1
|
Maričević M, Španić V, Bukan M, Rajković B, Šarčević H. Diallel Analysis of Wheat Resistance to Fusarium Head Blight and Mycotoxin Accumulation under Conditions of Artificial Inoculation and Natural Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:1022. [PMID: 38611551 PMCID: PMC11013806 DOI: 10.3390/plants13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Breeding resistant wheat cultivars to Fusarium head blight (FHB), caused by Fusarium spp., is the best method for controlling the disease. The aim of this study was to estimate general combining ability (GCA) and specific combining ability (SCA) for FHB resistance in a set of eight genetically diverse winter wheat cultivars to identify potential donors of FHB resistance for crossing. FHB resistance of parents and F1 crosses produced by the half diallel scheme was evaluated under the conditions of artificial inoculation with F. graminearum and natural infection. Four FHB related traits were assessed: visual rating index (VRI), Fusarium damaged kernels (FDK), and deoxynivalenol and zearalenone content in the harvested grain samples. Significant GCA effects for FHB resistance were observed for the parental cultivars with high FHB resistance for all studied FHB resistance related traits. The significant SCA and mid-parent heterosis effects for FHB resistance were rare under both artificial inoculation and natural infection conditions and involved crosses between parents with low FHB resistance. A significant negative correlation between grain yield under natural conditions and VRI (r = -0.43) and FDK (r = -0.47) under conditions of artificial inoculation was observed in the set of the studied F1 crosses. Some crosses showed high yield and high FHB resistance, indicating that breeding of FHB resistant genotypes could be performed without yield penalty. These crosses involved resistant cultivars with significant GCA effects for FHB resistance indicating that that they could be used as good donors of FHB resistance.
Collapse
Affiliation(s)
- Marko Maričević
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (M.M.); (B.R.)
| | - Valentina Španić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia
| | - Miroslav Bukan
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Bruno Rajković
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (M.M.); (B.R.)
| | - Hrvoje Šarčević
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Mesterhazy A. What Is Fusarium Head Blight (FHB) Resistance and What Are Its Food Safety Risks in Wheat? Problems and Solutions-A Review. Toxins (Basel) 2024; 16:31. [PMID: 38251247 PMCID: PMC10820574 DOI: 10.3390/toxins16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
The term "Fusarium Head Blight" (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily result from FHB, and even the genetic regulation of Fusarium spp. may differ; therefore, multitoxin contamination is common. The resistance types of FHB form a rather complex syndrome that has been the subject of debate for decades. It seems that resistance types are not independent variables but rather a series of components that follow disease and epidemic development; their genetic regulation may differ. Spraying inoculation (Type 1 resistance) includes the phase where spores land on palea and lemma and spread to the ovarium and also includes the spread-inhibiting resistance factor; therefore, it provides the overall resistance that is needed. A significant part of Type 1-resistant QTLs could, therefore, be Type 2, requiring the retesting of the QTLs; this is, at least, the case for the most effective ones. The updated resistance components are as follows: Component 1 is overall resistance, as discussed above; Component 2 includes spreading from the ovarium through the head, which is a part of Component 1; Component 3 includes factors from grain development to ripening (FDK); Component 4 includes factors influencing DON contamination, decrease, overproduction, and relative toxin resistance; and for Component 5, the tolerance has a low significance without new results. Independent QTLs with different functions can be identified for one or more traits. Resistance to different Fusarium spp. seems to be connected; it is species non-specific, but further research is necessary. Their toxin relations are unknown. DI, FDK, and DON should be checked as they serve as the basic data for the risk analysis of cultivars. A better understanding of the multitoxin risk is needed regarding resistance to the main Fusarium spp.; therefore, an updated testing methodology is suggested. This will provide more precise data for research, genetics, and variety registration. In winter and spring wheat, the existing resistance level is very high, close to Sumai 3, and provides much greater food safety combined with sophisticated fungicide preventive control and other practices in commercial production.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
3
|
Haile JK, Sertse D, N’Diaye A, Klymiuk V, Wiebe K, Ruan Y, Chawla HS, Henriquez MA, Wang L, Kutcher HR, Steiner B, Buerstmayr H, Pozniak CJ. Multi-locus genome-wide association studies reveal the genetic architecture of Fusarium head blight resistance in durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1182548. [PMID: 37900749 PMCID: PMC10601657 DOI: 10.3389/fpls.2023.1182548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.
Collapse
Affiliation(s)
- Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valentyna Klymiuk
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Harmeet S. Chawla
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maria-Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Lipu Wang
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hadley R. Kutcher
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Barbara Steiner
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Influence of Biotreatment on Hordeum vulgare L. Cereal Wholemeal Contamination and Enzymatic Activities. Foods 2023; 12:foods12051050. [PMID: 36900564 PMCID: PMC10001146 DOI: 10.3390/foods12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Crop contamination with mycotoxins is a global problem with a negative impact on human and animal health as well as causing economical losses in food and feed chains. This study was focused on the evaluation of the effect of lactic acid bacteria (LAB) strain (Levilactobacillus brevis-LUHS173, Liquorilactobacillus uvarum-LUHS245, Lactiplantibacillus plantarum-LUHS135, Lacticaseibacillus paracasei-LUHS244 and Lacticaseibacillus casei-LUHS210) fermentation on the changes in the level of deoxynivalenol (DON) and its conjugates in Fusarium spp.-contaminated barley wholemeal (BWP). Samples, with different contamination of DON and its conjugates, were treated separately (for 48 h). In addition to mycotoxin content, enzymatic activities (amylolytic, xylanolytic, and proteolytic) of BWP (before and after fermentation) were evaluated. It was established that the effect of decontamination depends on the LAB strain used, and a significant reduction in DON and the concentration of its conjugates in Lc. casei fermented samples was achieved: the amount of DON decreased on average by 47%, and the amount of D3G, 15-ADON and 3-ADON decreased by 82.4, 46.1, and 55.0%, respectively. Lc. casei also showed viability in the contaminated fermentation medium and an effective production of organic acids was obtained. Additionally, it was found that enzymes are involved to the detoxification mechanism of DON and its conjugates in BWP. These findings indicate that fermentation with selected LAB strains could be applied for contaminated barley treatment in order to significantly reduce Fusarium spp. mycotoxin levels in BWP and improve the sustainability of grain production.
