1
|
Ejima R, Mishima R, Sen A, Yamaguchi K, Mitsuyama E, Kaneko H, Kimura M, Arai S, Muto N, Hiraku A, Kato K, Kuwano Y, Maruyama H, Nakamura M, Iwabuchi N, Nakano M, Odamaki T, Tanaka M. The Impact of Fermented Milk Products Containing Bifidobacterium longum BB536 on the Gut Environment: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3580. [PMID: 39519413 PMCID: PMC11547261 DOI: 10.3390/nu16213580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Probiotics, particularly those native to the gut microbiota, have a profound influence on the gut environment. In this study, we conducted a randomized placebo-controlled, double-blind, parallel-group comparison trial to investigate the effects of Bifidobacterium longum BB536 (B. longum BB536) on the fecal microbiota and metabolite compositions in healthy individuals. We compared the effects of fermented milk produced solely with Streptococcus thermophiles and Lactobacillus bulgaricus (placebo group) and fermented milk supplemented with B. longum BB536 (BY group). Our findings revealed a significantly greater relative abundance of Faecalibacterium in the BY group than in the placebo group by the 3rd day, a trend that persisted until the end of the trial on the 17th day. Additionally, the BY group presented significantly increased concentrations of tryptophan (Trp), Indole-3-lactic acid, and Indole-3-aldehyde on the 17th day. A significant positive correlation was observed between the relative abundance of Faecalibacterium and the number of viable B. longum BB536 bacteria in the feces. The concentrations of Trp and Indole-3-acetic acid were also significantly correlated with the number of viable B. longum BB536 bacteria in the feces. Our results suggest that B. longum BB536 intake can modulate the gut microbiota and metabolite profiles, which are general indicators for monitoring the gut environment, potentially conferring health benefits to the host.
Collapse
Affiliation(s)
- Ryuta Ejima
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Riko Mishima
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Akira Sen
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kana Yamaguchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Eri Mitsuyama
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hiroki Kaneko
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Madoka Kimura
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Satoshi Arai
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Natsumi Muto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Akari Hiraku
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kumiko Kato
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Yasuyuki Kuwano
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hiroshi Maruyama
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Masahiko Nakamura
- Matsumoto City Hospital, 4417-180 Hata, Matsumoto 390-1401, Nagano, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Manabu Nakano
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Toshitaka Odamaki
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama 252-8583, Kanagawa, Japan
| |
Collapse
|
2
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Paduchová Z, Nagyová Z, Wang D, Muchová J. The impact of probiotics and vitamin C on the prevention of upper respiratory tract symptoms in two preschool children cohorts. Nutr Res Pract 2024; 18:98-109. [PMID: 38352209 PMCID: PMC10861338 DOI: 10.4162/nrp.2024.18.1.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The efficacy of Lab4 probiotic and vitamin C combination on the prevention of upper respiratory tract infections (URTIs) was investigated in two studies with children. Our objective was to pool dataset of 57 preschool children from the PROCHILD study (ISRCTN28722693) and the dataset of 50 preschool matched cohort from the PROCHILD-2 study (ISRCTN26587549) to evaluate the impact of probiotic/vitamin C combination on the prevention of upper respiratory tract symptoms and provide a more robust assessment of effect using detailed individual level data. SUBJECTS/METHODS The children were supplemented daily for 6 months with either the multistrain probiotic (1.25×1010 cfu/tablet consisting of two strains of Lactobacillus acidophilus CUL21 and CUL60, Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subsp. lactis CUL34) plus 50 mg vitamin C or a placebo. RESULTS In the pooled analysis of the individual participant data (per protocol population), significant reductions were observed for the incidence (-25%; 95% confidence interval [CI], 0.66, 0.85; P < 0.0001) and duration (-14.9 days; 95% CI, -24.8, -5.1; P = 0.0030) of typical URTI symptoms in the active group compared with the placebo. The incidence rates of absenteeism from preschool (IR ratio, 0.75; 95% CI, 0.66, 0.86; P < 0.0001), paediatric visits (IR ratio, 0.56; 95% CI, 0.47; 0.68; P < 0.0001) and antibiotic usage (IR ratio, 0.53; 95% CI, 0.39, 0.71; P < 0.0001) were also significantly reduced. CONCLUSION The pooled analysis findings of comparable preschool cohorts from two studies indicate that the supplementation with probiotic and vitamin C combination is beneficial in the prevention and management of URTI symptoms.
