
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Anika Witten
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Fatimunnisa Qadri
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Andreas Eisenreich
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Diana Lindner
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schädlich
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Angela Schulz
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Jana Subrova
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Ketaki Nitin Mhatre
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany
| | - Uwe Primessnig
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ralph Plehm
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Sophie van Linthout
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Charité—Universitätsmedizin Berlin, BCRT—Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Felicitas Escher
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.486773.9Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
| | - Michael Bader
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10178 Berlin, Germany ,grid.4562.50000 0001 0057 2672University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Monika Stoll
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany ,grid.5012.60000 0001 0481 6099Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dirk Westermann
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frank R. Heinzel
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178, Berlin, Germany.
| |
Collapse
|
9
|
Xu L, Chen X, Jiang H, Xu J, Wang L, Sun Y. NDUFC1 Is Upregulated in Gastric Cancer and Regulates Cell Proliferation, Apoptosis, Cycle and Migration. Front Oncol 2021; 11:709044. [PMID: 34966665 PMCID: PMC8710466 DOI: 10.3389/fonc.2021.709044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/04/2021] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is one of the most common primary tumors of the digestive system. NADH: ubiquinone oxidoreductase subunit C1 (NDUFC1), which is an accessory subunit of the NADH dehydrogenase (complex I), is responsible for the transportation of electrons from NADH to the respiratory chain essential for the oxidative phosphorylation. However, little is known about the roles of NDUFC1 in carcinogenesis. In this study, NDUFC1 protein level in NSCLC tissues was tested by immunohistochemistry (IHC) staining. NDUFC1 mRNA level in gastric cancer cell lines was determined by qRT-PCR. MGC-803 and SGC-7901 cells were transfected with shNDUFC1 lentivirus designed to silence NDUFC1. MTT assay, CCK8 assay, wound healing assay and transwell migration assay were conducted. Cell cycle and apoptosis were detected by flow cytometry. In vivo experiments were performed using nude mice. The results indicated that overexpressed NDUFC1 in gastric cancer was related to more serious tumor infiltrates, a higher risk of lymphatic metastasis, a higher proportion of positive lymph nodes, and a more advanced tumor stage. Compared with shCtrl groups, MGC-803 and SGC-7901 of shNDUFC1 groups had lower abilities of proliferation and migration, higher levels of apoptosis. NDUFC1 knockdown also inhibited SGC-7901 cell growth in vivo and suppressed Ki67 expression in xenograft tumors. More importantly, we found that NDUFC1 downregulation made the levels of P-Akt, P-mTOR, CCND1, CDK6, PIK3CA, Bcl-2, Survivin, and XIAP decreased, and that PI3K/AKT signaling pathway agonist SC79 rescued the inhibitory effects on cell proliferation and migration, reversed the promoted effects on cell apoptosis caused by NDUFC1 knockdown. More importantly, compared with NDUFC1 knockdown group, the expression of P-Akt, Bcl-2, Survivin, and XIAP was raised in shNDUFC1 + SC79 group. Thus, our suspicion was that NDUFC1 exacerbates NSCLC progression via PI3K/Akt pathway. Taken together, our study indicated that targeting NDUFC1 could open innovative perspectives for new multi-targeting approaches in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Liang Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Xiuxiu Chen
- Surgery of Breast Nail, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Hongtao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jian Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Lixia Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yuemin Sun
- Department of Pancreatic & Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Liu J, Tian Z, Liu T, Wen D, Ma Z, Liu Y, Zhu J. CHSY1 is upregulated and acts as tumor promotor in gastric cancer through regulating cell proliferation, apoptosis, and migration. Cell Cycle 2021; 20:1861-1874. [PMID: 34412565 DOI: 10.1080/15384101.2021.1963553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer is one of the most frequently diagnosed malignant tumors, with rapid progression and poor prognosis. The role of chondroitin sulfate synthase 1 (CHSY1) in the development and progression of gastric cancer was explored and clarified in this study. The immunohistochemistry analysis of clinical tissue samples as well as data mining of public database showed that CHSY1 was significantly upregulated in gastric cancer and associated with more advanced tumor stage and poorer prognosis. In vitro loss-of-function experiments demonstrated the inhibited cell proliferation, colony formation, cell migration, as well as the promoted cell apoptosis by CHSY1 knockdown. Moreover, recovery of CHSY1 expression could attenuate the regulatory effects induced by CHSY1 knockdown. Correspondingly, gastric cancer cells with CHSY1 knockdown showed reduced tumorigenicity and slower tumor growth in vivo. In conclusion, this study identified CHSY1 as a tumor promotor in gastric cancer, which may be utilized as a novel indicator of patients' prognosis and therapeutic target for developing more effective drug for GC treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhenwei Tian
