1
|
Shah J, Adnan SH, Yousaf MS, Din SJU, Haq MU, Siddiqui N, Shahid M, Elhamid ASA, Rauf S, Afnan M. A Multi-Hospital Comparative Study on the Efficacy of Probiotics Versus Placebo in Preventing Antibiotic-Associated Diarrhea in Adult Patients. Cureus 2024; 16:e70881. [PMID: 39497860 PMCID: PMC11533712 DOI: 10.7759/cureus.70881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea (AAD) is a prevalent complication of antibiotic therapy, attributed to disruptions in gut microbiota. Probiotics are increasingly studied for their potential in preventing AAD by restoring microbial balance. OBJECTIVE The aim of this investigation was to assess the efficacy of probiotics in reducing AAD in adult patients when compared to a placebo. METHODOLOGY This research was conducted from March 2023 to March 2024 using a randomized, placebo-controlled design at multiple institutions: Khyber Teaching Hospital, Peshawar; Prime Teaching Hospital, Peshawar; Mufti Mahmood Memorial Teaching Hospital, Dera Ismail Khan; Shalamar Hospital, Lahore; University Hospitals of Leicester; and DHQ Teaching Hospital Kohat, enrolling 340 adult patients prescribed systemic antibiotics. Eligible participants were aged 18 years and older, while those with chronic diarrhea, inflammatory bowel disease, immunodeficiency, recent probiotic or antibiotic use, or inability to provide informed consent were excluded. The sample size was calculated using WHO guidelines, resulting in a target of 340 to ensure adequate power. Participants were randomized to receive either probiotics (Lactobacillus rhamnosus GG and Bifidobacterium longum BB536) or placebo, administered within 24 hours of starting antibiotics. Daily monitoring of bowel habits and symptoms was performed using standardized diaries, and adherence was evaluated through pill counts. Statistical analyses were performed using IBM SPSS Statistics for Windows, Version 27 (Released 2020; IBM Corp., Armonk, New York, United States), comparing the incidence, severity, and duration of AAD between groups, with a significance threshold of p < 0.05. RESULTS In the probiotic group, 31 patients (18.23%) developed AAD compared to 53 patients (31.17%) in the placebo group (p=0.01). Among those with AAD, the probiotic group experienced a shorter duration (mean 3.5 ± 1.2 days) compared to placebo (mean 5.1 ± 1.8 days, p=0.002). Adherence rates were high in both groups (probiotic: 96.4%, placebo: 95.9%). Significant improvements in bowel habits were reported more frequently in the probiotic group (77.06%) than placebo (50.59%, p=0.02). The hospital stay duration was similar between groups (probiotic: mean 7.8 ± 2.1 days, placebo: mean 8.3 ± 2.4 days, p=0.15). CONCLUSION Probiotics significantly reduced the incidence and duration of AAD compared to placebo, with high adherence and favorable patient-reported outcomes.
Collapse
Affiliation(s)
- Jamal Shah
- General Internal Medicine, Khyber Teaching Hospital, Peshawar, PAK
| | | | | | - Syed Jamal Ud Din
- Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, GBR
| | - Moeen Ul Haq
- Gastroenterology, Mufti Mahmood Memorial Teaching Hospital and Gomal Medical College, Dera Ismail Khan, PAK
| | - Nadia Siddiqui
- Internal Medicine, Jinnah Medical and Dental College, Karachi, PAK
| | - Minahil Shahid
- Medicine/Surgery, Shalamar Medical and Dental College, Lahore, PAK
| | - Ahmed Samir Abdul Elhamid
- Gastroenterology and Hepatology, Faculty of Medicine, Delta University for Science and Technology, Mansoura, EGY
| | - Shiza Rauf
- Medicine, Leicester Royal Infirmary, Leicester, GBR
| | - Muhammad Afnan
- Cardiovascular Medicine, Khyber Institute of Medical Sciences, Kohat, PAK
| |
Collapse
|
2
|
Mitsou EK, Katsagoni CN, Janiszewska K. Attitudes and Practices of Dietitians Regarding Gut Microbiota in Health-An Online Survey of the European Federation of the Associations of Dietitians (EFAD). Nutrients 2024; 16:2452. [PMID: 39125333 PMCID: PMC11314052 DOI: 10.3390/nu16152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Explorations of the current attitudes and practices of dietitians regarding the gut microbiota in health are scarce. In this online survey, we assessed the attitudes and practices of dietitians across Europe concerning gut microbiome parameters and the manipulation of the gut microbiota. Pre-graduate dietetic students and other professionals were also invited to participate. The potential interest and preferences of the participants for future educational initiatives about the gut microbiota and the educational resources used were further explored. A total of 179 full responses were recorded (dietitians, n = 155), mainly from the southern and western regions. Most of the participants (>90.0%) believed that probiotics and prebiotics have a place in nutritional practice and that fermented foods with live microbial cultures should be a part of food-based dietary guidelines. A strong belief in the beneficial roles of probiotics and prebiotics in some health situations was also reported among the participants. Most of the dietitians recognised the importance of gut microbiota manipulation and advised the use of probiotics and prebiotics in dietary practice, and they felt quite confident applying the relevant information in their daily practice. Nevertheless, misconceptions were identified, and further guideline-oriented education is necessary. The interest in future e-learning initiatives was high among the participants, and the sources of knowledge, educative formats, and potential areas for further educational efforts were indicated.