Collapse
Affiliation(s)
- Zuzana Paduchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Zuzana Nagyová
- JuvenaliaA Paediatric Centre, 929 01 Dunajská Streda, Slovakia
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
4
|
Li Y, Arai S, Kato K, Iwabuchi S, Iwabuchi N, Muto N, Motobayashi H, Ebihara S, Tanaka M, Hashimoto S. The Potential Immunomodulatory Effect of Bifidobacterium longum subsp. longum BB536 on Healthy Adults through Plasmacytoid Dendritic Cell Activation in the Peripheral Blood. Nutrients 2023; 16:42. [PMID: 38201872 PMCID: PMC10780326 DOI: 10.3390/nu16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The interaction between the gut microbiota and the host can influence the host's immune system. Bifidobacterium, a commensal genus of gut bacteria, seems to have positive effects on host health. Our previous clinical research showed that B. longum subsp. longum BB536 enhanced innate and adaptive immune responses in elderly individuals with a lower grade of immunity, but the immunomodulatory mechanism is still unclear. In this study, dendritic cell (DC) surface markers in peripheral blood mononuclear cells isolated from healthy individuals were evaluated through coculture with heat-killed BB536. DC markers, innate immune activity and cytokine levels in plasma were also evaluated by a randomized, double-blind, placebo-controlled, parallel-group study (UMIN000045564) with 4 weeks of continuous live BB536 intake. BB536 significantly increased the expression of CD86 and HLA-DR on plasmacytoid DCs (pDCs) in vitro. Compared to placebo (n = 48), a significant increase in the expression of CD86 on peripheral pDCs was detected at week 4 of live BB536 intake (n = 49; 1 × 1010 CFU/day). Furthermore, coculture with hk-BB536 significantly increased the IFNγ expression level and demonstrated trends of increased IFNα1 and IFNβ expression. These findings suggest that consumption of BB536 has potential immunomodulatory effects on healthy individuals through the activation of peripheral pDCs.
Collapse
Affiliation(s)
- Yiran Li
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Satoshi Arai
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kumiko Kato
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Wakayama, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Natsumi Muto
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hideki Motobayashi
- Second Department of Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Wakayama, Japan
| | - Shukuko Ebihara
- Chiyoda Paramedical Care Clinic, Daiwa Building 2F, 3-3-10 Nihonbashi Hongokucho, Chuo-ku, Tokyo 103-0021, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Wakayama, Japan
| |
Collapse
|
5
|
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JDS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2023; 36:181-198. [PMID: 34668465 PMCID: PMC8593414 DOI: 10.1017/s0954422421000317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut-lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.
Collapse
Affiliation(s)
- Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Juliana Gondim de Albuquerque
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil
- Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Mariany Bernardino da Silva Barbalho
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
6
|
Hu Y, Hong H, Zhou J, Cui Y, Zhang B, Zhao J. Recent advances in enzymatic properties, preparation methods, and functions of glycoside hydrolase from Bifidobacterium: a review. World J Microbiol Biotechnol 2023; 39:344. [PMID: 37843698 DOI: 10.1007/s11274-023-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Huili Hong
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jianing Zhou
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Yangyang Cui
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Baochun Zhang
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jun Zhao
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
7
|
KURONUMA K, SUSAI N, KUROITA T, YOSHIOKA T, SAITO A, CHIBA H. Protective effect of Bifidobacterium longum BB536 against nausea caused by pirfenidone in a mouse model of pellagra. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:195-202. [PMID: 37404569 PMCID: PMC10315189 DOI: 10.12938/bmfh.2022-042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/18/2023] [Indexed: 07/06/2023]
Abstract
Pellagra is caused by abnormal intake and/or use of nicotinic acid and is known in part to be induced by the use of medications such as isoniazid or pirfenidone. We previously investigated atypical phenotypes of pellagra, such as nausea, using a mouse model of pellagra and found that gut microbiota play an important role in the development of these phenotypes. Here, we investigated the effect of Bifidobacterium longum BB536 on pellagra-related nausea caused by pirfenidone in our mouse model. Our pharmacological data indicated that pirfenidone (PFD) causes modulation of the gut microbiota profile, which appeared to play an important role in the development of pellagra-related nausea. A gut microbiota-mediated protective effect of B. longum BB536 against nausea caused by PFD was also identified. Finally, the urinary ratio of nicotinamide/N-methylnicotinamide was shown to be a biomarker of pellagra-like adverse effects induced by PFD, and it may contribute to the prevention of these effects in patients with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Koji KURONUMA
- Department of Respiratory Medicine and Allergology, Sapporo
Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Natsumi SUSAI
- Translational Research Unit, Infectious Disease Marker,
Biomarker R&D Department, Shionogi Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka
561-0825, Japan
| | - Tomohiro KUROITA
- Translational Research Unit, Infectious Disease Marker,
Biomarker R&D Department, Shionogi Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka
561-0825, Japan
| | - Takeshi YOSHIOKA
- Translational Research Unit, Infectious Disease Marker,
Biomarker R&D Department, Shionogi Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka
561-0825, Japan
| | - Atsushi SAITO
- Department of Respiratory Medicine and Allergology, Sapporo
Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Hirofumi CHIBA
- Department of Respiratory Medicine and Allergology, Sapporo
Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
8
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
The Role of Gut Bacteriome in Asthma, Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnoea. Microorganisms 2022; 10:microorganisms10122457. [PMID: 36557710 PMCID: PMC9781820 DOI: 10.3390/microorganisms10122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The human body contains a very complex and dynamic ecosystem of bacteria. The bacteriome interacts with the host bi-directionally, and changes in either factor impact the entire system. It has long been known that chronic airway diseases are associated with disturbances in the lung bacteriome. However, less is known about the role of gut bacteriome in the most common respiratory diseases. Here, we aim to summarise the evidence concerning the role of the intestinal bacteriome in the pathogenesis and disease course of bronchial asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea. Furthermore, we discuss the consequences of an altered gut bacteriome on the most common comorbidities of these lung diseases. Lastly, we also reflect on the therapeutic potential of influencing the gut microbiome to improve disease outcomes.
