1
|
Gómez-Osorio LM, Vasiljevic M, Raj J, Chaparro-Gutierréz JJ, López-Osorio S. Mycotoxins and coccidiosis in poultry - co-occurrence, interaction, and effects. Front Vet Sci 2024; 11:1387856. [PMID: 39149147 PMCID: PMC11326241 DOI: 10.3389/fvets.2024.1387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Avian coccidiosis, a common disease caused by Eimeria species, results in significant losses in global poultry production. Mycotoxins are low-molecular-weight natural products (i.e., small molecules) produced as secondary metabolites by filamentous fungi and they have the potential to economically and significantly affect global poultry production. Little is known about the relationship between mycotoxins and avian coccidiosis, although they often co-occur in the field. This comprehensive review examines the intricate relationship between mycotoxins and avian coccidiosis, in particular how mycotoxins, including aflatoxins, ochratoxins, trichothecenes as well as Fusarium mycotoxins, compromise the health of the poultry flock and open the door to Eimeria parasites in the gut. In addition, this review sheds light on the immunosuppressive effects of mycotoxins, their disruption of cellular signaling pathways, and the consequent exacerbation of coccidiosis infections. The mechanisms of mycotoxin toxicity are also reviewed, emphasizing direct damage to intestinal epithelial cells, impaired nutrient absorption, inflammation, oxidative stress, and changes in the gut microbiota. Finally, the consequences for the prevention and treatment of coccidiosis when mycotoxins are present in the feed are discussed. This review emphasizes the need for effective management strategies to mitigate the combined risks of mycotoxins and coccidiosis and highlights the complexity of diagnosing and controlling these interrelated problems in poultry. The review advocates a holistic approach that includes strict feed management, disease prevention measures and regular monitoring to maintain the health and productivity of poultry against these significant challenges.
Collapse
Affiliation(s)
- Luis-Miguel Gómez-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Jog Raj
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
2
|
Alharbi K, Ekesi N, Hasan A, Asnayanti A, Liu J, Murugesan R, Ramirez S, Rochell S, Kidd MT, Alrubaye A. Deoxynivalenol and fumonisin predispose broilers to bacterial chondronecrosis with osteomyelitis lameness. Poult Sci 2024; 103:103598. [PMID: 38489885 PMCID: PMC10951539 DOI: 10.1016/j.psj.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) lameness is the most critical animal health and welfare issue facing the broiler industry worldwide. It is estimated that 1 to 2% of bird condemnation at marketing age is caused by BCO lameness, resulting in tens of millions of dollars in annual losses. Fast-growing broilers are prone to mechanical stress that triggers bacterial translocation across epithelial barriers into the bloodstream, followed by bacterial colonization in the growth plate of long bones, and eventually, bone necrosis and lameness. Mycotoxins (MTX) are secondary metabolites produced naturally by microfungi, of which deoxynivalenol (DON), fumonisin (FUM), and zearalenone are the most prevalent in corn and soybean-meal-based diets. The presence of these mycotoxins in feed has been proven to reduce the barrier strength of the intestinal tracts and trigger immunosuppressive effects. In this study, we investigated the effects of the DON and FUM-contaminated feeds on the incidence of BCO lameness in broilers reared in both wire- and litter-floors. 720 one-day-old broiler chicks were assigned to the 2 × 2 factorial design: 2 MTX diets containing DON and FUM on wire flooring (MTX-W) and litter flooring (MTX-L), and 2 diets without MTX contamination on control wire flooring (CW) and control litter flooring (CL). Throughout the trial, the cumulative incidence of lameness per treatment was assessed by necropsying the lame birds. Birds in the MTX-W group had a higher incidence of lameness compared to those in CW (73.3% vs. 62.0%) (P < 0.05), and birds in the MTX-L group had a higher incidence of lameness compared to birds in CL (54.0% vs. 34.0%) (P < 0.05). MTX elicited net increases in BCO to a greater degree on litter (+20%) than on wire flooring (+12%). The increased incidence of BCO lameness in the MTX-W coincided with increased intestinal permeability supporting a correlation between intestinal barrier integrity and BCO lameness. To conclude, DON and FUM are predisposing factors for increasing BCO. However, no significant interaction exists between the diet and floor types in inducing lameness in broilers.