Collapse
Affiliation(s)
- Evdokia K. Mitsou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Christina N. Katsagoni
- Department of Clinical Nutrition, Agia Sofia Children’s Hospital, 11527 Athens, Greece;
- The European Federation of the Associations of Dietitians (EFAD), Gooimeer 4-15, 1411 DC Naarden, The Netherlands;
| | - Katarzyna Janiszewska
- The European Federation of the Associations of Dietitians (EFAD), Gooimeer 4-15, 1411 DC Naarden, The Netherlands;
| |
Collapse
|
3
|
Wang W, Dang G, Hao W, Li A, Zhang H, Guan S, Ma T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10314-3. [PMID: 38904897 DOI: 10.1007/s12602-024-10314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Enterococcus faecium, Bifidobacterium, and Pediococcus acidilactici, as intestinal probiotics, have been proved to play a positive role in treating intestinal diseases, promoting growth and immune regulation in poultry. The aim of this study was to evaluate the effect of compound probiotics on growth performance, digestive enzyme activity, intestinal microbiome characteristics, as well as intestinal morphology in broiler chickens. Treatment diets with chlortetracycline and compound probiotics were used for two groups of sixty broilers each throughout the feeding process. Another group was fed the basal diet. The BW (2589.41 ± 13.10 g vs 2422.50 ± 19.08 g) and ADG (60.57 ± 0.31 g vs 56.60 ± 0.45 g) of the compound probiotics added feed treatment group were significantly increased, and the FCR was significantly decreased (P < 0.05). The supplementation of a compound probiotics enhanced the abundance of beneficial bacteria such as Lactobacillus, Faecalibacterium, and norank_f_norank_o_Clostridia_vadinBB60_group (P < 0.05), and modulated the cecal microbiota structure, thereby promoting the production of short-chain fatty acids (SCFAs) and elevating their levels (P < 0.05), particularly propionic and butyric acids. Furthermore, the administration of the compound probiotics supplements significantly enhanced the villi height, V/C ratio, and reduced the crypt depth (P < 0.05). In addition, the activity of digestive enzymes in the duodenum and jejunum was elevated (P < 0.05). Collectively, the selected compound probiotics supplemented in this experiment have demonstrated efficacy, warranting further application in practical production settings as a viable alternative to antibiotics, thereby facilitating efficient production and promoting gastrointestinal health.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqi Dang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Hao
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Anping Li
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Hongfu Zhang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shu Guan
- Department of Animal Nutrition and Health, DSM Singapore Industrial Pte. Ltd, Singapore, 117440, Singapore
| | - Teng Ma
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Li Z, Peng C, Sun Y, Zhang T, Feng C, Zhang W, Huang T, Yao G, Zhang H, He Q. Both viable Bifidobacterium longum subsp. infantis B8762 and heat-killed cells alleviate the intestinal inflammation of DSS-induced IBD rats. Microbiol Spectr 2024; 12:e0350923. [PMID: 38647334 PMCID: PMC11237488 DOI: 10.1128/spectrum.03509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
In view of the safety concerns of probiotics, more and more attention is paid to the beneficial effects of dead probiotics cells. Herein, we investigated and compared the alleviation effects of viable Bifidobacterium longum subsp. infantis B8762 (B. infantis B8762) and its heat-killed cells on dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) rats. Four groups of rats (n = 12 per group) were included: normal control, DSS-induced colitis rats without bacterial administration (DSS), DSS-induced colitis rats with viable B. infantis B8762 administration (VB8762), and DSS-induced colitis rats with dead B. infantis B8762 administration (DB8762). Our results showed that both VB8762 and DB8762 administration exerted significant protective effects on DSS-induced IBD rats, as evidenced by a reduction in mortality, disease activity index score, body weight loss, as well as decreased histology score, which were companied by a significant decrease in serum pro-inflammatory factors compared with DSS group, and a stronger effect on modulating the fecal microbiota alpha-diversity and beta-diversity compared with DSS group. Additionally, the fecal metabolome results showed that both VB8762 and DB8762 interventions indeed altered the fecal metabolome profile and related metabolic pathways of DSS-induced IBD rats. Therefore, given the alleviation effects on colitis, the DB8762 can be confirmed to be a postbiotic. Overall, our findings suggested that VB8762 and DB8762 had similar ability to alleviate IBD although with some differences. Due to the minimal safety concern of postbiotics, we propose that the postbiotic DB8762 could be a promising alternative to probiotics to be applied in the prevention and treatment of IBDs.IMPORTANCEInflammatory bowel disease (IBD) has emerged as a global disease because of the worldwide spread of western diets and lifestyles during industrialization. Up to now, many probiotic strains are used as a modulator of gut microbiota or an enhancer of gut barrier to alleviate or cure IBD. However, there are still many issues of using probiotics, which were needed to be concerned about, for instance, safety issues in certain groups like neonates and vulnerable populations, and the functional differences between viable and dead microorganisms. Therefore, it is of interest to investigate the beneficial effects of dead probiotics cells. The present study proved that both viable Bifidobacterium longum subsp. infantis B8762 and heat-killed cells could alleviate dextran sodium sulfate-induced colitis in rats. The findings help to support that some heat-killed probiotics cells can also exert relevant biological functions and can be used as a postbiotic.
Collapse
Affiliation(s)
- Zhaojie Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Yaru Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Cuijiao Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
He Y, Li F, Zhang W, An M, Li A, Wang Y, Zhang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li J. Probiotic Potential of Bacillus amyloliquefaciens Isolated from Tibetan Yaks. Probiotics Antimicrob Proteins 2024; 16:212-223. [PMID: 36536234 DOI: 10.1007/s12602-022-10027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
6
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
7
|
Gao S, Wang J. Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care. Protein Cell 2023; 14:807-823. [PMID: 37184065 PMCID: PMC10636639 DOI: 10.1093/procel/pwad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Microbes are commonly sensitive to shifts in the physiological and pathological state of their hosts, including mothers and babies. From this perspective, the microbiome may be a good indicator for diseases during pregnancy and has the potential to be used for perinatal health monitoring. This is embodied in the application of microbiome from multi body sites for auxiliary diagnosis, early prediction, prolonged monitoring, and retrospective diagnosis of pregnancy and infant complications, as well as nutrition management and health products developments of mothers and babies. Here we summarized the progress in these areas and explained that the microbiome of different body sites is sensitive to different diseases and their microbial biomarkers may overlap between each other, thus we need to make a diagnosis prudently for those diseases. Based on the microbiome variances and additional anthropometric and physical data, individualized responses of mothers and neonates to meals and probiotics/prebiotics were predictable, which is of importance for precise nutrition and probiotics/prebiotics managements and developments. Although a great deal of encouraging performance was manifested in previous studies, the efficacy could be further improved by combining multi-aspect data such as multi-omics and time series analysis in the future. This review reconceptualizes maternal and infant health from a microbiome perspective, and the knowledge in it may inspire the development of new options for the prevention and treatment of adverse pregnancy outcomes and bring a leap forward in perinatal health care.
Collapse
Affiliation(s)
- Shengtao Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Comerlato CB, Zhang X, Walker K, Mayne J, Figeys D, Brandelli A. The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10136-9. [PMID: 37589783 DOI: 10.1007/s12602-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.
Collapse
Affiliation(s)
- Carolina Baldisserotto Comerlato
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil
| | - Xu Zhang
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Krystal Walker
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Pal R, Athamneh AI, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol 2023; 49:414-434. [PMID: 35574602 PMCID: PMC9743071 DOI: 10.1080/1040841x.2022.2072705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmad I.M. Athamneh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jose A. R Ramirez
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
- Cann Group, Walter and Eliza Hall Institute, La Trobe University, Victoria 3083, Australia
| | | | - Shrikant Pawar
- The Anlyan Center Yale Center for Genomic Analysis, Yale School of Medicine, New Haven CT USA
| | - Manuele Biazzo
- The Bioarte Ltd Laboratories at Life Science Park, San Gwann, Malta
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark G. Martens
- Reading Hospital, Tower Health, West Reading, PA 19611, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - George P. Tegos
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Zhang Q, Shan B, Xu X, Mao B, Tang X, Zhao J, Zhang H, Cui S, Chen W. Lactiplantibacillus Plantarum CCFM8724 Reduces the Amounts of Oral Pathogens and Alters the Oral Microbiota in Children With Dental Caries: a Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:361-370. [PMID: 35512770 DOI: 10.1080/07315724.2022.2043200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective Early childhood caries (ECC) is closely related to the disorders of oral microbiota. Probiotics antagonize pathogenic bacteria and regulate the composition of the microbiota. We aimed to investigate the effects of Lactiplantibacillus plantarum CCFM8724 on Streptococcus mutans, Candida albicans, and oral microbiota of patients.Methods Children with ECC aged 3‒6 years were randomly divided into probiotic and placebo groups in the double-blind controlled trial. The intervention and washout periods were 28 days and 14 days, respectively. On days 1 and 28, dental plaques were collected. The effects of L. plantarum CCFM8724 on the oral microbiota of patients were investigated by sequencing the V3-V4 region of 16S rDNA. On days 1, 14, 28 and 42, qPCR was used to investigate the effect of L. plantarum CCFM8724 on the amounts of S. mutans and C. albicans in the saliva of children with ECC.Results L. plantarum CCFM8724 significantly reduced the amounts of S. mutans and C. albicans in saliva of children with ECC (p < 0.01). After consumption of L. plantarum CCFM8724, the abundance of Firmicutes, Granulicatella and Gemella increased, whereas the abundance of Proteobacteria, Neisseria, Bifidobacterium and Catonella decreased. Conclusion: Our results emphasize that probiotics could play a beneficial role in the prevention and treatment of ECC in children from an oral microecological perspective.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Baokun Shan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu, P.R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, P.R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
12
|
Postbiotics in Human Health: A Narrative Review. Nutrients 2023; 15:nu15020291. [PMID: 36678162 PMCID: PMC9863882 DOI: 10.3390/nu15020291] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In the 21st century, compressive health and functional foods are advocated by increasingly more people in order to eliminate sub-health conditions. Probiotics and postbiotics have gradually become the focus of scientific and nutrition communities. With the maturity and wide application of probiotics, the safety concerns and other disadvantages are non-negligible as we review here. As new-era products, postbiotics continue to have considerable potential as well as plentiful drawbacks to optimize. "Postbiotic" has been defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Here, the evolution of the concept "postbiotics" is reviewed. The underlying mechanisms of postbiotic action are discussed. Current insight suggests that postbiotics exert efficacy through protective modulation, fortifying the epithelial barrier and modulation of immune responses. Finally, we provide an overview of the comparative advantages and the current application in the food industry at pharmaceutical and biomedical levels.