Collapse
|
10
|
Wissel E, Leon L, Tipton L. Opportunities for growth in the growing field of psychobiotics. Benef Microbes 2022; 13:445-452. [PMID: 36377580 DOI: 10.3920/bm2022.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is growing interest in the field of psychobiotics, which are probiotics that confer a mental health benefit when ingested. As this field grows, it should pay particular attention to three areas within psychobiotics research that are currently under-studied - sex (and gender) representation, fungi and the mycobiome, and vagus nerve activity. Giving these three domains more attention is currently feasible without significant increased investment of time or money. We discuss these three domains briefly, why they are of particular relevance for psychobiotics research, and how psychobiotics research can easily integrate their perspectives. Our recommendations are summarised in the conclusion, but include equal sex representation at all phases of research (human and animal studies), investigating the relationship between psychobiotics and commensal fungi, and measuring the activity of the vagus nerve in psychobiotics studies.
Collapse
Affiliation(s)
- E Wissel
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Rd, Atlanta, GA 30322, USA
| | - L Leon
- College of Biological Sciences, University of California Davis, 605 Hutchison Drive, Davis, CA 95616, USA
| | - L Tipton
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI 96816, USA
| |
Collapse
|
11
|
Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, Than LTL, How KN, Thong PL, Liu Y, Zhao J, Chen L. MYBIOTA: A birth cohort on maternal and infant microbiota and its impact on infant health in Malaysia. Front Nutr 2022; 9:994607. [PMID: 36238465 PMCID: PMC9552002 DOI: 10.3389/fnut.2022.994607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life. Objective The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia. Methods Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum. Discussion This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04919265.
Collapse
Affiliation(s)
- Shiang Yen Eow
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ling Jun Lee
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Center of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Unit of Dermatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Thong
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| |
Collapse
|
12
|
Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D, Altomare A, Ciccozzi M, Guarino MPL. Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens 2022; 11:1050. [PMID: 36145482 PMCID: PMC9503814 DOI: 10.3390/pathogens11091050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic resulted in an unprecedented global crisis. SARS-CoV-2 primarily causes lung infection trough the binding of the virus with the ACE-2 cell receptor located on the surface of the alveolar epithelial cells. Notably, ACE-2 cell receptors are also expressed in the epithelial cells of the intestinal tract (GI). Recent data showed that the microbial communities of the GI might act as local and systematic inflammatory modulators. Gastrointestinal symptoms, including diarrhea, are frequently observed in infected individuals, and recent released data indicate that SARS-CoV-2 may also spread by fecal-oral transmission. Moreover, the gut microbiota's ecosystem can regulate and be regulated by invading pathogens, including viruses, facilitating an effective immune response, which in turn results in less severe diseases. In this regard, increased SARS-CoV-2 mortality and morbidities appear to be frequently observed in elderly immunocompromised patients and in people with essential health problems, such as diabetes, who, indeed, tend to have a less diverse gut microbiota (dysbiosis). Therefore, it is important to understand how the interaction between the gut microbiota and SARS-CoV-2 might shape the intensity of the infection and different clinical outcomes. Here, we provide insights into the current knowledge of dysbiosis during SARS-CoV-2 infection and methods that may be used to re-establish a more correct microbiota composition.
Collapse
Affiliation(s)
- Giulia Rocchi
- Department of Science and Engineering for Human and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Marta Giovanetti
- Laboratorio de Flavivirus, lnstituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Annamaria Altomare
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
- Unit of Digestive Disease, Campus Bio-Medico University, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, 00128 Rome, Italy
| | | |
Collapse
|
13
|
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091238. [PMID: 36140017 PMCID: PMC9495215 DOI: 10.3390/antibiotics11091238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs.
