1
|
Guimarães GM, Costa K, da Silva Santana Moura C, Moreira SED, Marchiori JM, de Menezes Santos ACP, Batista RRA, Queiroz-Junior CM, Raposo JDA, Braga FC, Caliari MV, Nunes ÁC, Fagundes CT, Neumann E. Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10413-1. [PMID: 39602009 DOI: 10.1007/s12602-024-10413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Dysbiosis is a notable marker of intestinal mucositis, an inflammatory condition induced by antineoplastic chemotherapy. Scientific evidence supports the effectiveness of probiotics in managing dysbiosis associated with intestinal mucositis. It is known that tryptophan metabolism is a regulatory component in the multifactorial phenomenon of mucosal homeostasis. In the face of that, we aimed to investigate if oral administration of Weissella paramesenteroides WpK4, a probiotic candidate strain, has a protective effect in a murine model of intestinal mucositis induced by 5-fluorouracil (5-FU) and if tryptophan metabolism plays any role in this effect. Gavage with viable cells of W. paramesenteroides WpK4 increased intestinal mucus production, regeneration of villi, as well as control of dysbiosis in mice submitted to 5-FU chemotherapy, and resulted in 100% survival, unlike the control saline-treated group, which resulted in 60% survival of mice after mucositis induction. Weissella paramesenteroides WpK4 genome harbors sequences encoding enzymes for tryptophan production and catabolism and can synthesize tryptophan, tryptamine, and indole acetic acid in vitro. Besides, oral administration of WpK4 induced increased expression of molecules involved in tryptophan metabolism in mouse ileum and serum. Notably, simultaneous treatment with alfa-naphthoflavone, an aryl hydrocarbon receptor (AhR) inhibitor, abolished the protective effects exerted by W. paramesenteroides Wpk4, as manifested by a significant decline in body weight, suggesting that treatment with the probiotic strain modulates AhR activation. Our results suggest that tryptophan metabolism is potentially involved in the protective effects caused by oral administration of W. paramesenteroides WpK4 to mice during gut inflammatory conditions induced by 5-FU.
Collapse
Affiliation(s)
- Gabriele Moreira Guimarães
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Karen Costa
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - César da Silva Santana Moura
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sarah Elisa Diniz Moreira
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Joana Mozer Marchiori
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Anna Clara Paiva de Menezes Santos
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Rafaela Ribeiro Alvares Batista
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Juliana Divina Almeida Raposo
- Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Caio Tavares Fagundes
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Deng Y, Wang J, Xie G, Zou G, Li S, Zhang J, Cai W, Xu J. Correlation between gut microbiota and the development of Graves' disease: A prospective study. iScience 2023; 26:107188. [PMID: 37485373 PMCID: PMC10362358 DOI: 10.1016/j.isci.2023.107188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The association between gut microbiota and development of Graves' disease (GD) remains unclear. This study aimed to profile the gut microbiota of 65 patients newly diagnosed with GD before and after treatment and 33 physical examination personnel via 16S rRNA sequencing. Significant differences in the gut microbiota composition were observed between the two groups, showing relative bacterial abundances of 1 class, 1 order, 5 families, and 14 genera. After treatment, the abundance of the significantly enriched biota in the GD group decreased considerably, whereas that of the previously decreased biota increased considerably. Further, interleukin-17 levels decreased significantly. The random forest method was used to identify 12 genera that can distinguish patients with GD from healthy controls. Our study revealed that the gut microbiota of patients with GD exhibit unique characteristics compared with that of healthy individuals, which may be related to an imbalance in the immune system and gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Guijiao Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| |
Collapse
|
3
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
4
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|
5
|
Milk Fermented by Lactobacillus paracasei NCC 2461 (ST11) Modulates the Immune Response and Microbiota to Exert its Protective Effects Against Salmonella typhimurium Infection in Mice. Probiotics Antimicrob Proteins 2021; 12:1398-1408. [PMID: 31970649 DOI: 10.1007/s12602-020-09634-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Probiotics form a promising strategy to maintain intestinal health. Milks fermented with probiotic strains, such as the Lactobacillus paracasei ST11, are largely commercialized in Brazil and form a low-cost alternative to probiotic pharmaceutical formulations. In this study, we assessed the probiotic effects of milk fermented by L. paracasei ST11 (administered through fermented milk) in a Salmonella typhimurium infection model in BALB/c mice. We observed in this murine model that the applied probiotic conferred protective effects against S. typhimurium infection, since its administration reduced mortality, weight loss, translocation to target organs (liver and spleen) and ileum injury. Moreover, a reduction in the mRNA expression of pro-inflammatory cytokines such as IFN-γ, IL-6, TNF-α and IL-17 in animals that received the probiotic before challenge was observed. Additionally, the ileum microbiota was better preserved in these animals. The present study highlights a multifactorial protective aspect of this commercial probiotic strain against a common gastrointestinal pathogen.