- Intensive Care Unit, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiming Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Niu G, Deng L, Zhang X, Hu Z, Han S, Xu K, Hong R, Meng H, Ke C. GABRD promotes progression and predicts poor prognosis in colorectal cancer. Open Med (Wars) 2020; 15:1172-1183. [PMID: 33336074 PMCID: PMC7718617 DOI: 10.1515/med-2020-0128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Little is known about the functional roles of gamma-aminobutyric acid type A receptor subunit delta (GABRD) in colorectal cancer (CRC). The expression of GABRD between CRCs and adjacent normal tissues (NTs), metastasis and primary tumors was compared using public transcriptomic datasets. A tissue microarray and immunohistochemical staining (IHC) were used to determine the clinical and prognostic significance of the GABRD in CRC. We used gain-of-function and loss-of-function experiments to investigate the in vitro roles of GABRD in cultured CRC cells. We characterized the potential mechanism of GABRD’s activities in CRC using a Gene Set Enrichment Analysis (GSEA) with The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset. We found that the GABRD expression was significantly increased in CRCs compared to that in NTs, but was similar between metastasis and primary tumors. Overexpression of GABRD was significantly associated with later pTNM stages and unfavorable patient survival. Overexpression of GABRD accelerated while knock-down of GABRD inhibited cell growth and migration. Mechanistically, the function of GABRD might be ascribed to its influence on major oncogenic events such as epithelial–mesenchymal transition (EMT), angiogenesis, and hedgehog signaling. Collectively, GABRD could be a novel prognostic predictor for CRC that deserves further investigation.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Li Deng
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Xiaotian Zhang
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Zhiqing Hu
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Shanliang Han
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - Ke Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Runqi Hong
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chongwei Ke
- Department of General Surgery, the Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai, 200240, People's Republic of China
| |
Collapse
|
12
|
Hong R, Gu J, Niu G, Hu Z, Zhang X, Song T, Han S, Hong L, Ke C. PRELP has prognostic value and regulates cell proliferation and migration in hepatocellular carcinoma. J Cancer 2020; 11:6376-6389. [PMID: 33033521 PMCID: PMC7532499 DOI: 10.7150/jca.46309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is an aggressive and prevalent tumor threatening human health. A previous study suggested low PRELP (proline/arginine-rich end leucine-rich repeat protein) expression was associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). However, the role of PRELP in HCC has not yet been illuminated. Methods: PRELP expression analyses were carried out using transcriptomic datasets from the Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB). The correlations between PRELP expression and clinicopathological features, and prognostic analyses were performed with a tissue microarray (TMA) and immunohistochemistry (IHC). The endogenous expression and in vitro roles of PRELP were investigated in cultured HCC cell lines. The potential mechanisms were characterized by a Gene Set Enrichment Analysis (GSEA) and gene-gene correlation analyses. Results: We found that PRELP mRNA expression was dramatically decreased in HCCs in comparison with that in adjacent normal tissues (NTs) or hepatic cirrhosis. IHC staining showed that PRELP was down-regulated in HCCs, which mainly located in cytoplasm, and was also found in nuclei. The correlation analyses revealed that PRELP expression was relevant to later p-stages (p= 0.028) and tumor size (p= 0.001). The overall survival (OS) and relapse free survival (RFS) time was shorter in HCC patients with lower PRELP expression levels than that with higher PRELP expression levels. Overexpression of PRELP inhibited, while knockdown of PRELP promoted proliferation and migration of HCC cells. For potential mechanisms, PRELP may inhibit progression of HCCs by interacting with integrin family members and the extracellular microenvironment. Conclusion: Our findings demonstrated that overexpression of PRELP correlates with better patient survival and inhibits both cell proliferation and migration in HCC. Therefore, PRELP can serve as a potential prognostic biomarker and therapeutic target which deserves further investigation.