Collapse
|
14
|
Abstract
BACKGROUND Probiotics are live micro-organisms that may give a beneficial physiological effect when administered in adequate amounts. Some trials show that probiotic strains can prevent respiratory infections. Even though our previously published review showed the benefits of probiotics for acute upper respiratory tract infections (URTIs), several new studies have been published. This is an update of a review first published in 2011 and updated in 2015. OBJECTIVES To assess the effectiveness and safety of probiotics (any specified strain or dose), compared with placebo or no treatment, in the prevention of acute URTIs in people of all ages, at risk of acute URTIs. SEARCH METHODS We searched CENTRAL (2022, Issue 6), MEDLINE (1950 to May week 2, 2022), Embase (1974 to 10 May 2022), Web of Science (1900 to 10 May 2022), the Chinese Biomedical Literature Database, which includes the China Biological Medicine Database (from 1978 to 10 May 2022), the Chinese Medicine Popular Science Literature Database (from 2000 to 10 May 2022), and the Master's Degree Dissertation of Beijing Union Medical College Database (from 1981 to 10 May 2022). We searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov for completed and ongoing trials on 10 May 2022. SELECTION CRITERIA We included individual randomised controlled trials (RCTs) and cluster-RCTs comparing probiotics with placebo or no treatment to prevent acute URTIs. The participants were children, adults, or the elderly in the community, care facilities, schools, or hospitals. Our main outcomes were the number of participants diagnosed with URTIs (at least one event and at least three events), the incidence rate (number of cases/person year) of acute URTIs, and the mean duration of an episode of URTIs. Our secondary outcomes were the number of participants who were absent from childcare centre, school, or work due to acute URTIs; the number of participants who used prescribed antibiotics for acute URTIs; and the number of participants who experienced at least one adverse event from probiotics. We excluded studies if they did not specify acute respiratory infections as 'upper'; studies with more than 50% of participants vaccinated against influenza or other acute URTIs within the last 12 months; and studies with significantly different proportions of vaccinated participants between the probiotics arm and the placebo or no treatment arm. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility of trials and extracted data using standard Cochrane methodological procedures. We analysed both intention-to-treat and per-protocol data and used a random-effects model. We expressed results as risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, both with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 23 individual RCTs and one cluster-RCT. As one of the individual RCTs did not report outcomes in a usable way, we could only meta-analyse data from 23 trials, involving a total of 6950 participants including children (aged from one month to 11 years old), adults (mean age 37.3), and older people (mean age 84.6 years). One trial reported 22.5% flu-vaccine participants within the last 12 months, and 25.4% flu-vaccine participants during the intervention. Probiotics were more likely to be given with milk-based food in children; administered in powder form in adults; and given with milk-based food or in capsules in the elderly. Most of the studies used one or two strains (e.g. Lactobacillus plantarum HEAL9, Lactobacillus paracasei (8700:2 or N1115)) and 109 or 1011 colony-forming units (CFU)/day of probiotics for more than three months. We found that probiotics may reduce the number of participants diagnosed with URTIs (at least one event) (RR 0.76, 95% CI 0.67 to 0.87; P < 0.001; 16 studies, 4798 participants; low-certainty evidence); likely reduce the number of participants diagnosed with URTIs (at least three events) (RR 0.59, 95% CI 0.38 to 0.91; P = 0.02; 4 studies, 763 participants; moderate-certainty evidence); may reduce the incidence rate (number of cases/person year) of URTIs (rate ratio 0.82, 95% CI 0.73 to 0.92, P = 0.001; 12 studies, 4364 participants; low-certainty evidence); may reduce the mean duration of an episode of acute URTIs (MD -1.22 days, 95% CI -2.12 to -0.33; P = 0.007; 6 studies, 2406 participants; low-certainty evidence); likely reduce the number of participants who used prescribed antibiotics for acute URTIs (RR 0.58, 95% CI 0.42 to 0.81; P = 0.001; 6 studies, 1548 participants; moderate-certainty evidence); and may not increase the number of participants who experienced at least one adverse event (RR 1.02, 95% CI 0.90 to 1.15; P = 0.79; 8 studies, 2456 participants; low-certainty evidence). Evidence showing a decrease in the number of people absent from childcare centre, school, or work due to acute URTIs with probiotics is very uncertain (RR 0.14, 95% CI 0.03 to 0.59; 1 study, 80 participants; very low-certainty evidence). Adverse events from probiotics were minor, and most commonly gastrointestinal symptoms, such as vomiting, flatulence, diarrhoea, and bowel pain. AUTHORS' CONCLUSIONS: Overall, we found that probiotics were better than placebo or no treatment in preventing acute URTIs.
Collapse
Affiliation(s)
- Yunli Zhao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Rong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiukui Hao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
16
|
Liu SL, Chen CY, Chen YS. Characteristic properties of spray-drying Bifidobacterium adolescentis microcapsules with biosurfactant. J Biosci Bioeng 2022; 133:250-257. [PMID: 35012877 DOI: 10.1016/j.jbiosc.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The surfactants used for emulsion is one of the best techniques for microencapsulation of lactic acid bacteria (LAB) since it is economical. The biosurfactants have many advantages such as lower toxicity, higher biodegradability. In this study, microcapsules were prepared via spray drying using Bifidobacterium adolescentis species cultured in soy milk extract with biosurfactant prepared using Alcaligenes piechaudii CC-ESB2 to improve their powder properties. The soy milk was used to increase the health benefits instead of the milk. The optimum bacterial strain viability, water activity, and moisture content of the microcapsules were achieved at a spray dryer inlet/outlet temperature of 120/60°C. The composition of the carrier affects the particle size of the microcapsules. Using 90% maltodextrin (MD), 5% isomalto-oligosaccharide syrup (IMOS) and 5% biosurfactant as a carrier increased the viability of the LAB. Scanning electron microscope observations showed that the LAB microcapsules were able to effectively retain their completeness. Furthermore, microcapsules added with a biosurfactant prepared using A. piechaudii CC-ESB2 displayed significantly better flow properties than those without the surfactant and biosurfactant, which indicates that the biosurfactant assists in enhancing the powder properties of the microcapsules. It also has sufficient biological activity as a LAB product because the probiotics exceed 106 CFU/mL The spray-dried abandoned supernatant with biosurfactant exhibited superior bacteriostasis, which suggests that the supernatant of B. adolescentis during microencapsulation not only retains its bacteriostatic effect under high spray drying temperatures, but also provides additional antibacterial effects for the microcapsules.