Collapse
|
5
|
Moraes WB, Madden LV, Baik BK, Gillespie J, Paul PA. Environmental Conditions After Fusarium Head Blight Visual Symptom Development Affect Contamination of Wheat Grain with Deoxynivalenol and Deoxynivalenol-3-Glucoside. PHYTOPATHOLOGY 2023; 113:206-224. [PMID: 36131392 DOI: 10.1094/phyto-06-22-0199-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) of wheat, caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON). Although FHB is often positively correlated with DON, this relationship can break down under certain conditions. One possible explanation for this could be the conversion of DON to DON-3-glucoside (D3G), which is typically missed by common DON testing methods. The objective of this study was to quantify the effects of temperature, relative humidity (RH), and preharvest rainfall on DON, D3G, and the D3D/DON relationship. D3G levels were higher in grain from spikes exposed to 100% RH than to 70, 80, or 90% RH at 20 and 25°C across all tested levels of mean FHB index (percentage of diseased spikelets per spike). Mean D3G contamination was higher at 20°C than at 25 or 30°C. There were significantly positive linear relationships between DON and D3G. Rainfall treatments resulted in significantly higher mean D3G than the rain-free check and induced preharvest sprouting, as indicated by low falling numbers (FNs). There were significant positive relationships between the rate of increase in D3G per unit increase in DON (a measure of conversion) and sprouting. As FN decreased, the rate of D3G conversion increased, and this rate of conversion per unit decrease in FN was greater at relatively low than at high mean DON levels. These results provide strong evidence that moisture after FHB visual symptom development was associated with DON-to-D3G conversion and constitute valuable new information for understanding this complex disease-mycotoxin system.
Collapse
Affiliation(s)
- Wanderson Bucker Moraes
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Byung-Kee Baik
- USDA-ARS-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH 44691
| | - James Gillespie
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
6
|
An accurate and efficient method for simultaneous determination of 16 trichothecenes in maize and wheat by UHPLC-Q-Orbitrap-HRMS combined one-step pretreatment with a novel isotope multipoint calibration strategy. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Kirana RP, Gaurav K, Arora S, Wiesenberger G, Doppler M, Michel S, Zimmerl S, Matic M, Eze CE, Kumar M, Topuz A, Lemmens M, Schuhmacher R, Adam G, Wulff BBH, Buerstmayr H, Steiner B. Identification of a UDP-glucosyltransferase conferring deoxynivalenol resistance in Aegilops tauschii and wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:109-121. [PMID: 36121345 PMCID: PMC9829400 DOI: 10.1111/pbi.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.
Collapse
Affiliation(s)
- Rizky Pasthika Kirana
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Laboratory of Plant BreedingDepartment of Agronomy, Faculty of Agriculture, Universitas Gadjah MadaYogyakartaIndonesia
| | | | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Maria Doppler
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Core Facility Bioactive Molecules: Screening and AnalysisUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Sebastian Michel
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Simone Zimmerl
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Magdalena Matic
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Faculty of Agrobiotechnical Sciences OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia
| | - Chinedu E. Eze
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of AgronomyMichael Okpara University of Agriculture UmudikeUmudikeNigeria
| | - Mukesh Kumar
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of Genetics & Plant BreedingCCS Haryana Agricultural UniversityHisar (Haryana)India
| | - Ajla Topuz
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichUK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
8
|
Jbir TG, Crutcher FK, Rickertsen J, Fonseka D, Friskop AJ, Kalil AK. Influence of Planting Date and Cultivar on Diseases of Spring Durum Wheat. PLANT DISEASE 2022; 106:3083-3090. [PMID: 35612573 DOI: 10.1094/pdis-03-22-0548-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the semiarid regions of North Dakota and Montana, low annual precipitation favors production of high-quality durum wheat (Triticum turgidum subsp. durum). However, conducive weather conditions for disease epidemics have occurred more frequently in recent years. Modification of planting date can reduce disease risk by decreasing the timeframe in which a susceptible crop overlaps with conducive disease conditions. The effect of planting date on fungal leaf spotting diseases (leaf spot), ergot, Fusarium head blight (FHB), and yield of durum was evaluated in 11 experiments across four sites in eastern Montana and western North Dakota. Six durum cultivars with differing levels of susceptibility to leaf spot and FHB were planted at three planting dates from 2017 to 2019. Early planting maximized yield and influenced ergot incidence. Although there was no effect of planting date, reduced susceptibility to leaf spot and FHB was associated with a reduction in leaf spotting disease severity and deoxynivalenol, respectively, in the harvested grain. Growers in the semiarid regions of these states should prioritize the selection of disease-resistant cultivars to help manage sporadic disease outbreaks and continue to plant early to maximize yield.
Collapse
Affiliation(s)
- Taheni Gargouri Jbir
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | - Frankie K Crutcher
- Eastern Agricultural Research Center, Montana State University, Sidney, MT 59270
| | - John Rickertsen
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639
| | - Dimitri Fonseka
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Andrew J Friskop
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Audrey K Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| |
Collapse
|
9
|
Yan Z, Chen W, van der Lee T, Waalwijk C, van Diepeningen AD, Feng J, Zhang H, Liu T. Evaluation of Fusarium Head Blight Resistance in 410 Chinese Wheat Cultivars Selected for Their Climate Conditions and Ecological Niche Using Natural Infection Across Three Distinct Experimental Sites. FRONTIERS IN PLANT SCIENCE 2022; 13:916282. [PMID: 35712562 PMCID: PMC9195592 DOI: 10.3389/fpls.2022.916282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exploiting wheat cultivars with stable resistance to Fusarium Head blight (FHB) and toxin accumulation is a cost-effective and environmentally friendly strategy to reduce the risk of yield losses and contamination with mycotoxins. To facilitate the deployment of stable cultivar resistance, we evaluated FHB resistance and resistance to mycotoxin accumulation in 410 wheat lines bred by local breeders from four major wheat growing regions in China after natural infection at three distinct locations (Hefei, Yangzhou and Nanping). Significant differences in disease index were observed among the three locations. The disease indexes (DI's) in Nanping were the highest, followed by Yangzhou and Hefei. The distribution of DI's in Yangzhou showed the best discrimination of FHB resistance in cultivars. Growing region and cultivar had significant effect on DI and mycotoxins. Among the climate factors, relative humidity and rainfall were the key factors resulting in the severe disease. Even though most cultivars were still susceptible to FHB under the strongly conducive conditions applied, the ratio of resistant lines increased in the Upper region of the Yangtze River (UYR) and the Middle and Lower Region of the Yangtze River (MLYR) between 2015 and 2019. Deoxynivalenol (DON) was the dominant mycotoxin found in Hefei and Yangzhou, while NIV was predominant in Nanping. Disease indexes were significantly correlated with DON content in wheat grain.