Collapse
Affiliation(s)
- Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Jiawei Gu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Xiaotian Zhang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Tao Song
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Shanliang Han
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Liang Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| |
Collapse
|
13
|
Zhou L, Huang W, Yu HF, Feng YJ, Teng X. Exploring TCGA database for identification of potential prognostic genes in stomach adenocarcinoma. Cancer Cell Int 2020; 20:264. [PMID: 32581654 PMCID: PMC7310509 DOI: 10.1186/s12935-020-01351-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/15/2020] [Indexed: 02/15/2023] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer in the world and ranks third among cancer-related deaths worldwide. The tumour microenvironment (TME) plays an important role in tumorigenesis, development, and metastasis. Hence, we calculated the immune and stromal scores to find the potential prognosis-related genes in STAD using bioinformatics analysis. Methods The ESTIMATE algorithm was used to calculate the immune/stromal scores of the STAD samples. Functional enrichment analysis, protein–protein interaction (PPI) network analysis, and overall survival analysis were then performed on differential genes. And we validated these genes using data from the Gene Expression Omnibus database. Finally, we used the Human Protein Atlas (HPA) databases to verify these genes at the protein levels by IHC. Results Data analysis revealed correlation between stromal/immune scores and the TNM staging system. The top 10 core genes extracted from the PPI network, and primarily involved in immune responses, extracellular matrix, and cell adhesion. There are 31 genes have been validated with poor prognosis and 16 genes were upregulated in tumour tissues compared with normal tissues at the protein level. Conclusions In summary, we identified genes associated with the tumour microenvironment with prognostic implications in STAD, which may become potential therapeutic markers leading to better clinical outcomes.
Collapse
Affiliation(s)
- Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Wei Huang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - He-Fen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Ya-Juan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
14
|
Ye Y, An Y, Wang M, Liu H, Guan L, Wang Z, Li W. Expression of Carboxypeptidase X M14 Family Member 2 Accelerates the Progression of Hepatocellular Carcinoma via Regulation of the gp130/JAK2/Stat1 Pathway. Cancer Manag Res 2020; 12:2353-2364. [PMID: 32280274 PMCID: PMC7127851 DOI: 10.2147/cmar.s228984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Carboxypeptidase X, M14 family member 2 (CPXM2) has been reported to be involved with several human malignancies. However, the impact of CPXM2 on human hepatocellular carcinoma (HCC) tumorigenesis has not been studied. Materials and Methods Using immunohistochemistry, the detailed CPXM2 expression patterns were examined in HCC cell lines and tissues. Additionally, a hepatic stellate cell line overexpressing CPXM2 and an HCC CPXM2-knockdown cell line were established by lipofection of an expression plasmid or short hairpin RNA, respectively. The transfection efficiencies were confirmed by reverse transcription-quantitative PCR, Western blotting and immunofluorescence. Moreover, Western blotting was conducted to determine the phosphorylation levels of the tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription 3 (Stat1) pathway. Furthermore, gp130-specific hairpin RNA was used to knockdown gp130 expression in hepatic stellate cells overexpressing CPXM2. The malignant phenotype of cultured HCC cells was assessed by a Cell Counting Kit-8 (CCK8) assay, plate cloning assay, Matrigel invasion assay and wound-healing assay in vitro. Results It was demonstrated that CPXM2 was upregulated in HCC, and its upregulation predicted a poor prognosis. Besides, the upregulation of CPXM2 markedly enhanced the metastatic potential of HCC via the gp130/JAK2/Stat1 signaling pathway in vitro. Conclusion In summary, this evidence suggests a positive role for CPXM2 in HCC progression via modulation of the gp130/JAK2/Stat1 signaling pathway in HCC.
Collapse
Affiliation(s)
- Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuan An
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Min Wang
- Department of Pathology, Jilin Provincial Cancer Hospital, Changchun 130012, People's Republic of China
| | - Hongyu Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|