Collapse
Affiliation(s)
- Shih-Lun Liu
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC
| | - Chun-Yeh Chen
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC.
| |
Collapse
|
17
|
Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, Nakamura T. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exp Ther Med 2022; 23:20. [PMID: 34815772 PMCID: PMC8593926 DOI: 10.3892/etm.2021.10942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal microbiota can indirectly modulate airway physiology and immunity through the gut-lung axis. Recent microbiome studies indicate that patients with coronavirus disease 2019 (COVID-19) exhibit a specific intestinal dysbiosis that is closely associated with the disease pathophysiology. Therefore, rebalancing the intestinal microbiome using probiotics may be effective for controlling COVID-19. However, the rationale for using probiotics in COVID-19 remains unclear. In the present study, an in vitro cytokine response assay was conducted, followed by a single-arm, double-blind, prospective trial to evaluate the immunological efficacy of probiotic lactic acid bacteria against COVID-19. The present study focused on Lactobacillus plantarum (L. plantarum), Bifidobacterium longum and Lactococcus lactis ssp. lactis, which exhibit robust protective effects against infection with respiratory RNA viruses. Considering the feasibility of long-term daily intake for prophylactic purposes, healthy uninfected individuals were enrolled as subjects. Our previous pilot trial demonstrated that oral Qingfei Paidu decoction (QFPD), a Chinese herbal medicine formulated specifically against COVID-19, upregulates plasma TNF-α, IL-1β, IL-18 and IL-8. Therefore, the present study utilized the cytokine changes induced by QFPD to define the innate cytokine index QICI [=(TNF-α) x (IL-1β) x (IL-18) x (IL-8)/(IL-6)] as an indicator of the anti-COVID-19 immunomodulatory potential of the lactic acid bacteria. A total of 20 eligible volunteers were enrolled, 18 of whom completed the intervention. L. plantarum demonstrated a strikingly high innate cytokine index in all subjects in the in vitro cytokine response assay. In the subsequent trial, oral intake of L. plantarum significantly increased the innate cytokine index (mean fold change, 17-fold; P=0.0138) and decreased the plasma level of IL-6 (P=0.0128), a key driver of complex immune dysregulation in COVID-19, as compared with the baseline. The cytokine index increased in 16 of 18 subjects (88.9%) with considerable individual differences in the fold change (1- to 128-fold). In line with these innate cytokine changes, L. plantarum ingestion significantly enhanced the activity of natural killer cells. By contrast, oral B. longum failed to induce a significant increase in the innate cytokine index (mean fold change, 2-fold; P=0.474) as compared with the baseline. In conclusion, L. plantarum demonstrated superior QFPD-like immunomodulatory ability and mimicked the blood cytokine environment produced by early immune responses to viral infection. Daily consumption of L. plantarum as an anti-COVID-19 probiotic may be a possible option for preventing COVID-19 during the pandemic. The present study was prospectively registered in the University Hospital Medical Information Network-Clinical Trials Registry under the trial number UMIN000040479 on 22 May 2020 (https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046202).
Collapse
Affiliation(s)
- Yasunari Kageyama
- Takanawa Clinic, Tokyo 108-0074, Japan
- Tokai University Hospital, Isehara-shi, Kanagawa 259-1193, Japan
| | - Yasuhiro Nishizaki
- Tokai University Hospital, Isehara-shi, Kanagawa 259-1193, Japan
- Department of Clinical Health Science, Tokai University Tokyo Hospital, Tokai University School of Medicine, Tokyo 151-0053, Japan
| | | | | | | | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tsutomu Nakamura
- Takanawa Clinic, Tokyo 108-0074, Japan
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
18
|
Mageswary MU, Ang XY, Lee BK, Chung YLF, Azhar SNA, Hamid IJA, Bakar HA, Roslan NS, Liu X, Kang X, Dai L, Sreenivasan S, Taib F, Zhang H, Liong MT. Probiotic Bifidobacterium lactis Probio-M8 treated and prevented acute RTI, reduced antibiotic use and hospital stay in hospitalized young children: a randomized, double-blind, placebo-controlled study. Eur J Nutr 2021; 61:1679-1691. [PMID: 34825264 PMCID: PMC8616720 DOI: 10.1007/s00394-021-02689-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Purpose The development of probiotics has seen tremendous growth over the years, with health benefits ranging from gut health to respiratory. We thus aimed to investigate the effects of probiotic Bifidobacterium lactis Probio-M8 (2 × 1010 log CFU/day) against acute respiratory tract infections (RTI), use of antibiotics, hospitalization period and elucidate the possible mechanisms of action in hospitalized young children. Method A prospective, randomized, double-blind and placebo-controlled study was performed in RTI-hospitalized children. Patients were randomized to either the probiotic (n = 60, mean age 13.81 ± 0.90 months) or placebo (n = 60, mean age 12.11 ± 0.73 months) which were administered upon admission, continued during hospitalization and 4-week post-discharged. RTI and gut health parameters were assessed at these time points using validated questionnaires while concentrations of inflammatory cytokines were assessed via oral swabs. Results Probio-M8 reduced the duration of nasal, pharyngeal and general flu-like symptoms compared to the placebo during the hospitalization period and 4-week post-discharged (P < 0.05) as compared to the placebo, with a more prevalent effect against lower respiratory tract infections (LRTI). Probio-M8 reduced prescription of antibiotic (P = 0.037), prevented new prescription of antibiotic in non-prescribed patients (P = 0.024) and reduced hospitalization period in antibiotic-prescribed patients (P = 0.004) as compared to the placebo. Oral cytokine levels of TNF-α decreased in the Probio-M8 group (P = 0.001) accompanied by increased in IL-10 (P = 0.018) over 4-week post-discharged, while the placebo group did not exhibit such an effect. Increased IL-10 in the Probio-M8 group was correlated with decreased body ache (r = − 0.296, P = 0.001), headache (r = − 0.295, P = 0.001) and pain during swallow (r = − 0.235, P = 0.010). Conclusion Data from our present study show that B. lactis Probio-M8 could be a potential natural and non-drug strategy for the management of RTI in young children in a safe manner. Clinical trial registration Clinical studies (Approval No. USM/JEPeM/19030177) were registered at ClinicalTrials.gov (Identifier No. NCT04122495) on September 30, 2019.