Collapse
Affiliation(s)
- Zhen Yan
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Wanquan Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| | - Theo van der Lee
- Wageningen University and Research Center, Wageningen, Netherlands
| | - Cees Waalwijk
- Wageningen University and Research Center, Wageningen, Netherlands
| | | | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| |
Collapse
|
10
|
Bryła M, Stępniewska S, Modrzewska M, Waśkiewicz A, Podolska G, Ksieniewicz-Woźniak E, Yoshinari T, Stępień Ł, Urbaniak M, Roszko M, Gwiazdowski R, Kanabus J, Pierzgalski A. Dynamics of Deoxynivalenol and Nivalenol Glucosylation in Wheat Cultivars Infected with Fusarium culmorum in Field Conditions─A 3 Year Study (2018-2020). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4291-4302. [PMID: 35362967 DOI: 10.1021/acs.jafc.2c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium head blight (FHB) caused by pathogenic species of Fusarium fungi is one of the most important diseases of cereal plants and a factor contributing to losses in plant production. The growth of FHB-associated species is often accompanied by biosynthesis of secondary metabolites─mycotoxins, which serve as a virulence factor. The aim of the study was to evaluate the ratios between deoxynivalenol (DON) and nivalenol (NIV) and their derivatives in the ears of six cultivars of winter wheat with varying resistance to FHB, taking into account a range of factors (weather conditions, location, cultivar, and year) after inoculation with Fusarium culmorum, during a 3 year field experiment, 2018-2020. The presence of toxins in the ears was measured within 21 days of inoculation. The toxins were found in the ears as soon as on the third day from the start of the experiment, whereas relative humidity higher than 80% was a decisive factor for FHB incidence. All wheat cultivars showed the ability to biotransform DON and NIV present in the ears to glucosides, that is, deoxynivalenol-3-glucoside (DON-3G) and nivalenol-3-glucoside (NIV-3G). The levels of these metabolites showed significant correlation with the levels of their basic analogues. In most cases, higher levels of DON and NIV in wheat ears and higher levels of their metabolites were observed, but the relative levels of DON-3G/DON and NIV-3G/NIV at relatively high levels of toxins were lower compared to the ear samples with relatively low toxin levels. The presented results are the first studies, which systematically correlate a variety of wheat cultivars with their extent to glucosylate trichothecenes.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Sylwia Stępniewska
- Department of Grain Processing and Bakery, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, Poznan 60-625, Poland
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation─State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Monika Urbaniak
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Romuald Gwiazdowski
- Research Centre for Registration of Agrochemicals, Institute of Plant Protection-National Research Institute, Wladysława Wegorka 20, Poznan 60-318, Poland
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| |
Collapse
|
11
|
Trakselyte-Rupsiene K, Juodeikiene G, Hajnal EJ, Bartkevics V, Pugajeva I, Klupsaite D, Cernauskas D, Lele V, Zadeike D, Bartkiene E. Challenges of Lactobacillus fermentation in combination with acoustic screening for deoxynivalenol and deoxynivalenol conjugates reduction in contaminated wheat - based products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Eli K, Schaafsma A, Hooker D. Impact of agronomic practices on Fusarium mycotoxin accumulation in maize grain. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the Great Lakes region of North America, Gibberella ear rot (GER), caused by Fusarium graminearum, affects grain quality due to the accumulation of mycotoxins. GER severity is strongly influenced by environmental conditions; however, agronomic practices can also influence disease severity and mycotoxin accumulation. In this study, three separate small-plot experiments were conducted at Ridgetown, ON, Canada during 2019 and 2020 under an inoculated-misted system to determine Fusarium mycotoxin accumulation as affected by: (1) plant population density; (2) in-row-plant developmental variability; and (3) the effect of integrated Bt refuge genetics. In this study, DON concentrations were at least 49% higher in maize at 113,600 plants/ha compared to 79,000 plants/ha. Moreover, mycotoxin accumulation was higher in plants that were delayed developmentally in the crop row; total DON concentrations were at least 310% higher in late silked plants adjacent to early silked plants. Results of the plant population density and in-row-plant developmental variability suggest that the main driver for mycotoxin accumulation was stress induced by plant competition rather than environmental conditions; this highlights the importance of avoiding plant competitive stress as a strategy to reduce the risks of mycotoxin accumulation. In this study, there was no statistical difference in DON accumulation between the Bt component and the non-Bt component in each of the four hybrids tested; however, there was evidence that hybrids varied in susceptibility, including the Bt and non-Bt components that were paired commercially in a bag of seed maize. Reducing mycotoxins in maize requires integrated management, which includes agronomic considerations. These results indicate that mycotoxins are favoured with high plant populations and plant-to-plant variability in the row, especially in susceptible hybrids.
Collapse
Affiliation(s)
- K. Eli
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - D.C. Hooker
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
13
|
Eli K, Schaafsma A, Limay-Rios V, Hooker D. Effect of pydiflumetofen on Gibberella ear rot and Fusarium mycotoxin accumulation in maize grain. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Ontario, Canada, Fusarium graminearum Schwabe causes Gibberella ear rot (GER) in maize, resulting in the accumulation of mycotoxins, mainly deoxynivalenol (DON), DON-3-glucoside (DON-3G) and zearalenone (ZEN) in infected kernels. Fungicides can be an important tool for managing GER and DON and other Fusarium mycotoxins in maize. Until recently, all fungicides available to growers were triazoles, thus no resistance management strategy through fungicide use was possible. In this study, a novel carboxamide fungicide active ingredient (pydiflumetofen) was evaluated against conventional triazole fungicides and mixtures for: (1) effectiveness on mycotoxins (2) optimal application timing; and (3) efficacy of application, with and without an insecticide, under natural and inoculated-misted conditions. The best timing for fungicide application was at full silk, resulting in the highest reduction of GER symptoms and lowest accumulation of F. graminearum mycotoxins in harvested grain. DON and DON-3G concentrations were reduced by at least 50% with a fungicide application at full silk. Fungicide treatments did not affect fumonisin concentrations in grain. Pydiflumetofen (94 g active ingredients (AI)/ha) and fungicides containing pydiflumetofen (75-94 g AI/ha) were similar to standard triazole fungicides (prothioconazole at 200 g AI/ha and metconazole at 90 g AI/ha) for reducing GER and F. graminearum mycotoxins under misted-inoculated plots and commercial field conditions; as a result, we expect pydiflumetofen to be competitive with triazole-only chemistries in the marketplace, which should delay the onset of fungicide resistance.