Collapse
|
6
|
Rolim FRL, Oliveira CJB, de Freitas Neto OC, Dos Santos KMO, Guerra GCB, Rodrigues RV, de Assis POA, Araújo DFDS, de Carvalho VAG, Lemos MLP, da Silva NMV, Soares JKB, Garcia HEM, de Souza EL, Souza FDAL, de Barros MEG, de Oliveira MEG, Queiroga RCRE. Microbiological, immunological, and histological changes in the gut of Salmonella Enteritidis-challenged rats fed goat cheese containing Lactobacillus rhamnosus EM1107. J Dairy Sci 2020; 104:179-197. [PMID: 33131813 DOI: 10.3168/jds.2020-18820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Cheeses are able to serve as suitable matrices for supplying probiotics to consumers, enabling appropriate conditions for bacteria to survive gastric transit and reach the gut, where they are assumed to promote beneficial processes. The present study aimed to evaluate the microbiological, immunological, and histological changes in the gut of Salmonella Enteritidis-challenged rats fed goat cheese supplemented with the probiotic strain Lactobacillus rhamnosus EM1107. Thirty male albino Wistar rats were randomly distributed into 5 experimental groups with 6 animals each: negative (NC) and positive (PtC) control groups, control goat cheese (CCh), goat cheese added with L. rhamnosus EM1107 (LrCh), and L. rhamnosus EM1107 only (EM1107). All animals, except NC group were challenged with Salmonella Enteritidis (109 cfu in 1 mL of saline through oral gavage). Microbial composition was assessed with high-throughput 16S rRNA sequencing by means of Illumina MiSeq (Illumina, San Diego, CA). Nuclear factor kappa B (NF-κB) from the animal cecum tissue was determined by real-time PCR and interleukins (TNF-α, IL-1β, IL-10, and IFN-γ) by means of ELISA. Myeloperoxidase and malondialdehyde levels were determined biochemically. The administration of the L. rhamnosus EM1107 probiotic strain, either as a pure culture or added to a cheese matrix, was able to reduce Salmonella colonization in the intestinal lumen and lessen tissue damage compared with rats from PtC group. In addition, the use of cheese for the probiotic strain delivery (LrCh) was associated with a marked shift in the gut microbiota composition toward the increase of beneficial organisms such as Blautia and Lactobacillus and a reduction in NF-κB expression. These findings support our hypothesis that cheeses might be explored as functional matrices for the efficacious delivery of probiotic strains to consumers.
Collapse
Affiliation(s)
- F R L Rolim
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - C J B Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil; Global One Health initiative (GOHi), The Ohio State University, Columbus 43210
| | - O C de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - K M O Dos Santos
- Brazilian Agricultural Research Corporation (EMBRAPA), 23020-470, Rio de Janeiro, Brazil
| | - G C B Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, 59064-741, Natal, Brazil
| | - R V Rodrigues
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande, 58175-000, Cuité, Brazil
| | - P O A de Assis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - D F de S Araújo
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, 59200-000, Santa Cruz, Brazil
| | - V A G de Carvalho
- Department of Morphology, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - M L P Lemos
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil
| | - N M V da Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil
| | - J K B Soares
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande, 58175-000, Cuité, Brazil
| | - H E M Garcia
- Department of Morphology, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - E L de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - F de A L Souza
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - M E G de Barros
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - M E G de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - R C R E Queiroga
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
7
|
Sandes S, Figueiredo N, Pedroso S, Sant'Anna F, Acurcio L, Abatemarco Junior M, Barros P, Oliveira F, Cardoso V, Generoso S, Caliari M, Nicoli J, Neumann E, Nunes Á. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Res Int 2020; 137:109741. [PMID: 33233306 DOI: 10.1016/j.foodres.2020.109741] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship between inflammatory bowel disease (IBD) and mood disorders is complex and involves overlapping metabolic pathways, which may determine comorbidity. Several studies have been shown that this comorbidity could worsen IBD clinical course. The treatment of ulcerative colitis is complex, and involves traditional therapy to promote the function of epithelial barrier, reducing exacerbated inflammatory responses. Recently, it has been shown that some probiotic strains could modulate gut-brain axis, reducing depressive and anxiety scores in humans, including IBD patients. Accordingly, this study aimed to evaluate the role of Weissella paramesenteroides WpK4 in murine models of ulcerative colitis and chronic stress. It was observed that bacterium ingestion improved health of colitis mice, reducing intestinal permeability, besides improving colon histopathological appearance. In stressed mice, bacterial consumption was associated with a reduced anxiety-like and depressive-like behaviors. In both assays, the beneficial role of W. paramesenteroides WpK4 was related to its immunomodulatory feature. It is possible to state that W. paramesenteroides WpK4 exerted their beneficial roles in gut-brain axis through their immunomodulatory effects with consequences in several metabolic pathways related to intestinal permeability and hippocampal physiology.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Brazil.