Collapse
|
13
|
Bashir Y, Khan AU. The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and neurodegenerative disorders. Front Neurosci 2022; 16:1030694. [PMID: 36389228 PMCID: PMC9650127 DOI: 10.3389/fnins.2022.1030694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
What is the effect of our gut microbial flora on brain? Does the gut microbiome have any role in the causation of psychiatric and neurodegenerative diseases? Does the effect of gut microbiota traverse the gut-brain axis? Questions like these have captured the interest and imagination of the scientific community for quite some time now. Research in the quest for answers to these questions, to unravel the potential role of the microbiota inhabiting the gut in controlling brain functions, has progressed manifold over the last two decades. Although the possibility of microbiome as a key susceptibility factor for neurological disorders viz. Parkinson's disease, Alzheimer's disease, multiple sclerosis, and autism spectrum disorder has bolstered by an increase in the clinical and preclinical evidence, the field is still in its infancy. Given the fact that the diversity of the gut microbiota is affected by various factors including the diet and exercise, the interpretation of such data becomes all the more difficult. Also, such studies have been mostly conducted on animal models, so there is a need for randomized controlled trials in human subjects, corroborated by longitudinal studies, to establish if modulating the gut microbiota can unravel novel therapeutic interventions. Exploring the genomic, metagenomic and metabolomic data from clinical subjects with psychiatric and neurological diseases can prove to be a helpful guide in individual treatment selection.
Collapse
|
14
|
Anti-Influenza Virus Potential of Probiotic Strain Lactoplantibacillus plantarum YML015 Isolated from Korean Fermented Vegetable. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactic acid bacteria are one of the potential natural remedies used worldwide, commonly known as probiotics. Here, the aim of this research investigation was to isolate a probiotic Lactobacilli strain, YLM015, from the popular Korean fermented vegetable “Kimchi” and to evaluate its anti-viral potential against influenza virus A (IFVA) H1N1 using the MDCK cell line in vitro, and in embryonated eggs in ovo. The YML015 strain was selected from among the 1200 Lactobacilli isolates for further studies based on its potent anti-viral efficacy. YML015 was identified and characterized as Lactoplantibacillus plantarum YML015 based on the 16S rRNA gene sequencing and biochemically with an API 50 CHL Kit. In ovo assay experienced with embryonated eggs and the hemagglutination inhibition method, as well as cytopathogenic reduction assay, was performed individually to observe anti-influenza viral activity of YML015 against influenza virus A H1N1. Additionally, YML015 was classified for its non-resistance nature as safe for humans and animals as confirmed by the antibiotic susceptibility (MIC) test, cell viability, and hemolysis assay. The heat stability test was also experienced by using different heat-treated cell-free supernatant (CFS) samples of YML015. As a result, YML015 showed highly potent anti-viral activity against influenza virus A H1N1 in vitro in the MDCK cell line. Overall findings suggest that anti-influenza viral activity of L. plantarum YML015 makes it a potential candidate of choice for use as an influential probiotic in pharmacological preparations to protect humans and animals from flu and viral infection.
Collapse
|
15
|
Yang D, Wei X, Zhang B, Zhu R, Hu H, Fan X, Du H, Chen X, Zhang Z, Zhao M, Oh Y, Gu N. Probiotics protect against hepatic steatosis in tris (2-chloroethyl) phosphate-induced metabolic disorder of mice via FXR signaling. Food Chem Toxicol 2022; 169:113440. [PMID: 36162615 DOI: 10.1016/j.fct.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), the most widely useful and most frequently detective organophosphate flame retardants in environment, has been shown potential relationship with adolescent weight. Probiotics is an effective therapy for metabolic diseases such as obesity and NAFLD with gut microbiota dysregulation. This study aims to explore the protective effects of probiotics against lipid metabolic disorder induced by chronic TCEP exposure and demonstrate the mechanism of this event. The data showed that dietary complex probiotics supplement attenuated TCEP-induced obesity, hyperlipidemia, liver dysfunction, and hepatic steatosis. In addition, dietary complex probiotics suppressed TCEP-promoted ileal FXR signaling, and upregulated hepatic FXR/SHP pathway inhibited by TCEP. Moreover, dietary complex probiotics stimulated PPARα-mediated lipid oxidation and suppressed SREBP1c/PPARγ-mediated lipid synthesis via regulation of FXR signaling. Therefore, this study indicates that dietary complex probiotics could protect against hepatic steatosis via FXR-mediated signaling pathway in TCEP-induced metabolism disorder in mice, resulting in attenuation of systemic lipid accumulation.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
16
|
Wang J, Wang L, Shi S, Cao Y, Feng J, Liu C, Zheng L. Probiotic coated with glycol chitosan/alginate relieves oxidative damage and gut dysmotility induced by oxytetracycline in zebrafish larvae. Food Funct 2022; 13:10476-10490. [PMID: 36134479 DOI: 10.1039/d2fo01511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probiotic-based therapy is a promising approach, which can positively modulate bacterial composition and maintain homeostasis. However, exogenous probiotics are easily destroyed by harsh conditions in vivo; thus, their application prospects have been severely limited. Specifically, oxytetracycline (OTC), a broad-spectrum antibiotic widely used in aquaculture, results in adverse intestinal environments, such as dysbacteriosis, oxidative damage, and gut dysmotility. Here, we describe a facile method to apply glycol chitosan/alginate as armor on the surface of probiotics to effectively protect them from the changed enteric environments induced by OTC. The results demonstrated that the coated Lacticaseibacillus rhamnosus GG (LGG) for only 2 h administration could significantly improve the colonization rate of LGG, and the relative abundance of Lacticaseibacillus can reach 80% in OTC-treated larvae intestines. We also explored the specific mechanisms of the coated LGG to diminish reactive oxygen species (ROS) generation and rescue gut dysmotility for OTC treatment, including enhancing the activity of antioxidative enzymes (CAT, SOD and GPx) and increasing 5-HT synthesis. The mitigation effect of the coated LGG for 2 h administration was comparable to that of uncoated LGG for 24 h administration. Encapsulation of LGG with polysaccharides provides a unique application example for generating useful bacterial therapeutics in harsh intestinal environments.