Collapse
Affiliation(s)
- K. Eli
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - V. Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - D.C. Hooker
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
14
|
Chrpová J, Grausgruber H, Weyermann V, Buerstmayr M, Palicová J, Kozová J, Trávníčková M, Nguyen QT, Moreno Amores JE, Buerstmayr H, Janovská D. Resistance of Winter Spelt Wheat [ Triticum aestivum subsp. spelta (L.) Thell.] to Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:661484. [PMID: 33897749 PMCID: PMC8058439 DOI: 10.3389/fpls.2021.661484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Resistance to Fusarium head blight (FHB) of spelt wheat was investigated in field trials carried out at three European locations between 2016 and 2018. Resistance was assessed after artificial inoculation by visual scoring of symptoms and the determination of the contamination of grains and glumes with the mycotoxin deoxynivalenol (DON). It was found that typical spelt traits such as tall plant height, lax spikes, and tough glumes play a role as passive resistance factors. Across all test environments, modern spelt varieties with a significantly reduced plant height showed a significantly higher susceptibility to FHB and a higher contamination of the grains with DON compared to old landraces/varieties and plant genetic resources. Similarly, the lowest mycotoxin levels in grains were found only in old landraces and varieties, while the highest DON concentration was observed mainly in modern varieties. The results obtained can be used for the selection of suitable parental material for breeding spelt with improved FHB resistance.
Collapse
Affiliation(s)
| | - Heinrich Grausgruber
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | | | - Maria Buerstmayr
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | | | | | | | - Quynh Trang Nguyen
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Jose Esteban Moreno Amores
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Hermann Buerstmayr
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | | |
Collapse
|
15
|
Hoffmann A, Lischeid G, Koch M, Lentzsch P, Sommerfeld T, Müller MEH. Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production. Microorganisms 2021; 9:microorganisms9020443. [PMID: 33672702 PMCID: PMC7924320 DOI: 10.3390/microorganisms9020443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria tenuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Institute for Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
- Correspondence:
| | - Gunnar Lischeid
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
- Institute for Environmental Sciences and Geography, University of Potsdam, 14476 Potsdam, Germany
| | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany; (M.K.); (T.S.)
| | - Peter Lentzsch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
| | - Thomas Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany; (M.K.); (T.S.)
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
16
|
Effects of Durum Wheat Cultivars with Different Degrees of FHB Susceptibility Grown under Different Meteorological Conditions on the Contamination of Regulated, Modified and Emerging Mycotoxins. Microorganisms 2021; 9:microorganisms9020408. [PMID: 33669359 PMCID: PMC7920256 DOI: 10.3390/microorganisms9020408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
The enhancement of Fusarium head blight (FHB) resistance is one of the best options to reduce mycotoxin contamination in wheat. This study has aimed to verify that the genotypes with high tolerance to deoxynivalenol could guarantee an overall minimization of the sanitary risk, by evaluating the contamination of regulated, modified and emerging mycotoxins on durum wheat cvs with different degrees of FHB susceptibility, grown under different meteorological conditions, in 8 growing seasons in North-West Italy. The years which were characterized by frequent and heavy rainfall in spring were also those with the highest contamination of deoxynivalenol, zearalenone, moniliformin, and enniatins. The most FHB resistant genotypes resulted in the lowest contamination of all the mycotoxins but showed the highest deoxynivalenol-3-glucoside/deoxynivalenol ratio and moniliformin/deoxynivalenol ratio. An inverse relationship between the amount of deoxynivalenol and the deoxynivalenol-3-glucoside/deoxynivalenol ratio was recorded for all the cvs and all the years. Conversely, the enniatins/deoxynivalenol ratio had a less intense relationship with cv tolerance to FHB. In conclusion, even though the more tolerant cvs, showed higher relative relationships between modified/emerging mycotoxins and native/target mycotoxins than the susceptible ones, they showed lower absolute levels of contamination of both emerging and modified mycotoxins.
Collapse
|
17
|
Birr T, Jensen T, Preußke N, Sönnichsen FD, De Boevre M, De Saeger S, Hasler M, Verreet JA, Klink H. Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars. Toxins (Basel) 2021; 13:toxins13020110. [PMID: 33540691 PMCID: PMC7913079 DOI: 10.3390/toxins13020110] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023] Open
Abstract
Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms.
Collapse
Affiliation(s)
- Tim Birr
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
- Correspondence: ; Tel.: +49-431-880-4574
| | - Tolke Jensen
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Nils Preußke
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany;
| | - Joseph-Alexander Verreet
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Holger Klink
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| |
Collapse
|
18
|
Alisaac E, Rathgeb A, Karlovsky P, Mahlein AK. Fusarium Head Blight: Effect of Infection Timing on Spread of Fusarium graminearum and Spatial Distribution of Deoxynivalenol within Wheat Spikes. Microorganisms 2020; 9:microorganisms9010079. [PMID: 33396894 PMCID: PMC7823776 DOI: 10.3390/microorganisms9010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
Most studies of Fusarium head blight (FHB) focused on wheat infection at anthesis. Less is known about infections at later stages. In this study, the effect of infection timing on the development of FHB and the distribution of fungal biomass and deoxynivalenol (DON) along wheat spikes was investigated. Under greenhouse conditions, two wheat varieties were point-inoculated with Fusarium graminearum starting from anthesis until 25 days after anthesis. The fungus and fungal DNA were isolated from the centers and the bases of all the spikes but not from the tips for all inoculation times and both varieties. In each variety, the amount of fungal DNA and the content of DON and deoxynivalenol-3-glucoside (DON-3-G) were higher in the center than in the base for all inoculation times. A positive correlation was found between the content of fungal DNA and DON in the centers as well as the bases of both varieties. This study showed that F. graminearum grows downward within infected wheat spikes and that the accumulation of DON is largely confined to the colonized tissue. Moreover, F. graminearum was able to infect wheat kernels and cause contamination with mycotoxins even when inoculated 25 days after anthesis.
