1
|
Thakor JC, Dinesh M, Manikandan R, Bindu S, Sahoo M, Sahoo D, Dhawan M, Pandey MK, Tiwari R, Emran TB, Dhama K, Chaicumpa W. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet Q 2022; 42:125-147. [PMID: 35584308 PMCID: PMC9225692 DOI: 10.1080/01652176.2022.2079756] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.
Collapse
Affiliation(s)
- Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Diptimayee Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Megha Katare Pandey
- Department of Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
3
|
Atif M, Naz F, Akhtar J, Imran M, Saleem S, Akram J, Imran M, Ullah MI. From Molecular Pathology of COVID 19 to Nigella Sativum as a Treatment Option: Scientific Based Evidence of Its Myth or Reality. Chin J Integr Med 2022; 28:88-95. [PMID: 34586557 PMCID: PMC8479716 DOI: 10.1007/s11655-021-3311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
COVID-19 virus is a causative agent of viral pandemic in human beings which specifically targets respiratory system of humans and causes viral pneumonia. This unusual viral pneumonia is rapidly spreading to all parts of the world, currently affecting about 105 million people with 2.3 million deaths. Current review described history, genomic characteristics, replication, and pathogenesis of COVID-19 with special emphasis on Nigella sativum (N. sativum) as a treatment option. N. sativum seeds are historically and religiously used over the centuries, both for prevention and treatment of different diseases. This review summarizes the potential role of N. sativum seeds against COVID-19 infection at levels of in silico, cell lines and animal models.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Akhtar
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Javed Akram
- University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| |
Collapse
|
4
|
Abstract
The coronaviruses belong to the family Coronaviridae in the order Nidovirales. CoVs are found globally and infect a variety of animals, causing illnesses that range from gastrointestinal tract infections, encephalitis and demyelination; and can be fatal. Humans coronaviruses (hCoVs) have traditionally been associated with self-limiting upper respiratory tract infections and gastrointestinal tract infections. In recent years, however, it has become increasingly evident that the hCoVs can cause more severe lower respiratory tract infections such as bronchitis, pneumonia and even acute respiratory distress syndrome (ARDS), and can lead to death. Seven CoVs are known to infect humans, with the four “common cold” CoVs circulating globally on a yearly basis. The remaining three are more pathogenic and have resulted in outbreaks with high mortality rates. This review focussed on the three pathogenic CoVs.
Collapse
|
5
|
CENGİZ HB, GÖKÇE Hİ. Kedilerde feline coronavirus (FCoV) enfeksiyonunun kalsiyum metabolizması üzerindeki etkisinin araştırılması. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.970374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Gupta Y, Maciorowski D, Zak SE, Jones KA, Kathayat RS, Azizi SA, Mathur R, Pearce CM, Ilc DJ, Husein H, Herbert AS, Bharti A, Rathi B, Durvasula R, Becker DP, Dickinson BC, Dye JM, Kempaiah P. Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays. Methods 2021; 195:57-71. [PMID: 33453392 PMCID: PMC7807167 DOI: 10.1016/j.ymeth.2021.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/10/2021] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Samantha E Zak
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | | | | | | | | | - Andrew S Herbert
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Ajay Bharti
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, India
| | | | | | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA.
