1
|
Silva-Junior AL, Oliveira LS, Dias S, Costa TCC, Xabregas LA, Alves-Hanna FS, Abrahim CMM, Neves WLL, Crispim MAE, Toro DM, Silva-Neto PV, Aponte DCM, Oliveira TC, Silva MCC, Matos MMM, Carvalho MPSS, Tarragô AM, Fraiji NA, Faccioli LH, Sorgi CA, Sabino EC, Teixeira-Carvalho A, Martins-Filho OA, Costa AG, Malheiro A. Immunologic mediators profile in COVID-19 convalescence. Sci Rep 2024; 14:20930. [PMID: 39251702 PMCID: PMC11384766 DOI: 10.1038/s41598-024-71419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
SARS-CoV-2 caused the pandemic situation experienced since the beginning of 2020, and many countries faced the rapid spread and severe form of the disease. Mechanisms of interaction between the virus and the host were observed during acute phase, but few data are available when related to immunity dynamics in convalescents. We conducted a longitudinal study, with 51 healthy donors and 62 COVID-19 convalescent patients, which these had a 2-month follow-up after symptoms recovery. Venous blood sample was obtained from all participants to measure blood count, subpopulations of monocytes, lymphocytes, natural killer cells and dendritic cells. Serum was used to measure cytokines, chemokines, growth factors, anti-N IgG and anti-S IgG/IgM antibodies. Statistic was performed by Kruskal-Wallis test, and linear regression with days post symptoms and antibody titers. All analysis had confidence interval of 95%. Less than 35% of convalescents were anti-S IgM+, while more than 80% were IgG+ in D30. Anti-N IgG decreased along time, with loss of seroreactivity of 13%. Eosinophil count played a distinct role on both antibodies during all study, and the convalescence was orchestrated by higher neutrophil-to-lymphocyte ratio and IL-15, but initial stages were marked by increase in myeloid DCs, B1 lymphocytes, inflammatory and patrolling monocytes, G-CSF and IL-2. Later convalescence seemed to change to cytotoxicity mediated by T lymphocytes, plasmacytoid DCs, VEGF, IL-9 and CXCL10. Anti-S IgG antibodies showed the longest perseverance and may be a better option for diagnosis. The inflammatory pattern is yet present on initial stage of convalescence, but quickly shifts to a reparative dynamic. Meanwhile eosinophils seem to play a role on anti-N levels in convalescence, although may not be the major causative agent. We must highlight the importance of immunological markers on acute clinical outcomes, but their comprehension to potentialize adaptive system must be explored to improve immunizations and further preventive policies.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lucas Silva Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Stephanny Dias
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Thaina Cristina Cardoso Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lilyane Amorim Xabregas
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fabíola Silva Alves-Hanna
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Cláudia Maria Moura Abrahim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Walter Luiz Lima Neves
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Myuki Alfaia Esashika Crispim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Diana Mota Toro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Pedro Vieira Silva-Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | | | | | | | - Andrea Monteiro Tarragô
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Nelson Abrahim Fraiji
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos Artério Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Andrea Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Allyson Guimarães Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| |
Collapse
|
2
|
Park U, Lee JH, Kim U, Jeon K, Kim Y, Kim H, Kang JI, Park MY, Park SH, Cha JS, Yoon GY, Jeong DE, Kim T, Oh S, Yoon SH, Jin L, Ahn Y, Lim MY, Han SR, Kim HY, Kim MH, Zhang YH, Kang JG, Lee MS, Jeon YK, Cho HS, Lee HW, Cho NH. A humanized ACE2 mouse model recapitulating age- and sex-dependent immunopathogenesis of COVID-19. J Med Virol 2024; 96:e29915. [PMID: 39279412 DOI: 10.1002/jmv.29915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
In the ongoing battle against coronavirus disease 2019 (COVID-19), understanding its pathogenesis and developing effective treatments remain critical challenges. The creation of animal models that closely replicate human infection stands as a critical step forward in this research. Here, we present a genetically engineered mouse model with specifically-humanized knock-in ACE2 (hiACE2) receptors. This model, featuring nine specific amino acid substitutions for enhanced interaction with the viral spike protein, enables efficient severe acute respiratory syndrome coronavirus 2 replication in respiratory organs without detectable infection in the central nervous system. Moreover, it mirrors the age- and sex-specific patterns of morbidity and mortality, as well as the immunopathological features observed in human COVID-19 cases. Our findings further demonstrate that the depletion of eosinophils significantly reduces morbidity and mortality, depending on the infecting viral dose and the sex of the host. This reduction is potentially achieved by decreasing the pathogenic contribution of eosinophil-mediated inflammation, which is strongly correlated with neutrophil activity in human patients. This underscores the model's utility in studying the immunopathological aspects of COVID-19 and represents a significant advancement in COVID-19 modeling. It offers a valuable tool for testing vaccines and therapeutics, enhancing our understanding of the disease mechanisms and potentially guiding more targeted and effective treatments.