Collapse
Affiliation(s)
| | - Xin-Yee Ang
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Boon-Kiat Lee
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yi-Li Fiona Chung
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | - Hafizi Abu Bakar
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Xiaojun Liu
- Beijing Scitop Biotech Co., Ltd., Beijing, 101407, China
| | - Xiaohong Kang
- Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Shengle Economic Zone, Helingeer, Huhhot, 011500, Inner Mongolia, China
| | - Lu Dai
- Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Shengle Economic Zone, Helingeer, Huhhot, 011500, Inner Mongolia, China
| | - Sasidharan Sreenivasan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Fahisham Taib
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia. .,Hospital Universiti Sains Malaysia (HUSM), Health Campus, 16150, Kelantan, Malaysia.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
19
|
Ahmad HH, Peck B, Terry D. The influence of probiotics on gastrointestinal tract infections among children attending childcare: A systematic review and meta-analysis. J Appl Microbiol 2021; 132:1636-1651. [PMID: 34796583 DOI: 10.1111/jam.15374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Current literature related to the impact of probiotics on the incidence of gastrointestinal tract infections (GITIs) has shown mixed results and no systematic review available with pooled analysis exists. Thus, the aim of this systematic review was to provide contemporary evidence regarding the overall and strain-specific influence of probiotics in preventing GITIs among infants and children attending childcare centres. The review shortlisted 18 RCTs after screening through the initial search results of 779 articles. However, only 15 trials were deemed eligible, addressing at least one outcome in the pooled analysis. It is concluded that the supplementation of probiotics (overall effect) may reduce the risk of GITI episode by 26%, with Lacticaseibacillus paracasei, Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG being specifically potent probiotic strains in reducing GITI episode, duration of infection and absence from childcare respectively. There is insufficient evidence to determine the effect of Bifidobacterium animalis subsp. lactis BB-12 based on the findings of the trials included in this review.
Collapse
Affiliation(s)
- Hafiz H Ahmad
- School of Health, Federation University, Ballarat, Victoria, Australia
| | - Blake Peck
- School of Health, Federation University, Ballarat, Victoria, Australia
| | - Daniel Terry
- School of Health, Federation University, Ballarat, Victoria, Australia
| |
Collapse
|
20
|
Bourdillon AT, Edwards HA. Review of probiotic use in otolaryngology. Am J Otolaryngol 2021; 42:102883. [PMID: 33453564 DOI: 10.1016/j.amjoto.2020.102883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Probiotics have garnered considerable attention as an intervention for various conditions common to otolaryngology. The purpose of this review is to evaluate the current literature to offer recommendations about the safety and efficacy of probiotic management in otolaryngologic conditions. STUDY DESIGN Narrative review. METHODS PubMed and Google Scholar were queried using pertinent keywords to retrieve relevant studies with particular focus in the recent 5 years. All abstracts were assessed and studies, reviews and meta-analyses achieving evaluation of probiotic therapies or characterization of microbiome changes were included for further review. Studies were categorized by condition or anatomic region across various subspecialties. Key data parameters were extracted and evaluated across studies and treatment types. RESULTS Strong evidence exists for the use probiotic agents to improve symptoms for allergic rhinitis, chronic rhinosinusitis and certain dental conditions. Despite promising results, further investigation is needed to evaluate and optimize probiotic delivery for mitigating otitis media, oropharyngeal inflammation and upper respiratory tract infections. Preclinical studies suggest that probiotics may potentially offer benefit for voice prosthesis maintenance, wound healing and mitigation of oral dysplasia. CONCLUSION Probiotic therapies may offer clinical benefit in a variety of contexts within the field of otolaryngology, especially for short-term relief of certain inflammatory conditions of the oral cavity, auditory and nasal cavities. Further investigation is warranted for evaluation of long-term outcomes and pathogenic deterrence.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Heather A Edwards
- Department of Otolaryngology, Boston University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
21
|
Bustamante M, Oomah BD, Oliveira WP, Burgos-Díaz C, Rubilar M, Shene C. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol (Praha) 2020; 65:245-264. [PMID: 31773556 PMCID: PMC7090755 DOI: 10.1007/s12223-019-00759-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022]
Abstract
The prebiotics and probiotics market is constantly growing due to the positive effects of its consumption on human health, which extends beyond the digestive system. In addition, the synbiotic products market is also expanding due to the synergistic effects between pre- and probiotics that provide additional benefits to consumers. Pre- and probiotics are being evaluated for their effectiveness to treat and prevent infectious diseases in other parts of the human body where microbial communities exist. This review examines the scientific data related to the effects of pre- and probiotics on the treatment of diseases occurring in the skin, female urogenital tract, and respiratory tract. The evidence suggests that probiotics consumption can decrease the presence of eczema in children when their mothers have consumed probiotics during pregnancy and lactation. In women, probiotics consumption can effectively prevent recurrent urinary tract infections. The consumption of synbiotic products can reduce respiratory tract infections and their duration and severity. However, the outcomes of the meta-analyses are still limited and not sufficiently conclusive to support the use of probiotics to treat infectious diseases. This is largely a result of the limited number of studies, lack of standardization of the studies, and inconsistencies between the reported results. Therefore, it is advisable that future studies consider these shortcomings and include the evaluation of the combined use of pre- and probiotics.