Collapse
Affiliation(s)
- Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nnamdi Ekesi
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Raj Murugesan
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | | | - Samuel Rochell
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Michael T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adnan Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| |
Collapse
|
3
|
Liu JD, Shanmugasundaram R, Doupovec B, Schatzmayr D, Murugesan GR, Applegate TJ. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult Sci 2023; 102:102677. [PMID: 37104905 PMCID: PMC10160587 DOI: 10.1016/j.psj.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Fumonisins (FUM) and deoxynivalenol (DON) are two common mycotoxins in poultry feed. Salmonella enterica ser. Enteritidis (S. Enteritidis) is a primary foodborne bacterium in broilers. This trial was conducted to evaluate the effects of naturally occurring FUM and DON and their combination at subclinical doses on broiler performance during a S. Enteritidis challenge. The experiment consisted of five treatments: NCC, no-challenge no-mycotoxin treatment; CC, Salmonella challenge + no-mycotoxin treatment; DON, DON 0.6 mg/kg + Salmonella challenge; FUM, FUM 14 mg/kg + Salmonella challenge; DON + FUM + T-2 + neosolaniol, DON 0.6 mg/kg + FUM 14 mg/kg + T-2 toxin 0.6 mg/kg + 0.8 mg/kg neosolaniol + Salmonella challenge. On d 4, birds were challenged with either 0 or 1 × 109 CFU/mL S. Enteritidis orally. There were no significant effects on growth performance among treatments at 0, 3, 7, and 14 d of post-inoculation (dpi). On 14 dpi, the combined DON + FUM + T-2 + neosolaniol significantly increased the Salmonella load by 1.5 logs compared to the control groups (P < 0.05). FUM significantly increased the cecal tonsil IL-10 gene expression by 1.2-fold at 7 dpi (P < 0.05) and downregulated TNF-α by 1.8-fold on 14 dpi compared to the control, nonchallenge groups (P < 0.05). On 7 dpi, the combined DON + FUM + T-2 + neosolaniol reduced occludin by 4.4-fold (P < 0.05) when compared to the control groups. Similarly, combined DON + FUM+ T-2 + neosolaniol decreased zona-occluden transcription by 2.3 and 7.6-fold on 3 and 14 dpi, respectively (P < 0.05). Furthermore, combined DON + FUM + T-2 + neosolaniol decreased Claudin-1 by 2.2-fold and Claudin-4 by 5.1-fold on 14 dpi when compared to the control groups (P < 0.05). In conclusion, short-term exposure to a subclinical dose of combined DON + FUM + T-2 + neosolaniol had an impact on broiler intestinal tight junction proteins and cecal Salmonella abundance under experimental Salmonella challenge.
Collapse
Affiliation(s)
- J D Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - R Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - B Doupovec
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | - D Schatzmayr
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | | | - T J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges. Molecules 2023; 28:molecules28031064. [PMID: 36770731 PMCID: PMC9921179 DOI: 10.3390/molecules28031064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.
Collapse
|
5
|
Rahman S, Sharma AK, Singh ND, Prawez S. Immunopathological effects of experimental T-2 mycotoxicosis in Wistar rats. Hum Exp Toxicol 2020; 40:772-790. [PMID: 33111562 DOI: 10.1177/0960327120968852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is well known that T-2 toxin has cytotoxic radiomimetic like effects on the immune system. Because of scant research data demonstrating the chronic effects of low doses of the T-2 toxin on humoral and cellular responses in rats, the present experiment was undertaken. The animals were divided into four groups, namely, group I (0.5 ppm), group II (0.75 ppm) and group III (1.0 ppm) and group IV (control) were given toxin-free diet for 12 weeks and eight animals each were sacrificed at 2, 4, 6, 8, 10, and 12-week of the experimental period. The humoral immune response was evaluated based on hemagglutination test (HA), and levels of serum immunoglobulins (IgA, IgG, IgM) while the cell-mediated immune response was evaluated by delayed-type hypersensitivity (DTH) response to ovalbumin, lymphocyte stimulation index, analyses of CD4+ and CD8+ T lymphocytes and mRNA expression levels of selected cytokines like IL-2, IFN-γ, IL-4 and IL-10 by quantitative Real-time PCR in experimental groups. T-2 treatment caused suppression in both humoral and cell-mediated immune responses as evidenced by a decrease in all these parameters in toxin fed animals compared to the control in the dose and duration-dependent manner. This dose-dependent effect on the immune system has been further reflected largely by the depletion of lymphocytes from lymphoid organs as observed histopathologically in the spleen, thymus, and Peyer's patches in the present study.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-J, Jammu, Jammu & Kashmir, India