Collapse
Affiliation(s)
- Ju Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shengnan Shi
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yaqi Cao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Junmei Feng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changhong Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China. .,Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
17
|
Chan PL, Lauw S, Ma KL, Kei N, Ma KL, Wong YO, Lam HY, Ting YY, Yau TK, Nong W, Huang D, Xie Y, Cheung PCK, Kwan HS. ProBioQuest: a database and semantic analysis engine for literature, clinical trials and patents related to probiotics. Database (Oxford) 2022; 2022:6645125. [PMID: 35849028 PMCID: PMC9290863 DOI: 10.1093/database/baac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
The use of probiotics to improve health via the modulation of gut microbiota has gained wide attention. The growing volume of investigations of probiotic microorganisms and commercialized probiotic products has created the need for a database to organize the health-promoting functions driven by probiotics reported in academic articles, clinical trials and patents. We constructed ProBioQuest to collect up-to-date literature related to probiotics from PubMed.gov, ClinicalTrials.gov and PatentsView. More than 2.8 million articles have been collected. Automated information technology-assisted procedures enabled us to collect the data continuously, providing the most up-to-date information. Statistical functions and semantic analyses are provided on the website as an advanced search engine, which contributes to the semantic tool of this database for information search and analyses. The semantic analytical output provides categorized search results and functions to enhance further analysis. A keyword bank is included which can display multiple tables of contents. Users can select keywords from different displayed categories to achieve easily filtered searches. Additional information on the searched items can be browsed via the link-out function. ProBioQuest is not only useful to scientists and health professionals but also to dietary supplement manufacturers and the general public. In this paper, the method we used to build this database-web system is described. Applications of ProBioQuest for several literature-based analyses of probiotics are included as examples of the various uses of this search engine. ProBioQuest can be accessed free of charge at http://kwanlab.bio.cuhk.edu.hk/PBQ/.
Collapse
Affiliation(s)
- Po Lam Chan
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Susana Lauw
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Ka Lee Ma
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Nelson Kei
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Ka Leong Ma
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Yiu On Wong
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Ho Yan Lam
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
| | - Yee Yung Ting
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Tsz Kwan Yau
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Dandan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Centre for Medical Epigenetics, School of Basic Medical Sciences, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University , Tianjin 300070, China
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- HSK GeneTech Limited, Hong Kong Science Park , Shatin, New Territories, Hong Kong
- Food Research Centre, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|
18
|
An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat Biomed Eng 2022; 6:910-921. [PMID: 35411114 DOI: 10.1038/s41551-022-00871-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
Antibiotic-induced alterations in the gut microbiota are implicated in many metabolic and inflammatory diseases, increase the risk of secondary infections and contribute to the emergence of antimicrobial resistance. Here we report the design and in vivo performance of an engineered strain of Lactococcus lactis that altruistically degrades the widely used broad-spectrum antibiotics β-lactams (which disrupt commensal bacteria in the gut) through the secretion and extracellular assembly of a heterodimeric β-lactamase. The engineered β-lactamase-expression system does not confer β-lactam resistance to the producer cell, and is encoded via a genetically unlinked two-gene biosynthesis strategy that is not susceptible to dissemination by horizontal gene transfer. In a mouse model of parenteral ampicillin treatment, oral supplementation with the engineered live biotherapeutic minimized gut dysbiosis without affecting the ampicillin concentration in serum, precluded the enrichment of antimicrobial resistance genes in the gut microbiome and prevented the loss of colonization resistance against Clostridioides difficile. Engineered live biotherapeutics that safely degrade antibiotics in the gut may represent a suitable strategy for the prevention of dysbiosis and its associated pathologies.
Collapse
|
19
|
Qiao Z, Wang X, Wang C, Han J, Qi W, Zhang H, Liu Z, You C. Lactobacillus paracasei BD5115-Derived 2-Hydroxy-3-Methylbutyric Acid Promotes Intestinal Epithelial Cells Proliferation by Upregulating the MYC Signaling Pathway. Front Nutr 2022; 9:799053. [PMID: 35369066 PMCID: PMC8968858 DOI: 10.3389/fnut.2022.799053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 01/22/2023] Open
Abstract
Metabolites of probiotics that are beneficial to human health have been isolated from the intestinal tract and natural dairy products. However, many studies on probiotics and prebiotics are limited to the observation of human cohorts and animal phenotypes. The molecular mechanisms by which metabolites of probiotics regulate health are still need further exploration. In this work, we isolated a strain of Lactobacillus Paracasei from human milk samples. We numbered it as Lactobacillus Paracasei BD5115. The mouse model of high-fat diet confirmed that the metabolites of this strain also promotes intestinal epithelial cells (IECs) proliferation. Single-cell sequencing showed that a bZIP transcription factor MAFF was specifically expressed in some IECs. We found that MAFF interacted with MBP1 to regulate the expression of MYC. Analysis of the active components in BD5115 metabolites confirmed that 2-hydroxy-3-methylbutyric acid promotes the expression of the MYC gene. This promotes the proliferation of IECs. Our findings indicate that 2-hydroxy-3-methylbutyric acid regulate MYC gene expression mediated by MAFF/MBP1 interaction. This study not only screened a strain with promoted IECs proliferation, but also discovered a new signal pathway that regulates MYC gene expression.
Collapse
Affiliation(s)
- Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy–Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Chaoyue Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- *Correspondence: Chunping You
| |
Collapse
|
20
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Yang S, Zhao H, Yang J, An Y, Zhang H, Bao Y, Gao Z, Ye Y. Risk factors of early postoperative bowel obstruction for patients undergoing selective colorectal surgeries. BMC Gastroenterol 2021; 21:480. [PMID: 34922468 PMCID: PMC8684130 DOI: 10.1186/s12876-021-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Postoperative bowel obstruction was one of the most severe complications in patients who received colorectal surgeries. This study aimed to explore risk factors of early postoperative obstruction and to construct a nomogram to predict the possibility of occurrence. METHODS The records of 1437 patients who underwent elective colorectal surgery in Peking University People's Hospital from 2015 to 2020 were retrospectively collected. Risk factors of early postoperative bowel obstruction were identified by logistic regression analysis and a nomogram was then constructed. Bootstrap was applied to verify the stability of the model. RESULTS COPD, hypothyroidism, probiotic indications, duration of antibiotics, and time to postoperative feeding were identified as independent risk factors and were put into a nomogram for predicting early postoperative bowel obstruction. The nomogram showed robust discrimination, with the area under the receiver operating characteristic curve was 0.894 and was well-calibrated. CONCLUSION A nomogram including independent risk factors of COPD, hypothyroidism, probiotic indications, duration of antibiotics, and time to postoperative feeding were established to predict the risk of early postoperative bowel obstruction.
Collapse
Affiliation(s)
- Shuguang Yang
- Department of Critical Care Medicine, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Jianhui Yang
- Department of Critical Care Medicine, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Haidian District, Xue Yuan Road, Beijing, 100191, People's Republic of China
| | - Yudi Bao
- Laboratory of Surgical Oncology, Department of Gastrointestinal Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Zhidong Gao
- Laboratory of Surgical Oncology, Department of Gastrointestinal Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| | - Yingjiang Ye
- Laboratory of Surgical Oncology, Department of Gastrointestinal Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
22
|
Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. Toxicol Lett 2021; 352:46-53. [PMID: 34600097 DOI: 10.1016/j.toxlet.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Verapamil, a calcium channel blocker, has been approved as the first-line drug for treatment of angina pectoris, hypertension and supraventricular tachycardia. Lactobacillus rhamnosus, one of the normal strains in human intestinal tract, is very popular in the probiotic market for conferring a health benefit on the host. This report investigated the potential of gut microbiota-drug interactions between lactobacillus rhamnosus and verapamil via using wild type (WT) and Cyp3a1/2 knockout (KO) rats. In WT rats, administration of Lactobacillus rhamnosus for 14 days decreased systemic exposure of verapamil and increased its metabolite norverapamil in vivo, and resulted in gut microbiota-drug interactions. In Cyp3a1/2 KO rats, however, this interaction disappeared. Further studies found that Lactobacillus rhamnosus induced CYP3A activity and expression, and changed the composition of gut microbiota, thus changing the pharmacokinetics of verapamil. These results demonstrated the interaction between lactobacillus rhamnosus and verapamil, and indicated that the effect of gut microbiota on metabolic enzymes cannot be ignored.