Collapse
Affiliation(s)
- Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile.
| | - B Dave Oomah
- (Retired) Formerly with the National Bioproducts and Bioprocesses Program, Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto/FCFRP, Universidade de São Paulo, Ave. do Café, s/n-Bloco Q, Bairro Monte Alegre, Ribeirão Preto-SP, 14040-903,, Brazil
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco, Chile
| | - Mónica Rubilar
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile
| | - Carolina Shene
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile
- Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
22
|
Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis Sci 2020; 65:706-722. [PMID: 32002758 PMCID: PMC7046124 DOI: 10.1007/s10620-020-06092-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diet is a key regulator of microbiome structure and function across the lifespan. Microbial colonization in the first year of life has been actively researched; however, studies during childhood are sparse. Herein, the impact of dietary intake and pre- and probiotic interventions on microbiome composition of healthy infants and children from birth to adolescence is discussed. The microbiome of breastfed infants has lower microbial diversity and richness, higher Proteobacteria, and lower Bacteroidetes and Firmicutes than those formula-fed. As children consume more complex diets, associations between dietary patterns and the microbiota emerge. Like adults, the microbiota of children consuming a Western-style diet is associated with greater Bacteroidaceae and Ruminococcaceae and lower Prevotellaceae. Dietary fibers and pre- or/and probiotics have been tested to modulate the gut microbiota in early life. Human milk oligosaccharides and prebiotics added to infant formula are bifidogenic and decrease pathogens. In children, prebiotics, such as inulin, increase Bifidobacterium abundance and dietary fibers reduce fecal pH and increase alpha diversity and calcium absorption. Probiotics have been administered to the mother during pregnancy and breastfeeding or directly to the infant/child. Findings on maternal probiotic administration on bacterial taxa are inconsistent. When given directly to the infant/child, some changes in individual taxa are observed, but rarely is overall alpha or beta diversity affected. Cesarean-delivered infants appear to benefit to a greater degree than those born vaginally. Infancy and childhood represent an opportunity to beneficially manipulate the microbiome through dietary or prebiotic interventions, which has the potential to affect both short- and long-term health outcomes.
Collapse
|
23
|
Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol 2020; 11:301. [PMID: 32158441 PMCID: PMC7052046 DOI: 10.3389/fmicb.2020.00301] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging findings indicate there is a vital cross-talk between gut microbiota and the lungs, which is known as gut-lung axis. The gut disturbances in lung diseases including allergy, asthma, chronic obstructive pulmonary disease, cystic fibrosis and lung cancer were observed by extensive studies. Investigating how gut microbiota impact other distant organs is of great interest in recent years. Although it has not been fully understood whether the disturbance is the cause or effect of lung diseases, alterations in the gut microbial species and metabolites have been linked to changes in immune responses and inflammation as well as the disease development in the lungs. In this article, we systemically review the role and mechanisms underlying the changes in the constituent of gut microbiota and metabolites in lung diseases. In particular, the roles of gut-lung axis in mediating immune responses and reshaping inflammation are highlighted. Furthermore, we discuss the potential of strategies to manipulate the gut microbiota and metabolites as the therapeutic approach for lung diseases.