| | - Anil Kumar Sharma
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Nittin Dev Singh
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Shahid Prawez
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, RGSC, 30114Banaras Hindu University, Barkachha, Uttar Pradesh, India
| |
Collapse
|
6
|
Arak H, Karimi Torshizi MA, Hedayati M, Rahimi S. The efficiency of synthetic polymers to ameliorate the adverse effects of Aflatoxin on plasma biochemistry, immune responses, and hepatic genes expression in ducklings. Toxicon 2020; 187:136-143. [PMID: 32898571 DOI: 10.1016/j.toxicon.2020.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
Abstract
To evaluate the effect of molecularly imprinted polymers as a synthetic polymer (TMU95) and commercial toxin binder (CTB) on aflatoxins (AFs) toxic effects on hepatic gene expression, and the biochemical and immunological parameters in ducklings, 240 four-day-old ducklings were randomly allocated into six groups with four replicates of 10 ducklings per each. The experimental groups were as follows: Negative control (basal diet without any additive or AFs), Negative control + TMU95 (5 g/kg feed), Negative control + CTB (Zarinbinder, Vivan Group, Mashhad, Iran. 5 g/kg feed), Positive control (0.2 mg AFs/kg feed), Positive control + TMU95 (5 g/kg feed), and Positive control + CTB (5 g/kg feed). On day 14, livers were collected (8 per treatment) to evaluate change in the expression of genes involved in AFs biotransformation (cytochrome P450 1A1 and 2H1) and antioxidant function (glutathione S-transferase). Several biochemical biomarkers and immune responses were also recorded. Compared with the negative control group AFs treatment significantly decreased plasma total cholesterol, triglyceride and increased the aspartate-aminotransferase (AST), alanine-aminotransferase (ALT) and alkaline phosphatase (ALP) activity (P ≤ 0.01). Cellular immune responses to the phytohemagglutinin-and 2, 4-dinitro 1-chlorobenzene skin test were significantly influenced by dietary aflatoxins (P ≤ 0.01) but a humoral immune response to Newcastle disease virus/vaccine was not affected (P ≥ 0.01). Compared with negative control group, the genes associated with AFs biotransformation were downregulated, whereas the gene associated with the antioxidant function was upregulated in birds fed AFs. The CTB supplement in contaminated feed could alleviate AFs adverse effects on cellular immunity, ALT concentration, and cytochrome P450 2H1 gene expression partially, whereas TMU95 could not ameliorate the adverse effects of AFs on the traits studied, except for ALP. The data suggest that TMU95 may alleviate some of the toxic effects of aflatoxins in duckling and it might prove to be beneficial in the reduction of aflatoxicosis adverse effect in poultry when used in combination with other aflatoxin management practices.
Collapse
Affiliation(s)
- Homa Arak
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| |
Collapse
|
7
|
Sun Z, Huang D, Duan X, Hong W, Liang J. Functionalized nanoflower-like hydroxyl magnesium silicate for effective adsorption of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121792. [PMID: 31818670 DOI: 10.1016/j.jhazmat.2019.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
Aflatoxin B1 (AFB1), which is widely found in food and feed, poses a serious threat to the health of human and livestock. In this work, functionalized nanoflower-like hydroxyl magnesium silicate (FNHMS) was synthesized for adsorption of AFB1. First, bulk magnesium silicate (MS) was converted into nanoflower-like hydroxyl magnesium silicate (NHMS) by hydroxylation. Cetyltrimethylammonium bromide (CTMAB) modification then enhanced the hydrophobicity and the affinity to AFB1 of NHMS. The adsorption performance for AFB1 followed the order of MS < NHMS < FNHMS, and the adsorption performance increased with the increase of the dose of CTMAB. Isothermal adsorption analysis indicated that the surface of FNHMS was heterogeneous. The adsorption capacity of FNHMS-0.4 to AFB1 was estimated to be 27.34 mg g-1 and 28.61 mg g-1 by Freundlich and Dubinin-Radushkevich isotherm adsorption model, respectively. By analyzing the adsorption kinetics and adsorption thermodynamics, both physical adsorption and chemisorption existed in the process of AFB1 being adsorbed on FNHMS-0.4. Adsorption mechanisms analysis indicated that the adsorption followed the adsorption site priority of H > O > Mg. This work demonstrates that FNHMS could be a promising adsorbent for removal of AFB1.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education (Shandong University), Jinan 250061, People's Republic of China
| | - Di Huang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Xinhui Duan
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Wei Hong
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China.