Collapse
Affiliation(s)
- Uni Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- GEMCRO Inc., Seoul, South Korea
| | - Uijin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
| | - Hyeran Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju-Il Kang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
| | | | | | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ga-Yeon Yoon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Da-Eun Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do, South Korea
| | - Taehun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Songhyeok Oh
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Ho Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Physiology & Biomedical Sciences, Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Liyuan Jin
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoojin Ahn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Min Yeong Lim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Seung Ro Han
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Myoung-Hwan Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Physiology & Biomedical Sciences, Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
- Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- GEMCRO Inc., Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Huang CY, Wu YK, Yang MC, Huang KL, Su WL, Huang YC, Chih-Wei W, Tzeng IS, Lan CC. Assessing post-COVID-19 respiratory dynamics: a comprehensive analysis of pulmonary function, bronchial hyperresponsiveness and bronchodilator response. ERJ Open Res 2024; 10:00149-2024. [PMID: 39377091 PMCID: PMC11456966 DOI: 10.1183/23120541.00149-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/01/2024] [Indexed: 10/09/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has a considerable impact on the global healthcare system. Individuals who have recovered from COVID often experience chronic respiratory symptoms that affect their daily lives. This study aimed to assess respiratory dynamics such as airway hyperresponsiveness (AHR) and bronchodilator response in post-COVID patients. Methods This study included 282 adults with respiratory symptoms who underwent provocation tests. The demographic details, clinical symptoms and medical histories were recorded. Baseline spirometry, methacholine challenge tests (MCT) and post-bronchodilator spirometry were performed. Patients were divided into the following four groups: Group 1: non-COVID-19 and negative MCT; Group 2: post-COVID-19 and negative MCT; Group 3: non-COVID-19 and positive MCT; and Group 4: post-COVID-19 and positive MCT. Results Most post-COVID-19 patients (43.7%) experienced AHR, and wheezing was more common. Patients in Group 4 exhibited increased intensities of dyspnoea, cough and wheezing with the lowest pulmonary function test (PFT) parameters at baseline. Moreover, significant decreases in PFT parameters after the MCT were observed in these patients. Although the prevalence of a low forced expiratory volume in 1 s to forced vital capacity ratio (<70%) was initially 2% in Group 4, it increased to 29% after MCT. No significant differences in allergic history or underlying diseases were observed between the groups. Conclusions These findings provide comprehensive insights into the AHR and respiratory symptoms of post-COVID-19 individuals, highlighting the characteristics and potential exacerbations in patients with positive MCT results. This emphasises the need of MCT to address respiratory dynamics in post-COVID-19 individuals.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mei-Chen Yang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kuo-Liang Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Lin Su
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Chih Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wu Chih-Wei
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Cucè F, Visicaro M. Adult-onset asthma induced by COVID-19: A case report. Heliyon 2024; 10:e36197. [PMID: 39253211 PMCID: PMC11382088 DOI: 10.1016/j.heliyon.2024.e36197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
COVID-19 commonly presents respiratory symptoms that can linger after the acute phase. Asthma onset or exacerbations have been documented after viral infections although rarely in adults. We report a case of adult-onset asthma triggered by mildly symptomatic COVID-19 in a 24-year-old female without previous respiratory issues. Fatigue, exercise dyspnea, and intermittent cough persisting a month after the infection, led to spirometry testing, revealing reduced lung function, with normal CT imaging. Budesonide/formoterol therapy improved symptom control and repeated spirometry testing showed improving but reduced lung function after five months. Methacholine testing was thus conducted and confirmed bronchial hyperreactivity and adult-onset asthma. Clinicians should be attentive to persistent respiratory symptoms and suggest appropriate testing. Further research should focus on underlying mechanisms of this phenomenon.
Collapse
Affiliation(s)
- Federica Cucè
- Surgery, Dentistry, Maternity and Infant Department, University of Verona, Verona, Italy
| | - Marco Visicaro
- Department of Infectious Diseases, University of Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Jeong D, Woo YD, Chung DH. Invariant natural killer T cells in lung diseases. Exp Mol Med 2023; 55:1885-1894. [PMID: 37696892 PMCID: PMC10545712 DOI: 10.1038/s12276-023-01024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 09/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of T cells that are characterized by a restricted T-cell receptor (TCR) repertoire and a unique ability to recognize glycolipid antigens. These cells are found in all tissues, and evidence to date suggests that they play many immunological roles in both homeostasis and inflammatory conditions. The latter include lung inflammatory diseases such as asthma and infections: the roles of lung-resident iNKT cells in these diseases have been extensively researched. Here, we provide insights into the biology of iNKT cells in health and disease, with a particular focus on the role of pulmonary iNKT cells in airway inflammation and other lung diseases.