Collapse
Affiliation(s)
- Elias Alisaac
- Institute of Crop Science and Resource Conservation (INRES), Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-68711
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, 37077 Goettingen, Germany; (A.R.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, 37077 Goettingen, Germany; (A.R.); (P.K.)
| | | |
Collapse
|
19
|
Updating the Breeding Philosophy of Wheat to Fusarium Head Blight (FHB): Resistance Components, QTL Identification, and Phenotyping-A Review. PLANTS 2020; 9:plants9121702. [PMID: 33287353 PMCID: PMC7761804 DOI: 10.3390/plants9121702] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Fusarium head blight has posed continuous risks to wheat production worldwide due to its effects on yield, and the fungus provides additional risks with production of toxins. Plant resistance is thought to be the most powerful method. The host plant resistance is complex, Types I–V were reported. From the time of spraying inoculation (Type I), all resistance types can be identified and used to determine the total resistance. Type II resistance (at point inoculation) describes the spread of head blight from the ovary to the other parts of the head. Therefore, it cannot solve the resistance problem alone. Type II QTL (quantitative trait locus) Fhb1 on 3BS from Sumai 3 descendant CM82036 secures about the same resistance level as Type I QTL does on 5AS and 5ASc in terms of visual symptoms, FDK (Fusarium damaged kernel), and deoxynivalenol response. Recently, increasing evidence supports the association of deoxynivalenol (DON) content and low kernel infection with FHB (Fusarium head blight) resistance (Types III and IV), as QTL for individual resistance types has been identified. In plant breeding practice, the role of visual selection remains vital, but the higher correlations for FDK/DON make it possible to select low-DON genotypes via FDK value. For phenotyping, the use of more independent inocula (isolates or mixtures) makes resistance evaluation more reliable. The large heterogeneity of the mapping populations is a serious source of underestimating genetic effects. Therefore, the increasing of homogeneity is a necessity. As no wheat varieties exist with full resistance to FHB, crops must be supported by proper agronomy and fungicide use.
Collapse
|
20
|
Abstract
Mycotoxins are secondary metabolites of microscopic fungi, which commonly contaminate cereal grains. Contamination of small-grain cereals and maize with toxic metabolites of fungi, both pathogenic and saprotrophic, is one of the particularly important problems in global agriculture. Fusarium species are among the dangerous cereal pathogens with a high toxicity potential. Secondary metabolites of these fungi, such as deoxynivalenol, zearalenone and fumonisin B1 are among five most important mycotoxins on a European and world scale. The use of various methods to limit the development of Fusarium cereal head diseases and grain contamination with mycotoxins, before and after harvest, is an important element of sustainable agriculture and production of safe food. The applied strategies utilize chemical and non-chemical methods, including agronomic, physical and biological treatments. Biological methods now occupy a special place in plant protection as an element of biocontrol of fungal pathogens by inhibiting their development and reducing mycotoxins in grain. According to the literature, Good Agricultural Practices are the best line of defense for controlling Fusarium toxin contamination of cereal and maize grains. However, fluctuations in weather conditions can significantly reduce the effectiveness of plants protection methods against infection with Fusarium spp. and grain accumulation of mycotoxins.
Collapse
|
21
|
Yan Z, Zhang H, van der Lee T, Waalwijk C, van Diepeningen A, Deng Y, Feng J, Liu T, Chen W. Resistance to Fusarium head blight and mycotoxin accumulation among 129 wheat cultivars from different ecological regions in China. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A total of 129 wheat cultivars collected from local breeders in four ecological regions in China was evaluated for Fusarium head blight resistance after natural infection under epidemic conditions. The disease index was scored and seven toxins concentrations were determined by UPLC-MS/MS. The disease index ranged from 6.3 to 80.9% and a strong correlation was found between the regions from which the cultivars originate and disease index. The middle and lower reaches of Yangtze River Region showed the highest disease resistance, followed by the upper reaches of the Yangtze River Region. FHB resistance of cultivars from northern and southern Huanghuai Region was lowest and all cultivars in these regions are highly or moderately susceptible. Disease index was significantly correlated with toxin accumulation on nation scale, but no clear correlation was found within most ecological regions. The toxin accumulation was also not well correlated with resistant levels. As the incidence of FHB has increased dramatically over the last decade, improved FHB resistance in cultivars is urgently needed. We recommend that besides scoring for disease index also mycotoxin accumulation in cultivars is incorporated in breeding procedures and the evaluation of cultivars.
Collapse
Affiliation(s)
- Z. Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China P.R
- Institute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, China P.R
- Gansu Agricultural University, 730070 Lanzhou, China P.R
| | - H. Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China P.R
| | - T.A.J. van der Lee
- Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - C. Waalwijk
- Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - A.D. van Diepeningen
- Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Y. Deng
- Nanping Institute of Agriculture Sciences, 354200 Nanping, China P.R
| | - J. Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China P.R
| | - T. Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China P.R
| | - W. Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China P.R
| |
Collapse
|
22
|
Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016-2018). Microorganisms 2019; 7:microorganisms7110532. [PMID: 31698757 PMCID: PMC6921044 DOI: 10.3390/microorganisms7110532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
Climatic changes influence considerably the distribution and occurrence of different secondary metabolites in cereals. The aim of this investigation was to assess the changes in metabolite prevalence observed in six different winter barley varieties over a statistically significant period of three years by linking agro-climatic conditions with metabolite concentrations in chosen samples. The results showed that temperatures and precipitation levels varied during the observed timeframe and that the multi-toxin concentrations followed the trend of changing climatic conditions depending on the variety. All quantified (fungal) metabolites showed significant variations throughout the years and, for some (tryptophol and the cyclic dipeptides cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val)), an unexpected, but clear connection can be made with temperature changes and precipitation levels during the growing season.
Collapse
|
23
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
24
|
Doppler M, Kluger B, Bueschl C, Steiner B, Buerstmayr H, Lemmens M, Krska R, Adam G, Schuhmacher R. Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. FRONTIERS IN PLANT SCIENCE 2019; 10:1137. [PMID: 31736983 PMCID: PMC6831647 DOI: 10.3389/fpls.2019.01137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
The major Fusarium mycotoxin deoxynivalenol (DON) is a virulence factor in wheat and has also been shown to induce defense responses in host plant tissue. In this study, global and tracer labeling with 13C were combined to annotate the overall metabolome of wheat spikes and to evaluate the response of phenylalanine-related pathways upon treatment with DON. At anthesis, spikes of resistant and susceptible cultivars as well as two related near isogenic wheat lines (NILs) differing in the presence/absence of the major resistance QTL Fhb1 were treated with 1 mg DON or water (control), and samples were collected at 0, 12, 24, 48, and 96 h after treatment (hat). A total of 172 Phe-derived wheat constituents were detected with our untargeted approach employing 13C-labeled phenylalanine and subsequently annotated as flavonoids, lignans, coumarins, benzoic acid derivatives, hydroxycinnamic acid amides (HCAAs), as well as peptides. Ninety-six hours after the DON treatment, up to 30% of the metabolites biosynthesized from Phe showed significantly increased levels compared to the control samples. Major metabolic changes included the formation of precursors of compounds implicated in cell wall reinforcement and presumed antifungal compounds. In addition, also dipeptides, which presumably are products of proteolytic degradation of truncated proteins generated in the presence of the toxin, were significantly more abundant upon DON treatment. An in-depth comparison of the two NILs with correlation clustering of time course profiles revealed some 70 DON-responsive Phe derivatives. While several flavonoids had constitutively different abundance levels between the two NILs differing in resistance, other Phe-derived metabolites such as HCAAs and hydroxycinnamoyl quinates were affected differently in the two NILs after treatment with DON. Our results suggest a strong activation of the general phenylpropanoid pathway and that coumaroyl-CoA is mainly diverted towards HCAAs in the presence of Fhb1, whereas the metabolic route to monolignol(-conjugates), lignans, and lignin seems to be favored in the absence of the Fhb1 resistance quantitative trait loci.