| |
Collapse
|
8
|
Ramah A, Yasuda M, Ohashi Y, Urakawa M, Kida T, Yanagita T, Uemura R, Bakry HH, Abdelaleem NM, El-Shewy EA. Different doses of tannin reflect a double-edged impact on broiler chicken immunity. Vet Immunol Immunopathol 2019; 220:109991. [PMID: 31855744 DOI: 10.1016/j.vetimm.2019.109991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
Abstract
Tannin is one of the most common phytochemical secondary phenolic metabolites, which is widely distributed in various plant production systems. Dietary intake of tannin can exert different actions on the immune system. The aim of this study was to evaluate the influence of different concentrations on broiler chicken immunity. Three groups (n = 10 in each group) were evaluated: control group given a normal basal diet, high tannic acid (HT) group given high-dose tannic acid (30 g/kg diet) and low tannic acid (LT) group given low-dose tannic acid (0.5 g/kg diet) for 35 days. Feed intake and body weight were measured weekly. Cells were isolated from thymus, spleen and caecal tonsils at the end of the study. Lymphocyte subsets, monocytes phagocytosis and cytokine mRNA expression in spleen were evaluated. The results showed that HT group chickens had decreased daily gain, final body weight, daily feed intake and relative weights of lymphoid organs compared with other groups. In thymus, spleen and caecal tonsils, relative CD4+, CD8+, CD4+CD8+ and γδ+ cell populations in the HT group were significant decreased in comparison with those of other groups. The relative B cell population in the HT group was also significant decreased. Cytokine mRNA expression in spleen cells of the HT group was also significantly lower than that in other groups. Conversely, CD4+CD8+ subpopulations in spleen and caecal tonsils, γδ+ cells in spleen and B cells in caecal tonsils of the LT group were significantly higher than those of the control group. In addition, IFN-γ mRNA expression in the LT group was significantly higher than that of the control group. These results demonstrated that dietary intake of tannin had positive and negative effects on broiler chicken immunity in a dose-dependent manner.
Collapse
Affiliation(s)
- Amany Ramah
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | - Yuki Ohashi
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Marimu Urakawa
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tetsuo Kida
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tenya Yanagita
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ryoko Uemura
- Laboratory of Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hatem H Bakry
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Nabila M Abdelaleem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Elham A El-Shewy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| |
Collapse
|
9
|
|
10
|
Khanipour S, Mehri M, Bagherzadeh-Kasmani F, Maghsoudi A, Assadi Soumeh E. Excess dietary tryptophan mitigates aflatoxicosis in growing quails. J Anim Physiol Anim Nutr (Berl) 2019; 103:1462-1473. [PMID: 31407825 DOI: 10.1111/jpn.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
A biological assay was carried out to evaluate the impact of dietary tryptophan (TRP) in aflatoxin B1 -contaminated diets (AFB1 -D) on performance, blood parameters, immunity, meat quality and microbial populations of intestine in Japanese quails. Six experimental diets were formulated to include two levels of dietary TRP; 2.9 (moderate high: MH-TRP) and 4.9 g/kg (excess: Ex-TRP); and three levels of AFB1 (0.0, 2.5, and 5.0 mg/kg). Each experimental diet was fed to the one of the six groups of birds from 7 to 35 days of age in a completely randomized design with 2 × 3 factorial arrangement. Decrease in feed intake, body weight gain and gain:feed in birds fed 5.0 mg/kg AFB1 -D was restored to the control level by 4.9 g TRP/kg of the diet. The hepatic enzymes in blood were elevated in quails fed on AFB1 -D but attenuated by 4.9 g TRP/kg of the diet (Ex-TRP; p ≤ .01). High serum uric acid in birds challenged with AFB1 significantly decreased by Ex-TRP (p ≤ .01). The skin thickness to 2,4-dinitro-1-chlorobenzene challenge suppressed by AFB1 but increased by Ex-TRP diet (p ≤ .02). The AFB1 increased the malondialdehyde in meat, whereas TRP efficiently diminished malondialdehyde production (p ≤ .01). The greatest drip loss and pH in meat were observed in the birds fed 5.0 mg/kg AFB1 -D but Ex-TRP augmented the adverse effects of AFB1 (p ≤ .01). The Ex-TRP reduced the total microbial and Escherichia coli counts (p ≤ .01). The adverse effect of AFB1 on ileal Lactic acid bacteria was completely prevented by Ex-TRP (p ≤ .03). This study showed that tryptophan supplementation could be considered as a powerful nutritional tool to ameliorate the adverse effects of AFB1 in growing quails.