Collapse
Affiliation(s)
- Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Lee H, Kim BG, Chung SJ, Park DW, Park TS, Moon JY, Kim TH, Sohn JW, Yoon HJ, Kim SH. New-onset asthma following COVID-19 in adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2228-2231. [PMID: 37084939 PMCID: PMC10116152 DOI: 10.1016/j.jaip.2023.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Bo-Guen Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sung Jun Chung
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tai Sun Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Yong Moon
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tae-Hyung Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jang Won Sohn
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Joo Yoon
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sang-Heon Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
8
|
Powell TJ, Jacobs A, Tang J, Cardenas E, Palath N, Daniels J, Boyd JG, Bergeron HC, Jorquera PA, Tripp RA. Microparticle RSV Vaccines Presenting the G Protein CX3C Chemokine Motif in the Context of TLR Signaling Induce Protective Th1 Immune Responses and Prevent Pulmonary Eosinophilia Post-Challenge. Vaccines (Basel) 2022; 10:vaccines10122078. [PMID: 36560488 PMCID: PMC9785538 DOI: 10.3390/vaccines10122078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Layer-by-layer microparticle (LbL-MP) fabrication was used to produce synthetic vaccines presenting a fusion peptide containing RSV G protein CX3C chemokine motif and a CD8 epitope of the RSV matrix protein 2 (GM2) with or without a covalently linked TLR2 agonist (Pam3.GM2). Immunization of BALB/c mice with either GM2 or Pam3.GM2 LbL-MP in the absence of adjuvant elicited G-specific antibody responses and M2-specific CD8+ T-cell responses. Following challenge with RSV, mice immunized with the GM2 LbL-MP vaccine developed a Th2-biased immune response in the lungs with elevated levels of IL-4, IL-5, IL-13, and eotaxin in the bronchoalveolar lavage (BAL) fluid and a pulmonary influx of eosinophils. By comparison, mice immunized with the Pam3.GM2 LbL-MP vaccine had considerably lower to non-detectable levels of the Th2 cytokines and chemokines and very low numbers of eosinophils in the BAL fluid post-RSV challenge. In addition, mice immunized with the Pam3.GM2 LbL-MP also had higher levels of RSV G-specific IgG2a and IgG2b in the post-challenge BAL fluid compared to those immunized with the GM2 LbL-MP vaccine. While both candidates protected mice from infection following challenge, as evidenced by the reduction or elimination of RSV plaques, the inclusion of the TLR2 agonist yielded a more potent antibody response, greater protection, and a clear shift away from Th2/eosinophil responses. Since the failure of formalin-inactivated RSV (FI-RSV) vaccines tested in the 1960s has been hypothesized to be partly due to the ablation of host TLR engagement by the vaccine and inappropriate Th2 responses upon subsequent viral infection, these findings stress the importance of appropriate engagement of the innate immune response during initial exposure to RSV G CX3C.
Collapse
Affiliation(s)
- Thomas J. Powell
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
- Correspondence:
| | - Andrea Jacobs
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Jie Tang
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Edwin Cardenas
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Naveen Palath
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Jennifer Daniels
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - James G. Boyd
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Patricia A. Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Lopinavir/ritonavir. REACTIONS WEEKLY 2022. [PMCID: PMC9023652 DOI: 10.1007/s40278-022-13787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Goncharov NV, Vasilyev KA, Kudryavtsev IV, Avdonin PP, Belinskaia DA, Stukova MA, Shamova OV, Avdonin PV. Experimental Search for New Means of Pathogenetic Therapy COVID-19: Inhibitor of H2-Receptors Famotidine Increases the Effect of Oseltamivir on Survival and Immune Status of Mice Infected by A/PR/8/34 (H1N1). J EVOL BIOCHEM PHYS+ 2022; 58:230-246. [PMID: 35283537 PMCID: PMC8897615 DOI: 10.1134/s0022093022010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
The development of drugs for the therapy of COVID-19 is one
of the main problems of modern physiology, biochemistry and pharmacology.
Taking into account the available information on the participation
of mast cells and the role of histamine in the pathogenesis of COVID-19,
as well as information on the positive role of famotidine in the
prevention and treatment of coronavirus infection, an experiment
was carried out using famotidine in a mouse model. We used a type
A/PR/8/34 (H1N1) virus adapted to mice. The antiviral drug oseltamivir
(Tamiflu), which belongs to the group of neuraminidase inhibitors,
was used as a reference drug. The use of famotidine in combination
with oseltamivir can increase survival, improve the dynamics of
animal weight, reduce the level of NKT cells and increase the level
of naive T-helpers. Further studies of famotidine in vivo should
be aimed at optimizing the regimen of drug use at a higher viral
load, as well as with a longer use of famotidine.
Collapse
Affiliation(s)
- N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| | - K. A. Vasilyev
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - P. P. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| | - D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - M. A. Stukova
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - O. V. Shamova
- Institute of Experimental
Medicine, St. Petersburg, Russia
| | - P. V. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|