| | - Naiara Figueiredo
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Brazil
| | - Sílvia Pedroso
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Felipe Sant'Anna
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Mário Abatemarco Junior
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Patrícia Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Fabrício Oliveira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Valbert Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Simone Generoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcelo Caliari
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Brazil
| |
Collapse
|
8
|
Prado GKS, Torrinha KC, Cruz RE, Gonçalves ABB, Silva CAV, Oliveira FMS, Nunes AC, Gomes MA, Caliari MV. Weissella paramesenteroides WpK4 ameliorate the experimental amoebic colitis by increasing the expression of MUC-2 and the intestinal epithelial regeneration. J Appl Microbiol 2020; 129:1706-1719. [PMID: 32320114 DOI: 10.1111/jam.14671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
Abstract
AIMS This study evaluates the action of Weissella paramesenteroides WpK4 on amoebic colitis. METHODS AND RESULTS Weissella paramesenteroides WpK4 was administered in Entamoeba dispar infected and noninfected mice and clinical parameters were evaluated. Following 7 days, the caeca were collected for histopathology, morphometry and immunohistochemical staining of MUC-2, CDC-47 and IgA. The treatment reduced diarrhoea and the presence of blood in the faeces and diminished the area of necrosis, also causing weight gain. Also, the addition of this bacterium enhanced the expression of the mucin (MUC-2). The reduction in necrosis and increased CDC-47 expression indicates significant epithelial regeneration. The negative correlation between CDC-47 and the necrosis area reveals that the bacterium favoured the recovery of the necrotic regions and the positive correlation found between the expression of MUC-2 and CDC-47 indicates that the epithelial regeneration also supports the synthesis of MUC-2. CONCLUSIONS Weissella paramesenteroides WpK4 was able to increase the protection of the intestinal mucosa against experimental amoebic colitis through the increase of MUC-2 and epithelial regeneration. SIGNIFICANCE AND IMPACT OF THE STUDY Weissella paramesenteroides WpK4 presents the potential to become a complementary tool in the treatment of amoebic colitis.
Collapse
Affiliation(s)
- G K S Prado
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - K C Torrinha
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R E Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A B B Gonçalves
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - C A V Silva
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F M S Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A C Nunes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M A Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M V Caliari
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
Santos TT, Ornellas RMDS, Acurcio LB, Sandes SHC, da Costa AM, Uetanabaro APT, Nicoli JR, Vinderola G. Differential Immune Response of Lactobacillus plantarum 286 Against Salmonella Typhimurium Infection in Conventional and Germ-Free Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1323:1-17. [PMID: 32415613 DOI: 10.1007/5584_2020_544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We aimed at evaluating in vivo the probiotic potential of Lactobacillus plantarum 286 against Salmonella enterica serov. Typhimurium. Colonization capacity and antagonistic activity were determined in feces of gnotobiotic mice. Survival to infection, translocation, histopathology, IgA and cytokine levels (IL-10, IL-6, IFN-γ, TNF-α, TGF-β) were determined both in conventional and germ-free mice followed L. plantarum 286 administration and Salmonella infection. L. plantarum 286 colonized the intestine of gnotobiotic mice, where it produced antagonistic substances against S. Typhimurium. In conventional animals, the administration of this strain increased intestinal IgA levels and reduced the inflammatory response and the tissue damage caused by S. Typhimurium. Reduction of tissue damage in the intestine and liver of germ-free animals was also observed, however the immune response elicited was different in either model. L. plantarum 286 showed in vivo probiotic properties in both murine models. Probiotic capacity results may depend on the animal model chosen.