Collapse
Affiliation(s)
- Sousan Khanipour
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Farzad Bagherzadeh-Kasmani
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Ali Maghsoudi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Elham Assadi Soumeh
- School of Agriculture and Food Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
11
|
Jahanian E, Mahdavi AH, Asgary S, Jahanian R, Tajadini MH. Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Prev Vet Med 2019; 168:9-18. [PMID: 31097128 DOI: 10.1016/j.prevetmed.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/16/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023]
Abstract
The present study was conducted to investigate the effects of dietary supplementation of mannanoligosaccharides (MOS) on expression of hepatic immunological genes and immune responses in aflatoxin-contaminated broiler chicks. A total of 336 seven-day-old Ross broiler chicks were randomly allotted to 7 experimental treatments with 4 replicates and 12 birds per replicate. Experimental treatments consisted of 2 aflatoxin levels (0.5 and 2 ppm) and 3 supplemental MOS levels (0, 1 and 2 g/kg) as a 2 × 3 factorial arrangement in comparison with a control group (unchallenged group). The chicks were challenged with a mix of aflatoxins during 7-28 d of age. Results showed that aflatoxin challenge resulted in the lower antibody titers against infectious bronchitis (IBV) and bursal (IBD) diseases viruses. In addition, aflatoxin-contaminated birds had a lower (P < 0.0001) lymphocyte percentage and a decline in (P < 0.01) interleukin-2 (IL-2) mRNA abundance. Likewise, heterophil proportion, heterophil to lymphocyte ratio and gene expressions of hepatic interleukin-6 (IL-6) and C reactive protein (CRP) were raised (P < 0.001) by increasing dietary aflatoxin level. Dietary inclusion of MOS increased (P < 0.05) antibody titers against IBV, IBD and Newcastle disease virus. Lymphocyte proportion and hepatic IL-2 gene expression were greater (P < 0.0001) in MOS-supplemented birds. Furthermore, supplemental MOS decreased hepatic IL-6 and CRP abundances. Additionally, inclusion of 2 g/kg MOS resulted in the upregulation (P < 0.01) of hepatic IL-2 gene expression in birds contaminated with 0.5 ppm aflatoxin. The present results indicate that supplemental MOS could improve cellular immunity via the upregulation of hepatic IL-2 gene expression in birds challenged with aflatoxins.
Collapse
Affiliation(s)
- E Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - A H Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M H Tajadini
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Hu P, Zuo Z, Wang F, Peng X, Guan K, Li H, Fang J, Cui H, Su G, Ouyang P, Zhou Y. The Protective Role of Selenium in AFB 1-Induced Tissue Damage and Cell Cycle Arrest in Chicken's Bursa of Fabricius. Biol Trace Elem Res 2018; 185:486-496. [PMID: 29512029 DOI: 10.1007/s12011-018-1273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring secondary metabolites of Aspergillus flavus and Aspergillus parasiticus, and is the most toxic form of aflatoxins. Selenium (Se) with antioxidant and detoxification functions is one of the essential trace elements for human beings and animals. This study aims to evaluate the protective effects of Se on AFB1-induced tissue damage and cell cycle arrest in bursa of Fabricius (BF) of chickens. The results showed that a dietary supplement of 0.4 mg·kg-1 Se alleviated the histological lesions induced by AFB1, as demonstrated by decreasing vacuoles and nuclear debris, and relieving oxidative stress. Furthermore, flow cytometry studies showed that a Se supplement protected AFB1-induced G2M phase arrest at 7 days and G0G1 phase arrest at 14 and 21 days. Moreover, the mRNA expression results of ATM, Chk2, p53, p21, cdc25, PCNA, cyclin D1, cyclin E1, cyclin B3, CDK6, CDK2, and cdc2 indicated that Se supplement could restore these parameters to be close to those in the control group. It is concluded that a dietary supplement of 0.4 mg kg-1 Se could diminish AFB1-induced immune toxicity in chicken's BF by alleviating oxidative damage and cell cycle arrest through an ATM-Chk2-cdc25 route and the ATM-Chk2-p21 pathway.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Peng
- College of Life Sciences, China West Normal University, Nanchong, 637002, Sichuan, People's Republic of China.
| | - Ke Guan
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hang Li
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Gang Su
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yi Zhou
- Life Science Department, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Khan SA, Venancio EJ, Fernandes EV, Hirooka EY, Oba A, Flaiban KKMC, Itano EN. Low Doses of Ochratoxin-A Decrease IgY and IgA Production in Broiler Chicks. Toxins (Basel) 2018; 10:toxins10080316. [PMID: 30082604 PMCID: PMC6115841 DOI: 10.3390/toxins10080316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022] Open
Abstract
The mycotoxin, ochratoxin-A (OTA), produced by some fungi, and is a natural contaminant of many foods and animal feeds worldwide. Due to its toxic effects, the recommended maximum daily intake of OTA for poultry feeds is 0.1 mg OTA/kg (ECR2006/575/EC); this dose does not induce changes in hepatic/renal parameters, but decreases thymus size and serum globulin concentrations. Accordingly, in this study, we assessed quantitatively the total circulating IgY and IgA serum levels, in chicks consuming a 0.1 mg OTA/kg diet (limit) and higher doses (0.3–1.1 mg OTA/kg diet) for 14 or 21 days. We also evaluated other immunological parameters (thymus, bursa of Fabricius, and spleen weights and leukocyte profiles) at day 21. Decreased IgY serum levels were observed in all OTA-treated groups (p < 0.05). In the low-dose group, IgA levels were decreased on day 21, but not on day 14. The size of the thymus and the bursa of Fabricius was decreased in all OTA-treated groups (p < 0.05), whereas reduced spleen size and altered leukocyte profiles were detected only in the high-dose group (p < 0.05). We concluded that chronic exposure to OTA, even at the recommended highest dose, affected IgY and IgA production in chicks.