| | | |
Collapse
|
7
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
8
|
Bhutta ZA, Kanwal A, Ali M, Kulyar MFEA, Yao W, Shoaib M, Ashar A, Mahfooz A, Ijaz M, Ijaz N, Asif M, Nawaz S, Mahfooz MR, Kanwal T. Emerging nanotechnology role in the development of innovative solutions against COVID-19 pandemic. NANOTECHNOLOGY 2021; 32:482001. [PMID: 34320471 DOI: 10.1088/1361-6528/ac189e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 outbreak is creating severe impressions on all facets of the global community. Despite strong measures worldwide to try and re-achieve normalcy, the ability of SARS-CoV-2 to survive sturdy ecological settings may contribute to its rapid spread. Scientists from different aspects of life are working together to develop effective treatment strategies against SARS-CoV-2. Apart from using clinical devices for patient recovery, the key focus is on developing antiviral drugs and vaccines. Given the physical size of the SARS-CoV-2 pathogen and with the vaccine delivery platform currently undergoing clinical trials, the link between nanotechnology is clear, and previous antiviral research using nanomaterials confirms this link. Nanotechnology based products can effectively suppress various pathogens, including viruses, regardless of drug resistance, biological structure, or physiology. Thus, nanotechnology is opening up new dimensions for developing new strategies for diagnosing, preventing, treating COVID-19 and other viral ailments. This article describes the application of nanotechnology against the COVID-19 virus in terms of therapeutic purposes and vaccine development through the invention of nanomaterial based substances such as sanitizers (handwashing agents and surface disinfectants), masks and gowns, amongst other personal protective equipment, diagnostic tools, and nanocarrier systems, as well as the drawbacks and challenges of nanotechnology that need to be addressed.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, United Kingdom
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ayesha Kanwal
- Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Moazam Ali
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | | | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China
| | - Muhammad Shoaib
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ambreen Ashar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ashar Mahfooz
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Misbah Ijaz
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Asif
- Department of Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Shah Nawaz
- Department of Pathology, University of Agriculture Faisalabad, 38000, Pakistan
| | | | - Tahreem Kanwal
- Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, 63100, Pakistan
| |
Collapse
|
9
|
Goodman-Davis R, Figurska M, Cywinska A. Gut Microbiota Manipulation in Foals-Naturopathic Diarrhea Management, or Unsubstantiated Folly? Pathogens 2021; 10:pathogens10091137. [PMID: 34578169 PMCID: PMC8467620 DOI: 10.3390/pathogens10091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Diarrhea in foals is a problem of significant clinical and economic consequence, and there are good reasons to believe microbiota manipulation can play an important role in its management. However, given the dynamic development of the foal microbiota and its importance in health and disease, any prophylactic or therapeutic efforts to alter its composition should be evidence based. The few clinical trials of probiotic preparations conducted in foals to date show underwhelming evidence of efficacy and a demonstrated potential to aggravate rather than mitigate diarrhea. Furthermore, recent studies have affirmed that variable but universally inadequate quality control of probiotics enables inadvertent administration of toxin-producing or otherwise pathogenic bacterial strains, as well as strains bearing transferrable antimicrobial resistance genes. Consequently, it seems advisable to approach probiotic therapy in particular with caution for the time being. While prebiotics show initial promise, an even greater scarcity of clinical trials makes it impossible to weigh the pros and cons of their use. Advancing technology will surely continue to enable more detailed and accurate mapping of the equine adult and juvenile microbiota and potentially elucidate the complexities of causation in dysbiosis and disease. In the meantime, fecal microbiota transplantation may be an attractive therapeutic shortcut, allowing practitioners to reconstruct a healthy microbiota even without fully understanding its constitution.
Collapse
Affiliation(s)
- Rachel Goodman-Davis
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
- The Scientific Society of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Marianna Figurska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
| | - Anna Cywinska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
10
|
Dharmashekara C, Pradeep S, Prasad SK, Jain AS, Syed A, Prasad KS, Patil SS, Beelagi MS, Srinivasa C, Shivamallu C. Virtual screening of potential phyto-candidates as therapeutic leads against SARS-CoV-2 infection. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 4:100136. [PMID: 38620722 PMCID: PMC8110638 DOI: 10.1016/j.envc.2021.100136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 05/08/2023]
Abstract
The outbreak of novel coronavirus strain (Covid-19) with a high pandemic threat has predict grave public health and economic concerns. This virus, originating from the Wuhan region in China has spread worldwide affecting millions with no registered persuasive targeted therapy. In this paper, we analyze the three important proteins encoded by the virus, envelope protein 5 × 29, RNA binding nucleocapsid protein 1SSK, and spike glycoprotein 6ACD, for an effective virion accumulation, and remdesivir was the first drug approved by the FDA and EMA for the treatment of COVID-19 cases that require hospitalization, there is still much controversy about its efficacy and also an alternative for novel phytochemicals, deoxynojirimycin, trigoneoside IB, and octanoic acid. The in-silico evaluations were conducted using the PyRx virtual screening tools which lead to the target based on high binding affinity. Trigoneoside IB, derived from Trigonella foenum-graecum (Fenugreek), showed the highest binding affinity and stable interaction with the amino acid residues present in active sites of Covid-19 proteins. Meanwhile, the other two compounds derived from Morus alba (Mulberry) and Morinda citrifolia (Noni), as well as the anti-HIV remdesivir drug exhibited good binding affinity and favorable ADME properties. Thereby offering scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against the Covid-19 proteins.