Collapse
Affiliation(s)
- Tizá Teles Santos
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Roberta Maria Dos Santos Ornellas
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Leonardo Borges Acurcio
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sávio Henrique Cicco Sandes
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Miura da Costa
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
10
|
Park DH, Kothari D, Niu KM, Han SG, Yoon JE, Lee HG, Kim SK. Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs. Animals (Basel) 2019; 9:ani9090690. [PMID: 31527540 PMCID: PMC6770862 DOI: 10.3390/ani9090690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Dog foods are becoming more equivalent to human foods, and functional additives are being included in their diets to promote health. In this study, turmeric, glasswort, and Ganghwa mugwort were used as medicinal plants and were subjected to fermentation by autochthonous Enterococcus faecium. Fermentation significantly improved the in vitro antioxidant activities of these plants. Food preference tests of dog foods containing these fermented medicinal plants were conducted in beagles. Abstract This research determined the antioxidant activities of medicinal plants fermented by Enterococcus faecium and their subsequent applications as dog food additives. Turmeric (5%, w/v), glasswort (2.5%, w/v), Ganghwa mugwort (2.5%, w/v), and their mixture (5%, w/v) were fermented by autochthonous E. faecium (1%, v/v) for 72 h. Bacterial cell counts and pH were monitored during fermentation. Total polyphenol content (TPC), total flavonoid content (TFC), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and intracellular superoxide scavenging activity in bovine mammary alveolar epithelial (MAC-T) cells were measured with the fermented and non-fermented samples. Only the antioxidant capacity of the mixture was increased after fermentation. However, intracellular superoxide level in MAC-T cells was significantly reduced after treatment with fermented plant samples (p < 0.001) as compared with that in non-fermented plants. Fermented plants were then sprayed at 1% (v/w) onto dog foods. TPC, TFC, ABTS radical scavenging activity, and DPPH radical scavenging activity of dog foods were significantly enhanced after the addition of fermented plants. Food preference testing was conducted using a two-pan method—control diet vs. four treatment diets—for 4 days for each additive diet, a total 16 days in 9 beagles. Feces were collected to enumerate bacterial counts. Preferences for glasswort and Ganghwa mugwort were higher than those of the control (p < 0.05). Furthermore, fecal microbiota enumeration displayed a higher number of beneficial microorganisms in treated groups. These results suggest that fermented plants with enhanced antioxidant abilities might be useful as potential additives for dog foods.
Collapse
Affiliation(s)
- Da Hye Park
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
- Team of an Educational Program of Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Kai-Min Niu
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea.
| | - Jee Eun Yoon
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea.
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
- Team of an Educational Program of Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
11
|
Fonseca JF, Alvim LB, Nunes ÁC, Oliveira FMS, Amaral RS, Caliari MV, Nicoli JR, Neumann E, Gomes MA. Probiotic effect of Bifidobacterium longum 5 1A and Weissella paramesenteroides WpK4 on gerbils infected with Giardia lamblia. J Appl Microbiol 2019; 127:1184-1191. [PMID: 31155822 DOI: 10.1111/jam.14338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
AIMS The objective of this study was to assess the probiotic potential of genuine strains of Bifidobacterium longum 51A and Weissella paramesenteroides WpK4, in experimental giardiasis. METHODS AND RESULTS The bacteria were administered orally to gerbils (Meriones unguiculatus) 10 days before oral infection with trophozoites of Giardia lamblia. After 7 days of infection, the animals were euthanized and portions of the duodenum were processed for histopathologic, histochemical and morphometric assessment. The height of the intestinal crypts and crypt/villi ratio were higher in infected groups (P < 0·05) than in noninfected groups. The area of mucus production was higher (P < 0·05) in infected animals pretreated with B. longum 51A than in other groups. The parasitic load of the animals that received both bacteria decreased significantly (P < 0·05) compared to the ones of the control group. CONCLUSIONS Our results suggest a probiotic function of B. longum 51A and W. paramesenteroides WpK4 and may result in their use as a prophylactic and therapeutic alternative for promoting human and animal health. SIGNIFICANCE AND IMPACT OF THE STUDY Bifidobacterium longum 51A and W. paramesenteroides WpK4 may constitute prophylactic alternatives, reversing the emergence of side effects and resistance observed in the conventional treatment of giardiasis.