Collapse
Affiliation(s)
- Shahzad A Khan
- Department of Pathologic Sciences, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Emerson J Venancio
- Department of Pathologic Sciences, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Eduardo V Fernandes
- Department of Pathologic Sciences, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Elisa Y Hirooka
- Department of Food Science and Technology, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Alexandre Oba
- Department of Zootechny, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Karina K M C Flaiban
- Department of Preventive Veterinary Medicine, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| | - Eiko N Itano
- Department of Pathologic Sciences, State University Londrina, P.O. Box 10.011, Londrina 86057-970, PR, Brazil.
| |
Collapse
|
14
|
Jebali R, Ben Salah-Abbès J, Abbès S, Hassan AM, Abdel-Aziem SH, El-Nekeety AA, Oueslati R, Abdel-Wahhab MA. Lactobacillus plantarum alleviate aflatoxins (B 1 and M 1 ) induced disturbances in the intestinal genes expression and DNA fragmentation in mice. Toxicon 2018; 146:13-23. [PMID: 29574215 DOI: 10.1016/j.toxicon.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
|
15
|
Huang S, Zheng N, Fan C, Cheng M, Wang S, Jabar A, Wang J, Cheng J. Effects of aflatoxin B1 combined with ochratoxin A and/or zearalenone on metabolism, immune function, and antioxidant status in lactating dairy goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:505-513. [PMID: 28920416 PMCID: PMC5838322 DOI: 10.5713/ajas.17.0279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This experiment investigated the effects of aflatoxin B1 (AFB1) alone or mixed with ochratoxin A (OTA) and/or zearalenone (ZEA) on the metabolism, immune function, and antioxidant status of dairy goats. METHODS Fifty lactating Laoshan dairy goats were randomly assigned to one of five treatment groups (n = 10) for 14 days. Goats were fed no additive (control) or administered with 50 μg AFB1/kg dry matter (DM) (AFB1), 50 μg AFB1/kg DM+100 μg OTA/kg DM (AFB1+ OTA), 50 μg AFB1/kg DM+500 μg ZEA/kg DM (AFB1+ZEA), or 50 μg AFB1/kg DM+100 μg OTA/kg DM+500 μg ZEA/kg DM (AFB1+OTA+ZEA). RESULTS Dry matter intake and milk production were lower in goats fed AFB1+OTA+ZEA than in controls. Supplementation with AFB1, OTA, and ZEA significantly decreased red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean platelet volume, and significantly increased white blood cell count, when compared with the control group. Compared with control, the combination of AFB1, OTA, and ZEA significantly increased alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, total bilirubin (TBIL), interleukin-6, and malondialdehyde (MDA), but significantly reduced immunoglobulin A concentration, the activities of superoxide dismutase (SOD) and glutathione peroxides (GSH-Px), and total antioxidant capacity (T-AOC) in serum. Administration of AFB1 combined with OTA led to higher ALP, ALT, TBIL, and MDA, as well as lower milk production, SOD and GSH-Px activities, and T-AOC, than administration of AFB1 combined with ZEA. CONCLUSION The mixture of AFB1, OTA, and ZEA exerted the greatest adverse effects on dairy goats, meanwhile the deleterious damage of the other mycotoxin combinations were in varying degrees. The findings of this study could provide guidance for the prevention and treatment of the consequences of contamination of animal feeds with combinations of mycotoxin.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Nan Zheng
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Caiyun Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao 266100, China
| | - Shang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Adil Jabar
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Kautzman M, Hogan N, Gomis S, Brown K, Wickstrom M. Using Near Infrared Transmittance (NIT) to generate sorted fractions of Fusarium infected wheat and their immunological impact on broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1139/cjas-2016-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Michael Kautzman
- University of Saskatchewan, 7235, Animal and Poultry Science, 55 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5A2
| | - Natacha Hogan
- University of Saskatchewan, 7235, Animal and Poultry Science, Saskatoon, Saskatchewan, Canada
| | - Susantha Gomis
- University of Saskatchewan, Veterinary Pathology, Saskatchewan, Saskatchewan, Canada
| | - Kaitlyn Brown
- University of Saskatchewan, 7235, College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Mark Wickstrom