Collapse
Affiliation(s)
- Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
25
|
He X, Dreisigacker S, Singh RP, Singh PK. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2401-2411. [PMID: 31129715 PMCID: PMC6647199 DOI: 10.1007/s00122-019-03362-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 05/11/2023]
Abstract
Two QTL with major effects on DON content reduction were identified on chromosomes 3BL and 3DL, with the former showing minor and the latter showing no effects on FHB resistance. Deoxynivalenol (DON) contamination in food and feed is a major concern regarding Fusarium head blight (FHB) infection in wheat. However, relatively less attention has been paid on DON compared to FHB. In this study, a FHB-susceptible cultivar 'NASMA' was hybridized with a FHB-resistant CIMMYT breeding line 'IAS20*5/H567.71' to generate 197 recombinant inbred lines. The population was phenotyped for FHB and associated traits including DON accumulation in spray-inoculated field experiments at CIMMYT-Mexico across four years. Genotyping was performed by using the Illumina Infinium 15 K Beadchip and SSR markers. QTL mapping results indicated that the field FHB resistance was mainly controlled by QTL at Rht-D1 and Vrn-A1, along with a few minor QTL. For DON content, two major QTL were identified: the first located on chromosome 3BL (R2 of 16-24%), showing minor effects on FHB, and the second was on chromosome 3DL (R2 of 10-15%), exhibiting no effect on FHB resistance. It is likely that both DON QTL are new based on comparison with previous studies. This study indicates that resistance to DON accumulation and FHB disease could involve different genes, and the utilization of the two DON QTL in breeding could be helpful in further reducing DON contamination in food and feed.
Collapse
Affiliation(s)
- Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
26
|
Tucker JR, Badea A, Blagden R, Pleskach K, Tittlemier SA, Fernando WGD. Deoxynivalenol-3-Glucoside Content Is Highly Associated with Deoxynivalenol Levels in Two-Row Barley Genotypes of Importance to Canadian Barley Breeding Programs. Toxins (Basel) 2019; 11:E319. [PMID: 31195591 PMCID: PMC6628427 DOI: 10.3390/toxins11060319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023] Open
Abstract
Barley (Hordeum vulgare L.) is a multipurpose crop that can be harvested as grain or cut prior to maturity for use as forage. Fusarium head blight (FHB) is a devastating disease of barley that reduces quality of grain. FHB can also result in the accumulation of mycotoxins such as deoxynivalenol (DON). Breeding FHB resistant varieties has been a long-term goal of many barley-producing countries, including Canada. While the genetic basis of DON detoxification via production of less-phytotoxic conjugates such as DON-3-glucoside (DON3G) is well documented in barley, little information exists in reference to varietal response. Over two years, 16 spring, two-row barley genotypes, of importance to western Canadian barley breeding programs, were grown as short-rows and inoculated following spike emergence with a Fusarium graminearum conidia suspension. Half of the plots were harvested at soft dough stage and then dissected into rachis and grain components, whereas the remainder was harvested at maturity. Multiple Fusarium-mycotoxins were assayed using liquid chromatography-mass spectrometry. Mycotoxin content was elevated at the earlier harvest point, especially in the rachis tissue. DON3G constituted a significant percentage (26%) of total trichothecene content and thus its co-occurrence with DON should be considered by barley industries. DON3G was highly correlated with DON and 3-acetyl-deoxynivalenol (3ADON). The ratio of D3G/DON exhibited consistency across genotypes, however more-resistant genotypes were characterized by a higher ratio at the soft-dough stage followed by a decrease at maturity. Plant breeding practices that use DON content as a biomarker for resistance would likely result in the development of barley cultivars with lower total DON-like compounds.
Collapse
Affiliation(s)
- James R Tucker
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
| | - Richard Blagden
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Kerri Pleskach
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Sheryl A Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - W G Dilantha Fernando
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
27
|
Spanic V, Zdunic Z, Drezner G, Sarkanj B. The Pressure of Fusarium Disease and Its Relation with Mycotoxins in The Wheat Grain and Malt. Toxins (Basel) 2019; 11:toxins11040198. [PMID: 30987012 PMCID: PMC6521280 DOI: 10.3390/toxins11040198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Fusarium head blight (FHB) is one of the most destructive wheat fungal diseases, causing yield loss, quality reduction, and accumulation of mycotoxins. The aim of this research was to summarize the occurrence of major Fusarium mycotoxins: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), nivalenol (NIV), and zearalenone (ZEN) in two consecutive years to search the relationship between disease incidence and severity with mycotoxins found in control and inoculated grains and corresponding malt. In addition, deoxynivalenol-3-glucoside (D3G) in one-year research was measured. Tested wheat varieties showed infection scores of 3% (‘U1’ and ‘Sirban Prolifik’) to 79% (‘Golubica’) for Type I resistance evaluation. There were few moderately resistant varieties in view of their areas under the disease progress curve, which can be considered Type III resistance (‘Sirban Prolifik’ and ‘U1’). According to the data quantified by LC–MS/MS, DON decreased in infected malt in comparison to corresponding grain, while ZEN occurred only in infected malt samples. Both 3-AcDON and NIV increased in inoculated malt in comparison to corresponding grain, due to a combination of plant metabolism and de novo synthesis by molds during malting. Based on the results, we can draw a few conclusions: the resistance to Fusarium decreased quantified concentrations of DON; ZEN gets synthetized during malting; unregulated 3-AcDON and NIV increase during malting; more resistant varieties have converted DON to D3G more successfully. Modified mycotoxins should be also included to legislation, since they could be transformed back to the corresponding mycotoxins under food processing conditions or during digestion.