Collapse
Affiliation(s)
- J F Fonseca
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - L B Alvim
- Department of General Biology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Á C Nunes
- Department of General Biology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F M S Oliveira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R S Amaral
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M V Caliari
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - J R Nicoli
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E Neumann
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M A Gomes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Abatemarco Júnior M, Sandes SHC, Ricci MF, Arantes RME, Nunes ÁC, Nicoli JR, Neumann E. Protective Effect of Lactobacillus diolivorans 1Z, Isolated From Brazilian Kefir, Against Salmonella enterica Serovar Typhimurium in Experimental Murine Models. Front Microbiol 2018; 9:2856. [PMID: 30564201 PMCID: PMC6288297 DOI: 10.3389/fmicb.2018.02856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Kefir is a beverage obtained by fermentation of milk or sugar solution by lactic acid bacteria and yeasts, and several health benefits have been attributed to its ingestion, part of them being attributed to Lactobacillus species. The objective of the present study was to evaluate, in vivo, the probiotic potential of Lactobacillus diolivorans 1Z, isolated from Brazilian kefir grains. Initially, conventional mice were orally treated daily or not during 10 days with a suspension of L. diolivorans 1Z, and then orally challenged with Salmonella enterica serovar Typhimurium. Treatment with L. diolivorans 1Z resulted in higher survival (70%) of animals after the challenge with the pathogen than for not treated mice (0%). When germ-free mice were monoassociated (GN-PS group) or not (GN-CS group) with L. diolivorans 1Z and challenged after 7 days with S. Typhimurium, Salmonella fecal counts were significantly lower (P < 0.05) for the GN-PS group when compared to the GN-CS group. Histopathological analysis revealed less damage to the ileum mucosa, as demonstrated by smallest perimeter of major lesions for mice of the GN-PS group in comparison to the group GN-CS (P < 0.05). These findings were accompanied by a lower expression of IFN-γ and TNF-α in the intestinal tissue of GN-PS mice. Additionally, translocation of S. Typhimurium to liver was significantly lower in GN-PS than in GN-CS mice (P < 0.05), and IgA levels in intestinal content and number of Kupffer cells in liver were higher. No difference was observed for hepatic cellularity between GN-PS and GN-CS groups (P > 0.05), but the pattern of inflammatory cells present in the liver was predominantly of polymorphonuclear in GN-CS group and of mononuclear in the GN-PS group, and a higher hepatic expression of IL-10 and TGF-β was observed in GN-PS group. Concluding, L. diolivorans 1Z showed to be a potential probiotic strain that protected mice from death after challenge with S. Typhimurium, apparently by immunological modulation.
Collapse
Affiliation(s)
- Mario Abatemarco Júnior
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sávio Henrique Cicco Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayra Fernanda Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Álvaro Cantini Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Oliveira J, Costa K, Acurcio L, Sandes S, Cassali G, Uetanabaro A, Costa A, Nicoli J, Neumann E, Porto A. In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation (Theobroma cacao L.). J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Acurcio L, Sandes S, Bastos R, Sant’anna F, Pedroso S, Reis D, Nunes Á, Cassali G, Souza M, Nicoli J. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection. Benef Microbes 2017; 8:579-588. [DOI: 10.3920/bm2016.0163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 108 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains’ colonisation and not by S. Typhimurium challenge.