- University of Saskatchewan, 7235, Toxicology Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Jahanian E, Mahdavi AH, Asgary S, Jahanian R. Effects of dietary inclusion of silymarin on performance, intestinal morphology and ileal bacterial count in aflatoxin-challenged broiler chicks. J Anim Physiol Anim Nutr (Berl) 2017; 101:e43-e54. [DOI: 10.1111/jpn.12556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/24/2016] [Indexed: 01/18/2023]
Affiliation(s)
- E. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A. H. Mahdavi
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - S. Asgary
- Isfahan Cardiovascular Research Center; Cardiovascular Research Institute; Isfahan University of Medical Sciences; Isfahan Iran
| | - R. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
- Poultry Nutrition Research Center; Bioscitech Research Institute; Isfahan Iran
| |
Collapse
|
18
|
Jahanian E, Mahdavi A, Asgary S, Jahanian R. Effect of dietary supplementation of mannanoligosaccharides on growth performance, ileal microbial counts, and jejunal morphology in broiler chicks exposed to aflatoxins. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abstract
Fungal biochemical pathways can yield various compounds that are not considered to be necessary for their growth and are thus referred to as secondary metabolites. These compounds have been found to have wide ranging biological effects and include potent poisons (mycotoxins). Mycotoxins invariably contaminate crops and (thus) animal feeds. The intestine is the key link between ingested mycotoxins and their detrimental effects on the animal. Effects on the intestine, or intestinal environment, and immune system have been reported with various mycotoxins. These effects are almost certainly occurring across species. Most, if not all, of the reported effects of mycotoxins are negative in terms of intestinal health, for example, decreased intestinal cell viability, reductions in short chain fatty acid (SCFA) concentrations and elimination of beneficial bacteria, increased expression of genes involved in promoting inflammation and counteracting oxidative stress. This challenge to intestinal health will predispose the animal to intestinal (and systemic) infections and impair efficient digestion and absorption of nutrients, with the associated effect on animal productivity.
Collapse
|
20
|
Jiang M, Fang J, Peng X, Cui H, Yu Z. Effect of aflatoxin B₁ on IgA⁺ cell number and immunoglobulin mRNA expression in the intestine of broilers. Immunopharmacol Immunotoxicol 2015; 37:450-7. [PMID: 26357012 DOI: 10.3109/08923973.2015.1081933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic group of mycotoxins produced by two species of the Aspergillus, common contaminants of food and animal feed. The purpose of our study was to determine the effect of AFB1 on the number of IgA(+) cell and immunoglobulin mRNA expression in the intestine of broilers. One hundred and fifty six one-day-old healthy Cobb broilers were randomly divided into the control group (the dosage of 0 mg/kg AFB1) and AFB1 group (the dosage of 0.6 mg/kg AFB1) with three replicates per group and 26 birds per replicate for 21 days, respectively. After necropsy at 7, 14 and 21 days of age, duodenum, jejunum and ileum samples were taken for analyzing IgA(+) cell by immunohistochemistry and IgA, pIgR, IgM and IgG mRNA expression by qRT-PCR. IgA(+) cells were mainly distributed in the lamina propria of small intestinal mucosa in both groups at 14 and 21 days of age. A significant decrease in the number of IgA(+) cells in the duodenum, jejunum and ileum was revealed in the AFB1 group compared with that of the control group. The expression levels of IgA, pIgR, IgM and IgG mRNA in the intestinal mucosa were lower in the AFB1 group than those in the control group at 14 and 21 days of age. Our data demonstrated that the dosage of 0.6 mg/kg AFB1 in broiler diet reduced the number of IgA(+) cell and the expression of IgA, pIgR, IgM and IgG mRNA in the small intestine.
Collapse
Affiliation(s)
- Min Jiang
- a Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University , Ya'an , Sichuan , P.R. China
| | - Jing Fang
- a Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University , Ya'an , Sichuan , P.R. China
| | - Xi Peng
- a Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University , Ya'an , Sichuan , P.R. China
| | - Hengmin Cui
- a Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University , Ya'an , Sichuan , P.R. China
| | - Zhengqiang Yu
- a Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University , Ya'an , Sichuan , P.R. China
| |
Collapse
|
21
|
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci 2015; 94:1298-315. [PMID: 25840963 PMCID: PMC4988553 DOI: 10.3382/ps/pev075] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above mentioned aspects.