Collapse
Affiliation(s)
- Dapeng Zhang
- First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhimin Zhang
- First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Long-term administration of Lactobacillus casei Zhang stabilized gut microbiota of adults and reduced gut microbiota age index of older adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Anaya-Loyola MA, Enciso-Moreno JA, López-Ramos JE, García-Marín G, Orozco Álvarez MY, Vega-García AM, Mosqueda J, García-Gutiérrez DG, Keller D, Pérez-Ramírez IF. Bacillus coagulans GBI-30, 6068 decreases upper respiratory and gastrointestinal tract symptoms in healthy Mexican scholar-aged children by modulating immune-related proteins. Food Res Int 2019; 125:108567. [PMID: 31554075 DOI: 10.1016/j.foodres.2019.108567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
This randomized, double-blind, parallel and placebo-controlled study aimed to evaluate the effect of Bacillus coagulans GBI-30, 6086® probiotic (GanedenBC30®) against upper respiratory tract infections (URTI) and gastrointestinal tract infections (GITI) in eighty healthy school-aged children (6-8 years old). The participants received daily a sachet containing either GanedenBC30 (1 × 109 colony-forming units) or placebo (maltodextrin) for three months. GanedenBC30 significantly decreased the incidence of URTI symptoms including nasal congestion, bloody nasal mucus, itchy nose, and hoarseness. The duration of the URTI-associated symptoms of hoarseness, headache, red eyes, and fatigue was also decreased. GanedenBC30 supplementation also significantly reduced the incidence rate of flatulence. These beneficial effects were associated with the modulation of serum TNFα, CD163, G-CSF, ICAM-1, IL-6, IL-8, MCP-2, RAGE, uPAR, and PF4. Therefore, probiotic B. coagulans GBI-30, 6086 modulated immune-related proteins in healthy children, decreasing several URTI and GITI symptoms, thus, this functional ingredient may contribute to a healthier lifestyle.
Collapse
Affiliation(s)
- Miriam A Anaya-Loyola
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | | | - Juan E López-Ramos
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas 98000, Mexico
| | | | - María Y Orozco Álvarez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | - Ana M Vega-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | | | - D Keller
- Keller Consulting Group, Beachwood, OH, USA
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
| |
Collapse
|
26
|
Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, Ong KL, Park YH, Liong MT. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J Dairy Sci 2019; 102:4783-4797. [PMID: 30954261 DOI: 10.3168/jds.2018-16103] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
The aims of this study were to investigate the effects of Lactobacillus plantarum DR7 isolated from bovine milk against upper respiratory tract infections (URTI) and elucidate the possible mechanisms underlying immunomodulatory properties. The DR7 strain (9 log cfu/d) was administered for 12 wk in a randomized, double-blind, and placebo-controlled human study involving 109 adults (DR7, n = 56; placebo, n = 53). Subjects were assessed for health conditions monthly via questionnaires, and blood samples were evaluated for cytokine concentrations, peroxidation and oxidative stress, and gene expression in T cells and natural killer (NK) cells. The administration of DR7 reduced the duration of nasal symptoms (mean difference 5.09 d; 95% CI: 0.42-9.75) and the frequency of URTI (mean difference 0.32; 95% CI: 0.01-0.63) after 12 and 4 wk, respectively, compared with the placebo. The DR7 treatment suppressed plasma proinflammatory cytokines (IFN-γ, TNF-α) in middle-aged adults (30 to 60 yr old), while enhancing anti-inflammatory cytokines (IL-4, IL-10) in young adults (<30 yr old), accompanied by reduced plasma peroxidation and oxidative stress levels compared with the placebo. Young adults who received DR7 showed higher expression of plasma CD44 and CD117 by 4.50- and 2.22-fold, respectively, compared with the placebo. Meanwhile, middle-aged adults showed lower expression of plasma CD4 and CD8 by 11.26- and 1.80-fold, respectively, compared with the placebo, indicating less T-cell activation. In contrast, both young and middle-aged adults who received DR7 showed enhanced presence of nonresting and mature NK cells compared with those who received the placebo. We postulate that DR7 alleviated the symptoms of URTI by improving inflammatory parameters and enhancing immunomodulatory properties.
Collapse
Affiliation(s)
- Hui-Xian Chong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Asmaa' A Yusoff
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Yan-Yan Hor
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lee-Ching Lew
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohamad Hafis Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sy-Bing Choi
- School of Data Sciences, Perdana University, 43400 Serdang, Malaysia
| | - Muhamad S B Yusoff
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Normala Wahid
- Community Health Center, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Norzila Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Kee-Leong Ong
- Clinical Nutrition Intl (M) Sdn Bhd, 43200 Selangor, Malaysia
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 712-749 Gyeongsan, Korea.
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
27
|
Lau AS, Mitsuyama E, Odamaki T, Xiao JZ, Liong MT. El Niño Altered Gut Microbiota of Children: A New Insight on Weather–Gut Interactions and Protective Effects of Probiotic. J Med Food 2019; 22:230-240. [DOI: 10.1089/jmf.2018.4276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amy S.Y. Lau
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Eri Mitsuyama
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Min-Tze Liong
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
28
|
Wong CB, Odamaki T, Xiao JZ. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
|
30
|
Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
31
|
Abstract
After a steady increase over recent years, last year we experienced our first drop in Impact Factor (IF): from 3.301 to 2.923. Although last year I concluded that I was pretty awful at predicting the future (Venema, 2017; and I still haven’t found a probiotic to improve that …), this result was not entirely unexpected. As a young journal (we have yet to celebrate our 10th anniversary), the IF will inevitably fluctuate a little. I keep track of the IF development over the course of the year and we are well on our way to achieving an IF of above 2 again (with still another 6 months to go until the end of June, when the new impact factors will be provided by Clarivate Analytics), which isn’t bad at all for a young journal.
Collapse
|