Collapse
Affiliation(s)
- Valentina Spanic
- Agricultural Institute Osijek, Juzno predgradje 17, HR-31000 Osijek, Croatia.
| | - Zvonimir Zdunic
- Agricultural Institute Osijek, Juzno predgradje 17, HR-31000 Osijek, Croatia.
| | - Georg Drezner
- Agricultural Institute Osijek, Juzno predgradje 17, HR-31000 Osijek, Croatia.
| | - Bojan Sarkanj
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia.
| |
Collapse
|
28
|
Kuzmanović L, Mandalà G, Tundo S, Ciorba R, Frangella M, Ruggeri R, Rossini F, Gevi F, Rinalducci S, Ceoloni C. Equipping Durum Wheat- Thinopyrum ponticum Recombinant Lines With a Thinopyrum elongatum Major QTL for Resistance to Fusarium Diseases Through a Cytogenetic Strategy. FRONTIERS IN PLANT SCIENCE 2019; 10:1324. [PMID: 31695716 PMCID: PMC6817583 DOI: 10.3389/fpls.2019.01324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 05/08/2023]
Abstract
Prompted by recent changes in climate trends, cropping areas, and management practices, Fusarium head blight (FHB), a threatening disease of cereals worldwide, is also spreading in unusual environments, where bread wheat (BW) and durum wheat (DW) are largely cultivated. The scarcity of efficient resistance sources within adapted germplasm is particularly alarming for DW, mainly utilized for human consumption, which is therefore at high risk of kernel contamination by health-dangerous mycotoxins (e.g., deoxynivalenol = DON). To cope with this scenario, we looked outside the wheat primary gene pool and recently transferred an exceptionally effective FHB resistance QTL (Fhb-7EL) from Thinopyrum elongatum 7EL chromosome arm onto a Thinopyrum ponticum 7el1L arm segment, containing additional valuable genes (including Lr19 for leaf rust resistance and Yp for yellow pigment content), distally inserted onto 7DL of BW lines. Two such lines were crossed with two previously developed DW-Th. ponticum recombinants, having 7el1L distal portions on 7AL arms. Genomic in situ hybridization (GISH) analysis showed homologous pairing, which is enabled by 7el1L segments common to the BW and DW recombinant chromosomes, to occur with 42-78% frequency, depending on the shared 7el1L amount. Aided by 7EL/7el1L-linked markers, 7EL+7el1L tetraploid recombinant types were isolated in BC1 progenies to DW of all cross combinations. Homozygous 7EL+7el1L recombinant plants and null segregates selected in BC2F2 progenies were challenged by Fusarium graminearum spike inoculation to verify the Fhb-7EL efficacy in DW. Infection outcomes confirmed previous observations in BW, with >90% reduction of disease severity associated with Fhb-7EL presence vs. its absence. The same differential effect was detected on seed set and weight of inoculated spikes, with genotypes lacking Fhb-7EL having ∼80% reduction compared with unaffected values of Fhb-7EL carriers. In parallel, DON content in flour extracts of resistant recombinants averaged 0.67 ppm, a value >800 times lower than that of susceptible controls. Furthermore, as observed in BW, the same Fhb-7EL also provided the novel DW recombinants with resistance to Fusarium crown rot (∼60% symptom reduction) as from seedling infection with Fusarium culmorum. Through alien segment stacking, we succeeded in equipping DW with a very effective barrier against different Fusarium diseases and other positive attributes for crop security and safety.
Collapse
Affiliation(s)
- Ljiljana Kuzmanović
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ciorba
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Matteo Frangella
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ruggeri
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Rossini
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
- *Correspondence: Carla Ceoloni,
| |
Collapse
|
29
|
Yesterday masked, today modified; what do mycotoxins bring next? Arh Hig Rada Toksikol 2018; 69:196-214. [DOI: 10.2478/aiht-2018-69-3108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi in crops worldwide. In (micro)organisms such as plants, fungi, bacteria, or animals they may be further metabolised and modified, but this is also true for food processing, which may lead to a wide range of masked mycotoxin forms. These often remain undetected by analytical methods and are the culprits for underestimates in risk assessments. Furthermore, once ingested, modified mycotoxins can convert back to their parent forms. This concern has raised the need for analytical methods that can detect and quantify modified mycotoxins as essential for accurate risk assessment. The promising answer is liquid chromatography-mass spectrometry. New masked mycotoxin forms are now successfully detected by iontrap, time-of-flight, or high-resolution orbitrap mass spectrometers. However, the toxicological relevance of modified mycotoxins has not been fully clarified.
Collapse
|
30
|
Schiro G, Müller T, Verch G, Sommerfeld T, Mauch T, Koch M, Grimm V, Müller MEH. The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance. J Appl Microbiol 2018; 126:177-190. [PMID: 30216614 DOI: 10.1111/jam.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
AIM To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. METHODS AND RESULTS We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. CONCLUSIONS Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscape-scale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat.