Collapse
Affiliation(s)
| | - D R Ledoux
- Department of Animal Sciences, University of Missouri-Columbia, MO, USA
| | - K Naehrer
- BIOMIN Research Center, Tulln, Austria
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - B Grenier
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | | | | |
Collapse
|
22
|
Effects of aflatoxin b1 on T-cell subsets and mRNA expression of cytokines in the intestine of broilers. Int J Mol Sci 2015; 16:6945-59. [PMID: 25826527 PMCID: PMC4424998 DOI: 10.3390/ijms16046945] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to investigate the effects of aflatoxin B1 (AFB1) on T-cell subsets and mRNA expression of cytokines in the small intestine of broilers. One hundred and fifty-six one-day-old healthy Cobb broilers were randomly divided into control group (0 mg/kg AFB1) and AFB1 group (0.6 mg/kg AFB1) with three replicates per group and 26 birds per replicate for 21 days, respectively. At 7, 14, and 21 days of age, the duodenum, jejunum and ileum were sampled for analyzing T cell subsets (CD3+, CD3+CD4+ and CD3+CD8+) by flow cytometry as well as IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ and TNF-α mRNA expression by qRT-PCR. The percentages of T-cells in the intra-epithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) of duodenum, jejunum and ileum in the AFB1 group showed a decreased tendency in comparison to the control group. The mRNA expression of cytokines in the three intestinal segments in the AFB1 group presented a general decline compared with the control groups. Our data demonstrated that 0.6 mg/kg AFB1 in the broilers diet could reduce the percentages of T-cell subsets and the expression level of cytokine mRNA in the small intestine, implying that the immune function of the intestinal mucosa might be affected. The reduction of cytokines mRNA expression may be closely associated with the decreased proportions of T cells subsets induced by AFB1.
Collapse
|
23
|
Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells. Toxicol Lett 2013; 220:238-46. [DOI: 10.1016/j.toxlet.2013.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
|
24
|
Yohannes T, Sharma A, Singh S, Goswami T. Immunopathological effects of experimental T-2 mycotoxocosis in broiler chicken co-infected with infectious bronchitis virus (IBV). Vet Immunol Immunopathol 2012; 146:245-53. [DOI: 10.1016/j.vetimm.2012.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 11/30/2022]
|
25
|
Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.12.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Hassan ZU, Khan MZ, Saleemi MK, Khan A, Javed I, Noreen M. Immunological responses of male White Leghorn chicks kept on ochratoxin A (OTA)-contaminated feed. J Immunotoxicol 2011; 9:56-63. [DOI: 10.3109/1547691x.2011.627393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Madrigal-Santillán E, Morales-González JA, Vargas-Mendoza N, Reyes-Ramírez P, Cruz-Jaime S, Sumaya-Martínez T, Pérez-Pastén R, Madrigal-Bujaidar E. Antigenotoxic studies of different substances to reduce the DNA damage induced by aflatoxin B(1) and ochratoxin A. Toxins (Basel) 2010; 2:738-57. [PMID: 22069607 PMCID: PMC3153197 DOI: 10.3390/toxins2040738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are produced mainly by the mycelial structure of filamentous fungi, or more specifically, molds. These secondary metabolites are synthesized during the end of the exponential growth phase and appear to have no biochemical significance in fungal growth and development. The contamination of foods and feeds with mycotoxins is a significant problem for the adverse effects on humans, animals, and crops that result in illnesses and economic losses. The toxic effect of the ingestion of mycotoxins in humans and animals depends on a number of factors including intake levels, duration of exposure, toxin species, mechanisms of action, metabolism, and defense mechanisms. In general, the consumption of contaminated food and feed with mycotoxin induces to neurotoxic, immunosuppressive, teratogenic, mutagenic, and carcinogenic effect in humans and/or animals. The most significant mycotoxins in terms of public health and agronomic perspective include the aflatoxins, ochratoxin A (OTA), trichothecenes, fumonisins, patulin, and the ergot alkaloids. Due to the detrimental effects of these mycotoxins, several strategies have been developed in order to reduce the risk of exposure. These include the degradation, destruction, inactivation or removal of mycotoxins through chemical, physical and biological methods. However, the results obtained with these methods have not been optimal, because they may change the organoleptic characteristics and nutritional values of food. Another alternative strategy to prevent or reduce the toxic effects of mycotoxins is by applying antimutagenic agents. These substances act according to several extra- or intracellular mechanisms, their main goal being to avoid the interaction of mycotoxins with DNA; as a consequence of their action, these agents would inhibit mutagenesis and carcinogenesis. This article reviews the main strategies used to control AFB(1) and ochratoxin A and contains an analysis of some antigenotoxic substances that reduce the DNA damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| | - José A. Morales-González
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Nancy Vargas-Mendoza
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Patricia Reyes-Ramírez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Sandra Cruz-Jaime
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Teresa Sumaya-Martínez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Ricardo Pérez-Pastén
- Laboratorio de Toxicología Preclínica, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (R.P.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| |
Collapse
|