Collapse
|
23
|
Wang J, Zhang J, Liu W, Zhang H, Sun Z. Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut. NPJ Biofilms Microbiomes 2021; 7:55. [PMID: 34210980 PMCID: PMC8249650 DOI: 10.1038/s41522-021-00227-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Little is known about the replication and dynamic transcription of probiotics during their “passenger” journey in the human GI tract, which has therefore limited the understanding of their probiotic mechanisms. Here, metagenomic and metatranscriptomic sequencing was used to expose the in vivo expression patterns of the probiotic Lactobacillus casei Zhang (LcZ), which was compared with its in vitro growth transcriptomes, as well as the dynamics of the indigenous microbiome response to probiotic consumption. Extraction of the strain-specific reads revealed that replication and transcripts from the ingested LcZ were increased, while those from the resident L. casei strains remained unchanged. Mapping of all sequencing reads to LcZ genome showed that gene expression in vitro and in vivo differed dramatically. Approximately 39% of mRNAs and 45% of sRNAs of LcZ well-expressed were repressed after ingestion into human gut. The expression of ABC transporter genes and amino acid metabolism genes was induced at day 14 of ingestion, and genes for sugar and SCFA metabolism were activated at day 28 of ingestion. Expression of rli28c sRNA with peaked expression during the in vitro stationary phase was also activated in the human gut; this sRNA repressed LcZ growth and lactic acid production in vitro. However, the response of the human gut microbiome to LcZ was limited and heterogeneous. These findings implicate the ingested probiotic has to change its transcription patterns to survive and adapt in the human gut, and the time-dependent activation patterns indicate highly dynamic cross-talk between the probiotic and human gut microbes.
Collapse
Affiliation(s)
- Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiachao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China.,School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
24
|
Gan Y, Tong J, Zhou X, Long X, Pan Y, Liu W, Zhao X. Hepatoprotective Effect of Lactobacillus plantarum HFY09 on Ethanol-Induced Liver Injury in Mice. Front Nutr 2021; 8:684588. [PMID: 34249992 PMCID: PMC8264191 DOI: 10.3389/fnut.2021.684588] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023] Open
Abstract
Lactobacillus plantarum is a bacterial strain that is used as a probiotic with health-promoting effects. Our study investigated the hepatoprotective effect of Lactobacillus plantarum HFY09 (LP-HFY09) in mice with ethanol-induced liver injury. The protection afforded by LP-HFY09 was evaluated by observing the morphology of hepatic tissue and measuring liver lipid indexes and function indexes, levels of anti-oxidative enzymes, and anti-inebriation enzymes, as well as oxidative metabolism-related gene expression. Gavage administration of LP-HFY09 [1 × 109 CFU/kg body weight (bw)] limited the loss of bw, alcohol damage to the liver, and maintained the normal hepatic tissue morphology. Lactobacillus plantarum HFY09 intervention in ethanol-induced mice led to decreases in serum triglyceride (TG), total cholesterol (TC), aspartic transaminase, alanine transaminase, hyaluronidase (HAase), and precollagen III (PC III), and increases in liver alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). Lactobacillus plantarum HFY09 assisted with alleviating inflammation by elevating the level of interleukin 10 (IL-10) and decreasing the levels of pro-inflammatory factors [IL-6, IL-1β, and tumor necrosis factor-α (TNF)-α]. Lactobacillus plantarum HFY09 significantly elevated hepatic levels of superoxide dismutase (SOD) and glutathione (GSH), and decreased liver malondialdehyde (MDA) from 3.45 to 1.64 nmol/mg protein. Lactobacillus plantarum HFY09 exhibited an overall strong regulatory effect on liver protection when compared to that of commercial Lactobacillus delbrueckii subsp. bulgaricus. The hepatoprotective effect of LP-HFY09 was reflected by the upregulated expression of peroxisome proliferator activated-receptors α, SOD1, SOD2, glutathione peroxidase (GSH-Px), nicotinamide adenine dinucleotide phosphate (NADPH), and catalase (CAT), and the downregulated expression of cyclooxygenase-1 (COX1), c-Jun N-terminal kinase (JNK), and extracellular regulated protein kinases (ERK). Administration of LP-HFY09 at a concentration of 1.0 × 109 CFU/kg bw could be a potential intervention, for people who frequently consume alcohol.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Weiwei Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
25
|
Casaro MB, Thomas AM, Mendes E, Fukumori C, Ribeiro WR, Oliveira FA, Crisma AR, Murata GM, Bizzarro B, Sá-Nunes A, Setubal JC, Mayer MPA, Martins FS, Vieira AT, Antiorio ATFB, Tavares-de-Lima W, Camara NOS, Curi R, Dias-Neto E, Ferreira CM. A probiotic has differential effects on allergic airway inflammation in A/J and C57BL/6 mice and is correlated with the gut microbiome. MICROBIOME 2021; 9:134. [PMID: 34112246 PMCID: PMC8194189 DOI: 10.1186/s40168-021-01081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.
Collapse
Affiliation(s)
- Mateus B Casaro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Andrew M Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Mendes
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Claudio Fukumori
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Fernando A Oliveira
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC - UFABC, São Bernardo do Campo, SP, Brazil
| | - Amanda R Crisma
- Department of Clinical Analyses, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gilson M Murata
- Department of Medical Clinic, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica T Vieira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana T F B Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences I, Universidade de São Paulo, São Paulo, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil.
| |
Collapse
|
26
|
Hasosah M, Qurashi M, Balkhair A, Alzahrani Z, Alabbasi A, Alzahrani M, Alnahdi W, Shafei S, Bafaqih M, Khan M. Knowledge, attitudes, and understanding of probiotics among pediatricians in different regions of Saudi Arabia. BMC MEDICAL EDUCATION 2021; 21:68. [PMID: 33478488 PMCID: PMC7819255 DOI: 10.1186/s12909-021-02499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/13/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. Knowledge and attitudes of health professionals have been reported to be at a medium level for probiotics. The objective was to evaluate the knowledge and practice styles about probiotics among pediatricians working in different regions of Saudi Arabia. METHODS This cross-sectional study was conducted at pediatric hospitals in Saudi Arabia. A national survey of 550 pediatric providers (PPs) was conducted between January and March 2020 anonymously on their knowledge and practice styles regarding probiotics, and it was completed by pediatric residents (PRs), pediatric specialist (PSs), pediatric consultants (PCs), and pediatric gastroenterologists (PGs). RESULTS The survey had a response rate of 82%. Among the respondents, 57.7% were aware of the probiotic's definition. There were significant differences in the percentage of participants who had little knowledge of probiotics (P < 0.05), with the highest being PRs and the lowest being PGs. The most common probiotic used by all participants was Lactobacillus acidophilus (63.3%), and Mycobacterium avium was prescribed the least often (8.6%). Most PRs and PSs correctly reported that probiotics reduce the risk of antibiotic-induced diarrhea (74.9 and 80.2%, respectively), but there were no significant differences among them. CONCLUSIONS Significant differences in knowledge and practice patterns exist for probiotics. Identification of knowledge gaps may be useful to develop educational materials to improve the proper definition, knowledge, and use of probiotics.