Collapse
Affiliation(s)
- L.B. Acurcio
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - S.H.C. Sandes
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - R.W. Bastos
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - F.M. Sant’anna
- Department of Meat and Dairy Products Technology and Inspection (DTIPOA), Veterinary School (EV – Escola de Veterinária), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - S.H.S.P. Pedroso
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - D.C. Reis
- Department of Pathology, ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Á.C. Nunes
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - G.D. Cassali
- Department of Pathology, ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - M.R. Souza
- Department of Meat and Dairy Products Technology and Inspection (DTIPOA), Veterinary School (EV – Escola de Veterinária), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - J.R. Nicoli
- Department of Microbiology, Biological Science Institute (ICB – Instituto de Ciências Biológicas), Federal University of Minas Gerais (UFMG – Universidade Federal de Minas Gerais), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
de Sant'Anna FM, Acurcio LB, Alvim LB, de Castro RD, de Oliveira LG, da Silva AM, Nunes ÁC, Nicoli JR, Souza MR. Assessment of the probiotic potential of lactic acid bacteria isolated from Minas artisanal cheese produced in theCampo das Vertentesregion, Brazil. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Felipe Machado de Sant'Anna
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal; Escola de Veterinária; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Leonardo Borges Acurcio
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Luige Biciati Alvim
- Departamento de Biologia Geral; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Renata Dias de Castro
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal; Escola de Veterinária; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Leticia Goulart de Oliveira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal; Escola de Veterinária; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Andreia Marçal da Silva
- Departamento de Engenharia de Alimentos; Universidade Federal de São João del-Rei; Rodovia MG424 Km 47 35701-970 Sete Lagoas MG Brazil
| | - Álvaro Cantini Nunes
- Departamento de Biologia Geral; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| | - Marcelo Resende Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal; Escola de Veterinária; Universidade Federal de Minas Gerais; Avenida Antônio Carlos, 6627 31270-901 Belo Horizonte MG Brazil
| |
Collapse
|
16
|
Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, Santos C, Nicoli J, Neumann E, Nunes Á. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 2017; 200:1-13. [PMID: 28527759 DOI: 10.1016/j.micres.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
From the birth, since their mucosal microbiota and immune system are not fully developed, newborn calves are susceptible to several mucosal pathogenic microorganisms. Operating through humoral and non-humoral mechanisms in the host, several lactic acid bacteria strains bearing probiotic features are often employed in livestock as food supplement, improving animal production performance, promoting health and reducing the severity of mucosal infections. Accordingly, we isolated, species-level identified and screened for their probiotic potentials seventy lactic acid bacteria strains from upper airway, vaginal and intestinal mucosa of healthy calves. Based on in vitro approaches, we selected three strains: Lactobacillus fermentum V3B-08 isolated from upper airway mucosa, Weissella hellenica V1V-30 isolated from vaginal mucosa and Lactobacillus farciminis B4F-06 isolated from intestinal mucosa were used to mono-colonize germ-free mice in the same site in which these strains were isolated, aiming to characterize their immunomodulatory features. These strains were able to colonize germ-free mice mucosa and trigger sIgA synthesis at a local level, in addition to stimulating, in different ways, adaptive immune responses at a systemic level.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luige Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinara Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Campos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Silva BC, Sandes SHC, Alvim LB, Bomfim MRQ, Nicoli JR, Neumann E, Nunes AC. Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J Appl Microbiol 2016; 122:225-238. [PMID: 27813217 PMCID: PMC7166613 DOI: 10.1111/jam.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to verify the suitable use of candidate 'probiotics' selected by in vitro tests and the importance of in vivo assays to nominate micro-organisms as probiotics and alternative prophylactic treatments for Salmonella Typhimurium infection. METHODS AND RESULTS Thirty-three lactic acid bacteria (LAB) isolated from foal's faeces were assessed based on the main desirable functional in vitro criteria. Based on these results, Pediococcus pentosaceus strain 40 was chosen to evaluate its putative probiotic features in a mouse model of Salmonella infection. Daily intragastric doses of Ped. pentosaceus 40 for 10 days before and 10 days after Salmonella challenge (106 CFU of Salm. Typhimurium per mouse) led to a significant aggravation in mouse health by increasing weight loss, worsening clinical symptoms and anticipating the time and the number of deaths by Salmonella. Pediococcus pentosaceus modulated cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α in the small intestine. CONCLUSION The usual criteria were used for in vitro screening of a large number of LAB for desirable probiotic functional properties. However, the best candidate probiotic strain identified, Ped. pentosaceus #40, aggravated the experimental disease in mice. SIGNIFICANCE AND IMPACT OF THE STUDY These findings emphasize the need for prophylactic or therapeutic effectiveness to be demonstrated in in vivo models to make precise health claims.
Collapse
Affiliation(s)
- B C Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - S H C Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - L B Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - M R Q Bomfim
- Laboratório de Biologia Molecular de Microrganismos do Núcleo de Biologia Parasitária, Centro Universitário do Maranhão (UniCEUMA), São Luís, MA, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|