Collapse
Affiliation(s)
- Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| | - Anisha S Jain
- Department of Microbiology and Tissue Culture, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru campus, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, India
| | - Mallikarjun S Beelagi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Davangere 577007, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
| |
Collapse
|
11
|
Abstract
Causal Organism COVID-19 is a disease caused by the novel coronavirus (SARS-CoV-2). Positive-sense ssRNA viruses are about 30 kb long. Coronaviruses have a broad spectrum of action and affect multiple organisms. Origin of Disease The disease outbreak has been initiated in Wuhan, China, in December 2019. The disease has been originated from the wet animal market of Wuhan City, where a large number of peoples have come in contact with animals. It is known to infect the neurological, respiratory, enteric, and hepatic systems. SARSCoV-2 is highly infectious, and its outbreak is worldwide (national and international level) and becomes pandemic. Control Presently, the number of cases continues to rise at a global level, and it is clear that these viruses pose a significant threat to public health. Consequently, extensive treatments, vaccines, and drugs have been developed by researchers to control the transmission of infection. This led to the isolation of patients that were administered a variety of treatments. Special attention and guidelines have been given by various government organizations to protect or reduce transmission between children, healthcare providers, and old-aged peoples.
Collapse
|
12
|
Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in Vero cell line as a model. Photodiagnosis Photodyn Ther 2021; 34:102286. [PMID: 33838311 PMCID: PMC8025549 DOI: 10.1016/j.pdpdt.2021.102286] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
Background In this study, the ability of antimicrobial photodynamic therapy (aPDT) as a treatment approach and adjuvant therapy using curcumin-poly (lactic-co-glycolic acid) nanoparticles (Cur@PLGA-NPs) to inactivate Coronavirus disease 2019 (COVID-19) in plasma was investigated. Furthermore, to verify whether the quality requirement of aPDT-treated plasma is acceptable, the differences of the levels of clotting factors, total plasma proteins, and anti-A and/or anti-B antibodies titrations in plasma of patient before and after aPDT treatment were investigated. Materials and Methods Cur@PLGA-NPs was synthesized using Electrospinning process and characterized by different analysis including Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Fourier Transform Infrared (FTIR) spectroscopy assays. The presence of the SARS-CoV-2 in the plasma samples of patients suspected of having COVID-19 was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Then, the treated plasma samples with Cur@PLGA-NPs plus blue laser were exposed to Vero cells. Eventually, cell cytotoxicity and apoptotic effects of treated Vero cells were evaluated. Levels of clotting factors including prothrombin time (PT) and activated partial thromboplastin time (APTT), total plasma proteins, and anti-A and/or anti-B antibodies measurements were performed using the coagulometer, method of Bradford, and titration procedure, respectively. Results The presence of SARS-CoV-2 was positive in 84.3 % of samples. Different concentrations of Cur@PLGA-NPs (3, 5, 7, and 10 % wt.), the irradiation times of blue laser (1, 3, and 5 min), and aPDT with the maximum dosed of blue laser light (522.8 J/cm2) plus 10 % wt. Cur@PLGA-NPs had no cytotoxicity. Although there were significant cell degradation and apoptotic effects in treated Vero cells with treated plasma using 10 % wt. Cur@PLGA-NPs, and a blue laser at an energy density of 522.8 J/cm2, no visible changes in cells and apoptosis were observed following aPDT. Total plasma protein content, PT, APTT, and anti-A and/or anti-B antibodies titers showed no significant changes (P > 0.05 for all comparisons) in treated plasma as compared to untreated plasma. Conclusion aPDT exhibited in vitro anti-COVID-19 activities in the treated plasma containing SARS-COV-2 without Vero cell apoptosis and any adverse effects on plasma quality in aPDT-exposed plasma.