Collapse
Affiliation(s)
- Mohammed Hasosah
- Pediatric Gastroenterology Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, Jeddah, Kingdom of Saudi Arabia.
| | - Mansour Qurashi
- Neoatology Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Balkhair
- Pediatric Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, PO Box: 8202, Jeddah, 21482, Kingdom of Saudi Arabia
| | - Ziyad Alzahrani
- Pediatric Gastroenterology Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Alabbasi
- Pediatric Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, PO Box: 8202, Jeddah, 21482, Kingdom of Saudi Arabia
| | - Muhanad Alzahrani
- Pediatric Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, PO Box: 8202, Jeddah, 21482, Kingdom of Saudi Arabia
| | - Wejdan Alnahdi
- Pediatric Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, PO Box: 8202, Jeddah, 21482, Kingdom of Saudi Arabia
| | - Sohaib Shafei
- Pediatric Gastroenterology Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Malak Bafaqih
- Pediatric Gastroenterology Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Khan
- Pediatric Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), National Guard Hospital, PO Box: 8202, Jeddah, 21482, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Wang T, Dai MZ, Liu FS, Cao BB, Guo J, Shen JQ, Li CQ. Probiotics Modulate Intestinal Motility and Inflammation in Zebrafish Models. Zebrafish 2020; 17:382-393. [PMID: 33232637 DOI: 10.1089/zeb.2020.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study was aimed to assess effects of three strains of probiotics Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001, and Bifidobacterium animalis subsp. lactis Bi-07 on the intestinal motility and inflammation in the zebrafish models. The intestinal motility model was established using 5 days postfertilization (dpf) zebrafish administered with a fluorescent dye Nile red at 10 ng/mL for 16 h, followed by probiotics treatment for 24 h and the intestinal motility was inversely proportional to the intestinal fluorescence intensity that was quantitatively measured by image analysis. The intestinal inflammation was induced by treating 3 dpf neutrophil fluorescent zebrafish with 0.0125% of trinitrobenzenesulfonic acid for 48 h. Probiotics were administered at low, moderate, and high concentrations determined based on maximum tolerable concentration through soaking. All three strains of probiotics promoted intestinal movement, of which B. animalis subsp. lactis Bi-07 was most potent at lower concentrations. L. rhamnosus HN001 and B. animalis subsp. lactis Bi-07 had the therapeutic effects on the intestinal inflammation and the inflammation-associated mucosal damage recovery. The anti-inflammatory mechanisms of L. rhamnosus HN001 was related to both reduce inflammatory factor interleukin-6 (IL-6) and restored tissue repair factor transforming growth factor-β-1 (TGFβ-1); whereas B. animalis subsp. lactis Bi-07 was probably only associated with TGFβ-1 elevation. Using larval zebrafish models for probiotics screening and assessment would speed up product research and development and improve products' efficacy and quality.
Collapse
Affiliation(s)
- Tao Wang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | | | | | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Ja-Qi Shen
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Hangzhou, China.,Zhejiang Provincial Key Laboratory for the Safety Evaluation Technology of Health Products, Zhejiang Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
28
|
Bornholdt J, Broholm C, Chen Y, Rago A, Sloth S, Hendel J, Melsæther C, Müller CV, Juul Nielsen M, Strickertsson J, Engelholm L, Vitting-Seerup K, Jensen KB, Baker A, Sandelin A. Personalized B cell response to the Lactobacillus rhamnosus GG probiotic in healthy human subjects: a randomized trial. Gut Microbes 2020; 12:1-14. [PMID: 33274667 PMCID: PMC7722709 DOI: 10.1080/19490976.2020.1854639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The specific effects of administering live probiotics in the human gut are not well characterized. To this end, we investigated the immediate effect of Lactobacillus rhamnosus GG (LGG) in the jejunum of 27 healthy volunteers 2 h after ingestion using a combination of global RNA sequencing of human biopsies and bacterial DNA sequencing in a multi-visit, randomized, cross-over design (ClinicalTrials.gov number NCT03140878). While LGG was detectable in jejunum after 2 h in treated subjects, the gene expression response vs. placebo was subtle if assessed across all subjects. However, clustering analysis revealed that one-third of subjects exhibited a strong and consistent LGG response involving hundreds of genes, where genes related to B cell activation were upregulated, consistent with prior results in mice. Immunohistochemistry and single cell-based deconvolution analyses showed that this B cell signature likely is due to activation and proliferation of existing B cells rather than B cell immigration to the tissue. Our results indicate that the LGG strain has an immediate effect in the human gut in a subpopulation of individuals. In extension, our data strongly suggest that studies on in vivo probiotic effects in humans require large cohorts and must take individual variation into account.
Collapse
Affiliation(s)
- Jette Bornholdt
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Christa Broholm
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Yun Chen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Alfredo Rago
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Stine Sloth
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jakob Hendel
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Christina V. Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Maria Juul Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper Strickertsson
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Human Health Discovery, Hørsholm, Denmark
| | - Lars Engelholm
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Finsen Laboratory, University of Copenhagen, Copenhagen N, Denmark
| | - Kristoffer Vitting-Seerup
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Danish Cancer Society, Copenhagen Ø, Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen N, Denmark,CONTACT Kim B. Jensen kim Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen NDK2200, Denmark
| | - Adam Baker
- Human Health Discovery, Hørsholm, Denmark,Adam Baker Human Health Discovery, Chr. Hansen A/S, Kogle Alle 6, Hørsholm2970, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark,Albin Sandelin The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen NDK2200, Denmark
| |
Collapse
|
29
|
Gan Y, Chen H, Zhou XR, Chu LL, Ran WT, Tan F, Zhao X. Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice. J Food Biochem 2020; 44:e13495. [PMID: 32989790 DOI: 10.1111/jfbc.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023]
Abstract
Probiotics are regard as safety approaches for preventing and treating some chronic diseases. This study investigated the regulating effect of Lactobacillus plantarum CQPC03 (LP-CQPC03) on lipid metabolism in high-fat diet (HFD)-induced obesity in mice. The results showed that administration of LP-CQPC03 at a concentration of 1.0 × 109 CFU/kg body weight inhibits HFD-induced obesity and improves lipid metabolism in the liver and serum. LP-CQPC03 intervention attenuated obesity-induced hepatic tissue damage, led decreases in hepatic triglyceride (42.02 mmol/gprot), total cholesterol (3.85 mmol/gprot), and LDL-C (1.03 mmol/gprot), and an increase in HDL-C (1.07 mmol/gprot). The same tendencies were observed in serum of HFD-fed mice. LP-CQPC03 intervention led a decrease in serum levels of aspartic transaminase, alanine transaminase, and alkaline phosphatase. LP-CQPC03 alleviated inflammation by increasing the level of interleukin (IL)-4 and IL-10, and decreasing the levels of pro-inflammatory factors, including IL-6, IL-1β, tumor necrosis factor-α, and interferon-γ. LP-CQPC03 also increased activities of SOD and GSH-Px in liver significantly and dropped the hepatic malondialdehyde (MDA) level from 3.39 nmol/gprot to 1.90 nmol/gprot. RT-qPCR results showed that the lipid metabolism-improving effect of LP-CQPC03 was performed by upregulating the expression of carnitine palmitoyltransferase 1, lipoprotein lipase, catalase, and superoxide dismutase 1. This study indicates that L. plantarum CQPC03 might be a potential probiotic that can help mitigate the adverse effects of excessive lipids on the liver, and prevent or alleviate high-energy intake-related obesity. PRACTICAL APPLICATIONS: Intaking high-energy foods is a potential risk of lipid metabolic disorder. Therefore, it is necessary to seek an effective and safe approach for preventing the obesity-related disease. This study found that LP-CQPC03 limited the rate of increase in body weight of mice fed on HFD, maintained normal hepatic tissue morphology, and exhibited a strong regulating effect on lipid metabolism. And the threshold concentration of LP-CQPC03 for the lipid-lowering effect was 1.0 × 109 CFU/kg body weight. Therefore, LP-CQPC03 is a potential probiotic for preventing or alleviating high-energy intake-related obesity.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The Six People's Hospital of Chongqing), Chongqing, China