Collapse
Affiliation(s)
- G Schiro
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - G Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - T Mauch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - M Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - V Grimm
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - M E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
31
|
Tian Y, Tan Y, Yan Z, Liao Y, Chen J, De Boevre M, De Saeger S, Wu A. Antagonistic and Detoxification Potentials of Trichoderma Isolates for Control of Zearalenone (ZEN) Producing Fusarium graminearum. Front Microbiol 2018; 8:2710. [PMID: 29403455 PMCID: PMC5778118 DOI: 10.3389/fmicb.2017.02710] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
Fungi belonging to Fusarium genus can infect crops in the field and cause subsequent mycotoxin contamination, which leads to yield and quality losses of agricultural commodities. The mycotoxin zearalenone (ZEN) produced by several Fusarium species (such as F. graminearum and F. culmorum) is a commonly-detected contaminant in foodstuffs, posing a tremendous risk to food safety. Thus, different strategies have been studied to manage toxigenic pathogens and mycotoxin contamination. In recent years, biological control of toxigenic fungi is emerging as an environment-friendly strategy, while Trichoderma is a fungal genus with great antagonistic potentials for controlling mycotoxin producing pathogens. The primary objective of this study was to explore the potentials of selected Trichoderma isolates on ZEN-producing F. graminearum, and the second aim was to investigate the metabolic activity of different Trichoderma isolates on ZEN. Three tested Trichoderma isolates were proved to be potential candidates for control of ZEN producers. In addition, we reported the capacity of Trichoderma to convert ZEN into its reduced and sulfated forms for the first time, and provided evidences that the tested Trichoderma could not detoxify ZEN via glycosylation. This provides more insight in the interaction between ZEN-producing fungi and Trichoderma isolates.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Chen
- Department of Resources and Environment Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Dong F, Wang S, Yu M, Sun Y, Xu J, Shi J. Natural occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in various wheat cultivars grown in Jiangsu province, China. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deoxynivalenol (DON) is a major mycotoxin found in wheat infected with Fusarium fungi. DON can be converted by plant detoxification into a form of ‘masked mycotoxin’ termed deoxynivalenol-3-glucoside (DON-3G). To recommend appropriate wheat cultivars for planting in order to reduce DON contamination in Jiangsu province, where a traditional Fusarium head blight (FHB) epidemic area is located in the lower reaches of Yangtze-Huaihe, we evaluated the capacity of various wheat cultivars to transform DON into DON-3G under field conditions. We collected and evaluated samples from 11 major wheat cultivars grown in 63 experimental stations in Jiangsu province in 2015 and 2016. All samples were contaminated with DON, with an average concentration of 2,087±112 and 2,601±126 µg/kg in 2015 and 2016, respectively. DON-3G was detected in 425 (96%) and 405 (97%) samples in 2015 and 2016, with an average concentration of 545±28 and 819±44 µg/kg, respectively. The DON-3G/DON ratio ranged from 5 to 84% (average, 30%) in 2015 and from 0 to 71% (average, 31%) in 2016. DON levels were highly correlated with DON-3G concentrations (P<0.01), and the FHB resistance of the wheat cultivars was proportional to their capacity to convert DON to DON-3G. Importantly, region, cultivar, and region × cultivar interaction all significantly affected DON and DON-3G concentrations and DON-3G/DON ratios. In general, FHB-resistant cultivars, such as Sumai 188 and Ningmai 13, had lower levels of DON and DON-3G than the others. However, additional factors, including the growing region and environmental variables, were important for wheat management when other wheat cultivars were evaluated.
Collapse
Affiliation(s)
- F. Dong
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China P.R
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China P.R
- Key Laboratory of Control Technology and Standard for Agro-Product Quality and Safety, Ministry of Agriculture, Nanjing 210014, China P.R
- Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Nanjing 210014, China P.R
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China P.R
| | - S. Wang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China P.R
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China P.R
- Key Laboratory of Control Technology and Standard for Agro-Product Quality and Safety, Ministry of Agriculture, Nanjing 210014, China P.R
- Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Nanjing 210014, China P.R
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China P.R
| | - M. Yu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China P.R
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China P.R
- Key Laboratory of Control Technology and Standard for Agro-Product Quality and Safety, Ministry of Agriculture, Nanjing 210014, China P.R
- Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Nanjing 210014, China P.R
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China P.R
| | - Y. Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China P.R
| | - J. Xu
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China P.R
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China P.R
- Key Laboratory of Control Technology and Standard for Agro-Product Quality and Safety, Ministry of Agriculture, Nanjing 210014, China P.R
- Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Nanjing 210014, China P.R
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China P.R
| | - J. Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China P.R
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China P.R
- Key Laboratory of Control Technology and Standard for Agro-Product Quality and Safety, Ministry of Agriculture, Nanjing 210014, China P.R
- Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, Nanjing 210014, China P.R
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China P.R
| |
Collapse
|
33
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
34
|
Nakagawa H, He X, Matsuo Y, Singh PK, Kushiro M. Analysis of the Masked Metabolite of Deoxynivalenol and Fusarium Resistance in CIMMYT Wheat Germplasm. Toxins (Basel) 2017; 9:E238. [PMID: 28758925 PMCID: PMC5577572 DOI: 10.3390/toxins9080238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) causes significant grain loss and contamination of grains with harmful mycotoxins, especially deoxynivalenol (DON). Fusarium resistance and DON accumulation have been extensively investigated in various cultivars; however, the level of DON-3-O-glucoside (D3G) has not been as carefully studied. In this study, we measured accumulated DON and D3G levels in CIMMYT wheat elite germplasm using an analytical method validated in-house. Co-occurring nivalenol (NIV) and ergostrerol (ERG) were also analyzed. LC-MS/MS and LC-UV analyses were applied to the 50 CIMMYT elite wheat lines. D3G showed rather high correlation with DON (r = 0.82), while FHB symptoms showed slight correlation with DON and D3G (r = 0.36 and 0.32, respectively). D3G/DON ratio varied widely from 8.1 to 37.7%, and the ratio was not related with FHB resistance in this dataset.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
- Advanced Analysis Center, NARO, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico DF 06600, Mexico.
| | - Yosuke Matsuo
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico DF 06600, Mexico.
| | - Masayo Kushiro
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
| |
Collapse
|
35
|
Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins (Basel) 2016; 8:toxins8120364. [PMID: 27929394 PMCID: PMC5198558 DOI: 10.3390/toxins8120364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
The Fusarium mycotoxins HT-2 toxin (HT2) and T-2 toxin (T2) are frequent contaminants in oats. These toxins, but also their plant metabolites, may contribute to toxicological effects. This work describes the use of 13C-assisted liquid chromatography-high-resolution mass spectrometry for the first comprehensive study on the biotransformation of HT2 and T2 in oats. Using this approach, 16 HT2 and 17 T2 metabolites were annotated including novel glycosylated and hydroxylated forms of the toxins, hydrolysis products, and conjugates with acetic acid, putative malic acid, malonic acid, and ferulic acid. Further targeted quantitative analysis was performed to study toxin metabolism over time, as well as toxin and conjugate mobility within non-treated plant tissues. As a result, HT2-3-O-β-d-glucoside was identified as the major detoxification product of both parent toxins, which was rapidly formed (to an extent of 74% in HT2-treated and 48% in T2-treated oats within one day after treatment) and further metabolised. Mobility of the parent toxins appeared to be negligible, while HT2-3-O-β-d-glucoside was partly transported (up to approximately 4%) through panicle side branches and stem. Our findings demonstrate that the presented combination of untargeted and targeted analysis is well suited for the comprehensive elucidation of mycotoxin metabolism in plants.
Collapse
|
36
|
Affiliation(s)
- Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Joerg Stroka
- Joint Research Centre, IRMM, European Commission, Geel, Belgium
| | - Naresh Magan
- Applied Mycology Group, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|