Collapse
|
13
|
A review on antiviral and immunomodulatory polysaccharides from Indian medicinal plants, which may be beneficial to COVID-19 infected patients. Int J Biol Macromol 2021; 181:462-470. [PMID: 33794238 PMCID: PMC8006514 DOI: 10.1016/j.ijbiomac.2021.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
The emergence of the novel coronavirus, SARS-CoV-2 has pushed forward the world to experience the first pandemic of this century. Any specific drug against this RNA virus is yet to be discovered and presently, the COVID-19 infected patients are being treated symptomatically. During the last few decades, a number of polysaccharides with potential biological activities have been invented from Indian medicinal plants. Many polysaccharides, such as sulfated xylomannan, xylan, pectins, fucoidans, glucans, glucoarabinan, and arabinoxylan from Indian medicinal plants, have been shown to exhibit antiviral and immunomodulating activities. Plant polysaccharides exhibit antiviral activities through interference with the viral life cycle and inhibition of attachment of virus to host cell. Intake of certain immune stimulating plant polysaccharides may also protect from the virus to a certain extent. In process of continuous search for most potent drug, Indian plant polysaccharides may emerge as significant biomaterial to combat COVID-19. This review explores a number of polysaccharides from Indian medicinal plants which showed antiviral and immunomodulating activities. It is aimed to provide an overview about the composition, molecular mass, branching configuration and related bioactivities of polysaccharides which is crucial for their classification as possible drug to induce immune response in viral diseases.
Collapse
|
14
|
Hosseini N, Nadjafi S, Ashtary B. Overview of COVID-19 and neurological complications. Rev Neurosci 2021; 32:671-691. [PMID: 33583157 DOI: 10.1515/revneuro-2020-0116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
Abstract
The sudden and storming onset of coronavirus 2 infection (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) was associated by severe acute respiratory syndrome. Recently, corona virus disease 19 (COVID-19) has appeared as a pandemic throughout the world. The mutational nature of the virus, along with the different means of entering and spreading throughout the body has involved different organs. Thus, patients are faced with a wide range of symptoms and signs. Neurological symptoms, such as anosmia, agnosia, stroke, paralysis, cranial nerve deficits, encephalopathy, meningitis, delirium and seizures, are reported as common complications affecting the course of the disease and its treatment. In this review, special attention was paid to reports that addressed the acute or chronic neurological manifestations in COVID-19 patients who may present acute respiratory syndrome or not. Moreover, we discussed the central (CNS) and peripheral nervous system (PNS) complications in SARS-Cov2-infected patients, and also the pathophysiology of neurological abnormalities in COVID-19.