| | - Xian-Rong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ling-Ling Chu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Wan-Ting Ran
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
30
|
Vallianou N, Stratigou T, Christodoulatos GS, Tsigalou C, Dalamaga M. Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives. Curr Obes Rep 2020; 9:179-192. [PMID: 32472285 DOI: 10.1007/s13679-020-00379-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize current evidence on gut microbiome and obesity; we discuss the role of probiotics, prebiotics, synbiotics, and postbiotics in obesity prevention and management; and we highlight and analyze main limitations, challenges, and controversies of their use. RECENT FINDINGS Overall, the majority of animal studies and meta-analyses of human studies examining the use of probiotics and synbiotics in obesity has shown their beneficial effects on weight reduction and other metabolic parameters via their involvement in gut microbiota modulation. Bifidobacterium and Lactobacillus strains are still the most widely used probiotics in functional foods and dietary supplements, but next generation probiotics, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, or Clostridia strains, have demonstrated promising results. On the contrary, meta-analyses of human studies on the use of prebiotics in obesity have yielded contradictory results. In animal studies, postbiotics, mainly short-chain fatty acids, may increase energy expenditure through induction of thermogenesis in brown adipose tissue as well as browning of the white adipose tissue. The main limitations of studies on biotics in obesity include the paucity of human studies; heterogeneity among the studied subgroups regarding age, gender, and lifestyle; and use of different agents with potential therapeutic effects in different formulations, doses, ratio and different pharmacodynamics/pharmacokinetics. In terms of safety, the supplementation with prebiotics, probiotics, and synbiotics has not been associated with serious adverse effects among immune-competent individuals, with the exception of the use of probiotics and synbiotics in immunocompromised patients. Further large-scale Randomized Controlled Trials (RCTs) in humans are required to evaluate the beneficial properties of probiotics, prebiotics, synbiotics, and postbiotics; their ideal dose; the duration of supplementation; and the durability of their beneficial effects as well as their safety profile in the prevention and management of obesity.
Collapse
Affiliation(s)
- Natalia Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece.
| | - Theodora Stratigou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
31
|
The influence of the gut microbiome on obesity. J Am Assoc Nurse Pract 2020; 32:504-510. [PMID: 32658171 DOI: 10.1097/jxx.0000000000000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Obesity is a disease with multiple environmental and genetic factors, which when combined contribute to the maintenance of an elevated body weight, thereby reducing long-term success of weight loss. The human gut microbiome is becoming a new potential contributor to obesity. Specifically, gut bacteria and their metabolites are known to affect dysbiosis, metabolism, endotoxemia, and inflammation. Many environmental and lifestyle factors can alter the gut microbiota affecting obesity. Potential therapies to alter the gut microbiota include supplementation with probiotic organisms and the use of fecal microbiota transplantation. This review will examine the growing evidence supporting the mechanisms with which the human gut microbiota may influence obesity, various influences on the microbiota, and potential therapies.
Collapse
|
32
|
Bundling Probiotics With Antimicrobial Stewardship Programs for the Prevention of Clostridiodes difficile Infections in Acute Care Hospitals. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2020. [DOI: 10.1097/ipc.0000000000000853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Szajewska H, Hojsak I. Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children. Postgrad Med 2020; 132:441-451. [DOI: 10.1080/00325481.2020.1731214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children’s Hospital Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University J.J. Strossmayer, Osijek, Croatia
| |
Collapse
|
34
|
Probiotics for Childhood Functional Gastrointestinal Disorders: Do We Know What We Advise? PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
36
|
López L, Calderón D, Cardenas P, Prado MB, Valle C, Trueba G. Evolutionary changes of an intestinal Lactobacillus reuteri during probiotic manufacture. Microbiologyopen 2019; 9:e972. [PMID: 31746150 PMCID: PMC7002098 DOI: 10.1002/mbo3.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/26/2023] Open
Abstract
Probiotic bacteria are frequently used to treat intestinal diseases or to improve health; however, little is known about the evolutionary changes of these bacteria during probiotic manufacture and the bacterial ability to colonize the intestine. It has been observed that when bacteria adapt to a new environment, they lose some traits required to thrive in the original niche. In this study, a strain of Lactobacillus reuteri was isolated from mouse duodenum and subjected to 150 serial passes in milk to simulate the industrial propagation of probiotic bacteria. The strains adapted to milk outperformed their ancestor when grown in milk; we also showed evidence of reduced intestinal colonization of milk‐adapted strains. Whole‐genome sequencing showed that bacterial adaptation to milk selects mutants with altered metabolic functions.
Collapse
Affiliation(s)
- Lázaro López
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Diana Calderón
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paúl Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - María B Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Valle
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
37
|
Lenoir-Wijnkoop I, Merenstein D, Korchagina D, Broholm C, Sanders ME, Tancredi D. Probiotics Reduce Health Care Cost and Societal Impact of Flu-Like Respiratory Tract Infections in the USA: An Economic Modeling Study. Front Pharmacol 2019; 10:980. [PMID: 31555138 PMCID: PMC6722238 DOI: 10.3389/fphar.2019.00980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory tract infections (RTIs) of viral origin place a substantial burden on health care resources and society. Randomized controlled trials have shown positive effects of probiotics on clinical outcomes in these commonly occurring RTIs. Two meta-analyses published by the York Health Economics Consortium (YHEC) and Cochrane reported the efficacy of probiotics in reducing incidence and duration of RTIs, number of antibiotic courses, and days absent from work. The aim of this study was to assess the potential health-economic impact of probiotics on RTI-associated events and expenses in the US primary care setting. A state-transition microsimulation model reproduced a study population representative of the US national demographics for age and gender (1/1,000 sample). RTI incidence was based on the influenza-like illness outpatient consultation rate reported by the Centers for Disease Control and Prevention (CDC) FluView. Data on vaccination, on factors that negatively impact RTI outcomes, on resource utilization, and on productivity loss were obtained from US national databases. Analyses were performed for both meta-analyses independently. Outcomes included cost savings for the health care payer, related to a reduced number of RTI episodes, less outpatient consultations, and decreased medical prescriptions as well as cost savings from a broader societal perspective related to productivity loss. The analysis showed that generalized probiotic intake in the US population for 2017-2018 would have allowed cost savings for the health care payer of 4.6 million USD based on the YHEC scenario and 373 million USD for the Cochrane scenario, by averting 19 million and 54.5 million RTI sick days, respectively, compared to no probiotics. Antibiotic prescriptions decreased with 1.39-2.16 million courses, whereas absence from work decreased by 3.58-4.2 million days when applying the YHEC and Cochrane data, respectively. When productivity loss is included, total savings for society represented 784 million or 1.4 billion USD for the YHEC and Cochrane scenarios, respectively. Subgroup analyses demonstrated an incremental benefit of probiotics in at-risk groups, which might be of relevance for targeted interventions. Sensitivity analyses confirmed the robustness of the model outcomes. Our analysis demonstrated a positive impact of probiotics on the health care and economic burden of flu-like RTIs. Improved disease outcomes translated into considerable cost savings for both the payer and society.
Collapse
Affiliation(s)
| | - Dan Merenstein
- Family Medicine Department, Georgetown University, Washington, DC, United States
| | | | - Christa Broholm
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | | | - Dan Tancredi
- Department of Pediatrics and the Center for Healthcare Policy and Research, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
38
|
Piqué N, Berlanga M, Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci 2019; 20:E2534. [PMID: 31126033 PMCID: PMC6566317 DOI: 10.3390/ijms20102534] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the oral use of probiotics is widespread. However, the safety profile with the use of live probiotics is still a matter of debate. Main risks include: Cases of systemic infections due to translocation, particularly in vulnerable patients and pediatric populations; acquisition of antibiotic resistance genes; or interference with gut colonization in neonates. To avoid these risks, there is an increasing interest in non-viable microorganisms or microbial cell extracts to be used as probiotics, mainly heat-killed (including tyndallized) probiotic bacteria (lactic acid bacteria and bifidobacteria). Heat-treated probiotic cells, cell-free supernatants, and purified key components are able to confer beneficial effects, mainly immunomodulatory effects, protection against enteropathogens, and maintenance of intestinal barrier integrity. At the clinical level, products containing tyndallized probiotic strains have had a role in gastrointestinal diseases, including bloating and infantile coli-in combination with mucosal protectors-and diarrhea. Heat-inactivated probiotics could also have a role in the management of dermatological or respiratory allergic diseases. The reviewed data indicate that heat-killed bacteria or their fractions or purified components have key probiotic effects, with advantages versus live probiotics (mainly their safety profile), positioning them as interesting strategies for the management of common prevalent conditions in a wide variety of patients´ characteristics.
Collapse
Affiliation(s)
- Núria Piqué
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, 08921 Barcelona, Catalonia, Spain.
| | - Mercedes Berlanga
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain.
| | - David Miñana-Galbis
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
39
|
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019; 25:716-729. [DOI: 10.1038/s41591-019-0439-x] [Citation(s) in RCA: 690] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
|
40
|
Pilot study for the understanding and use of probiotics by different paediatric healthcare professionals working in different European countries. Ital J Pediatr 2019; 45:57. [PMID: 31053146 PMCID: PMC6498681 DOI: 10.1186/s13052-019-0648-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Consumers’ conviction of the benefits of probiotics is influenced by their existing beliefs and by the information they receive from healthcare professionals. The attitude of healthcare professionals towards commercially available probiotics will, therefore, determine how trustworthy and beneficial these products are perceived by consumers. Furthermore, due to European Union legislation, companies are prohibited from displaying information on product packaging; therefore, consumers are dependent primarily on healthcare professionals for correct information and guidance on the use of these products. The aim of this pilot study was to explore the understanding and use of probiotics in clinical practice by professionals who are involved in child healthcare in different European countries and to assess how much they value the scientific evidence behind these products. Methods The study was performed using a cross-sectional, descriptive, 30-question online questionnaire circulated among healthcare professionals belonging to three professional categories that are typically involved in childhood probiotic prescription: paediatricians, dieticians and general practitioners. The questionnaire was developed using web-based standard guidelines, and the questions were modelled on those used in previously published probiotics studies. Results Overall, 27,287 healthcare professionals belonging to three major European scientific societies were contacted by the organizations participating in the study. In total, 1360 valid questionnaires were recorded, and the results were statistically analysed. Conclusions The results emphasize the importance for healthcare professionals to be properly educated and updated on probiotics. An improved knowledge about probiotics led to increased prescriptive confidence. To disseminate accurate information on probiotics, healthcare professionals look for appropriate and scientifically validated educational platforms to acquire information, explore concerns and barriers and look for positive approaches towards recommending probiotics.
Collapse
|
41
|
Sniffen JC, McFarland LV, Evans CT, Goldstein EJC. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One 2018; 13:e0209205. [PMID: 30586435 PMCID: PMC6306248 DOI: 10.1371/journal.pone.0209205] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Clinicians and patients face a daunting task when choosing the most appropriate probiotic for their specific needs. Available preparations encompass a diverse and continuously expanding product base, with most available products lacking evidence-based trials that support their use. Even when evidence exists, not all probiotic products are equally effective for all disease prevention or treatment indications. At this point in time, drug regulatory agencies offer limited assistance with regard to guidance and oversight in most countries, including the U.S. METHODS We reviewed the current medical literature and sources on the internet to survey the types of available probiotic products and to determine which probiotics had evidence-based efficacy data. Standard medical databases from inception to June 2018 were searched and discussions with experts in the field were conducted. We graded the strength of the evidence for probiotics having multiple, randomized controlled trials and developed a guide for the practical selection of current probiotic products for specific uses. RESULTS We found the efficacy of probiotic products is both strain-specific and disease-specific. Important factors involved in choosing the appropriate probiotic include matching the strain(s) with the targeted disease or condition, type of formulation, dose used and the source (manufacturing quality control and shelf-life). While we found many probiotic products lacked confirmatory trials, we found sufficient evidence for 22 different types of probiotics from 249 trials to be included. For example, several types of probiotics had strong evidence for the prevention of antibiotic-associated diarrhea [Saccharomyces boulardii I-745, a three-strain mixture (Lactobacillus acidophilus CL1285, L. casei Lbc80r, L. rhamnosus CLR2) and L. casei DN114001]. Strong evidence was also found for four types of probiotics for the prevention of a variety of other diseases/conditions (enteral-feed associated diarrhea, travellers' diarrhea, necrotizing enterocolits and side-effects associated with H. pylori treatments. The evidence was most robust for the treatment of pediatric acute diarrhea based on 59 trials (7 types of probiotics have strong efficacy), while an eight-strain multi-strain mixture showed strong efficacy for inflammatory bowel disease and two types of probiotics had strong efficacy for irritable bowel disease. Of the 22 types of probiotics reviewed, 15 (68%) had strong-moderate evidence for efficacy for at least one type of disease. CONCLUSION The choice of an appropriate probiotic is multi-factored, based on the mode and type of disease indication and the specific efficacy of probiotic strain(s), as well as product quality and formulation. TRIAL REGISTRATION This review was registered with PROSPERO: CRD42018103979.
Collapse
Affiliation(s)
- Jason C. Sniffen
- Department of Internal Medicine, Infectious Disease Section, Florida Hospital Orlando, Orlando, FL, United States of America
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington Medical Center, Seattle, Washington United States of America
| | - Charlesnika T. Evans
- Department of Preventive Medicine and Center for Healthcare Studies, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Veterans Affairs (VA), Center of Innovation of Complex Chronic Healthcare (CINCCH), Edward Hines, Jr. VA Hospital, Hines, IL, United States of America
| | - Ellie J. C. Goldstein
- RM Alden Research Laboratory and David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
42
|
Abstract
The modern techniques of microbiome science can be applied to the development and evaluation of all microbiota-directed products, including probiotics and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Center for Immunology, and BioTechnology Institute, University of Minnesota, Wallin Medical Biosciences Building, 2101 6th Street South East, Room 3-184, Minneapolis, MN, 55414, USA.
| |
Collapse
|
43
|
Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018; 174:1388-1405.e21. [DOI: 10.1016/j.cell.2018.08.041] [Citation(s) in RCA: 725] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
|