Collapse
Affiliation(s)
- Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran14665-354, Iran
| | - Shabnam Nadjafi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran14665-354, Iran
| | - Behnaz Ashtary
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran14665-354, Iran
| |
Collapse
|
15
|
Lv DF, Ying QM, He YW, Liang J, Zhang JH, Lu BB, Qian GQ, Chu JG, Weng XB, Chen XQ, Mu QT. Differential diagnosis of coronavirus disease 2019 pneumonia or influenza A pneumonia by clinical characteristics and laboratory findings. J Clin Lab Anal 2021; 35:e23685. [PMID: 33576536 PMCID: PMC7891506 DOI: 10.1002/jcla.23685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023] Open
Abstract
Background Pneumonia caused by the 2019 novel Coronavirus (COVID‐2019) shares overlapping signs and symptoms, laboratory findings, imaging features with influenza A pneumonia. We aimed to identify their clinical characteristics to help early diagnosis. Methods We retrospectively retrieved data for laboratory‐confirmed patients admitted with COVID‐19–induced or influenza A–induced pneumonia from electronic medical records in Ningbo First Hospital, China. We recorded patients' epidemiological and clinical features, as well as radiologic and laboratory findings. Results The median age of influenza A cohort was higher and it exhibited higher temperature and higher proportion of pleural effusion. COVID‐19 cohort exhibited higher proportions of fatigue, diarrhea and ground‐glass opacity and higher levels of lymphocyte percentage, absolute lymphocyte count, red‐cell count, hemoglobin and albumin and presented lower levels of monocytes, c‐reactive protein, aspartate aminotransferase, alkaline phosphatase, serum creatinine. Multivariate logistic regression analyses showed that fatigue, ground‐glass opacity, and higher level of albumin were independent risk factors for COVID‐19 pneumonia, while older age, higher temperature, and higher level of monocyte count were independent risk factors for influenza A pneumonia. Conclusions In terms of COVID‐19 pneumonia and influenza A pneumonia, fatigue, ground‐glass opacity, and higher level of albumin tend to be helpful for diagnosis of COVID‐19 pneumonia, while older age, higher temperature, and higher level of monocyte count tend to be helpful for the diagnosis of influenza A pneumonia.
Collapse
Affiliation(s)
- Ding-Feng Lv
- School of Medicine, Ningbo University, Ningbo, China.,Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China.,Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China
| | - Qi-Ming Ying
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China
| | - Yi-Wen He
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China
| | - Jun Liang
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China
| | - Ji-Hong Zhang
- Department of Medical Statistics, Ningbo First Hospital, Ningbo, China
| | - Bei-Bei Lu
- Department of Environment and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Guo-Qing Qian
- Department of Infectious Disease, Ningbo First Hospital, Ningbo, China
| | - Jin-Guo Chu
- Department of General Practice, Ningbo First Hospital, Ningbo, China
| | - Xing-Bei Weng
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China
| | - Xue-Qin Chen
- Department of Chinese Traditional Medicine, Ningbo First Hospital, Ningbo, China
| | - Qi-Tian Mu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
16
|
Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother 2021; 17:62-83. [PMID: 32783700 PMCID: PMC7872062 DOI: 10.1080/21645515.2020.1797369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2, the virus causing COVID-19, is a single-stranded RNA virus belonging to the order Nidovirales, family Coronaviridae, and subfamily Coronavirinae. SARS-CoV-2 entry to cellsis initiated by the binding of the viral spike protein (S) to its cellular receptor. The roles of S protein in receptor binding and membrane fusion makes it a prominent target for vaccine development. SARS-CoV-2 genome sequence analysis has shown that this virus belongs to the beta-coronavirus genus, which includes Bat SARS-like coronavirus, SARS-CoV and MERS-CoV. A vaccine should induce a balanced immune response to elicit protective immunity. In this review, we compare and contrast these three important CoV diseases and how they inform on vaccine development.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei, China
| |
Collapse
|
17
|
Ceylan Z, Ocak E, Uçar Y, Karakus K, Cetinkaya T. An overview of food safety and COVID-19 infection. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237532 DOI: 10.1016/b978-0-323-85780-2.00004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Avian influenzas, Ebola, Nipah, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an RNA virus covered by a lipid bilayer, are directly affecting people worldwide. On the other hand, in addition to the main spread source (human contact) of SARS-CoV-2, consumers have started to think about whether foods are dangerous in terms of SARS-CoV-2 spread. The consumption of wild animals as well as the possible contamination of SARS-CoV-2 in fresh and frozen foods have caused concern and increased awareness among consumers. A heating process >70°C is being suggested to eliminate viral contamination risk. Cutting tools, slicing machines, and food-contact surfaces including stainless steel, aluminum, or glass must be regularly sanitized. The sous vide cooking method, which is based on cooking under vacuum and with pH treatments in the range of 3 and 10, could be advised in this risky period for decreasing contamination risk in food. Also, recent studies have shown that nanotechnology applications such as nanoparticles could be used to combat the SARS-CoV-2 spread, which is 50–200 nm in size. Another suggested technique is cold plasma technology that could damage the protein structure of the virus. Besides these techniques, it is important to boost the immune system. In this regard, recent researches have revealed the importance of honey consumption (1 g/kg per person/day), intake of vitamins, minerals like selenium, and ω-3 fatty acids.
Collapse
|
18
|
Tiwari R, Dhama K, Sharun K, Iqbal Yatoo M, Malik YS, Singh R, Michalak I, Sah R, Bonilla-Aldana DK, Rodriguez-Morales AJ. COVID-19: animals, veterinary and zoonotic links. Vet Q 2020; 40:169-182. [PMID: 32393111 PMCID: PMC7755411 DOI: 10.1080/01652176.2020.1766725] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), has spread over 210 countries and territories beyond China shortly. On February 29, 2020, the World Health Organization (WHO) denoted it in a high-risk category, and on March 11, 2020, this virus was designated pandemic, after its declaration being a Public Health International Emergency on January 30, 2020. World over high efforts are being made to counter and contain this virus. The COVID-19 outbreak once again proves the potential of the animal-human interface to act as the primary source of emerging zoonotic diseases. Even though the circumstantial evidence suggests the possibility of an initial zoonotic emergence, it is too early to confirm the role of intermediate hosts such as snakes, pangolins, turtles, and other wild animals in the origin of SARS-CoV-2, in addition to bats, the natural hosts of multiple coronaviruses such as SARS-CoV and MERS-CoV. The lessons learned from past episodes of MERS-CoV and SARS-CoV are being exploited to retort this virus. Best efforts are being taken up by worldwide nations to implement effective diagnosis, strict vigilance, heightened surveillance, and monitoring, along with adopting appropriate preventive and control strategies. Identifying the possible zoonotic emergence and the exact mechanism responsible for its initial transmission will help us to design and implement appropriate preventive barriers against the further transmission of SARS-CoV-2. This review discusses in brief about the COVID-19/SARS-CoV-2 with a particular focus on the role of animals, the veterinary and associated zoonotic links along with prevention and control strategies based on One-health approaches.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Sher-E, Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - D. Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
19
|
Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 2020; 155:105522. [PMID: 32827661 PMCID: PMC7438372 DOI: 10.1016/j.ejps.2020.105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The importance of coronaviruses as human pathogen has been highlighted by the recent outbreak of SARS-CoV-2 leading to the search of suitable drugs to overcome respiratory infections caused by the virus. Due to the lack of specific drugs against coronavirus, the existing antiviral and antimalarial drugs are currently being administered to the patients infected with SARS-CoV-2. The scientists are also considering repurposing of some of the existing drugs as a suitable option in search of effective drugs against coronavirus till the establishment of a potent drug and/or vaccine. Computer-aided drug discovery provides a promising attempt to enable scientists to develop new and target specific drugs to combat any disease. The discovery of novel targets for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins present in the virus. Targeting viral proteins will make the drug specific against the virus, thereby, increasing the chances of viral mortality. Hence, this review provides the structure of SARS-CoV-2 virus along with the important viral components involved in causing infection. It also focuses on the role of various target proteins in disease, the mechanism by which currently administered drugs act against the virus and the repurposing of few drugs. The gap arising from the absence of specific drugs is addressed by proposing potential antiviral drug targets which might provide insights into structure-based drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India.
| |
Collapse
|
20
|
Li M, Yang Y, Lu Y, Zhang D, Liu Y, Cui X, Yang L, Liu R, Liu J, Li G, Qu J. Natural Host-Environmental Media-Human: A New Potential Pathway of COVID-19 Outbreak. ENGINEERING (BEIJING, CHINA) 2020; 6:1085-1098. [PMID: 33520330 PMCID: PMC7834166 DOI: 10.1016/j.eng.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Patient zero for coronavirus disease 2019 (COVID-19) is likely to be permanently unknown. Here, we propose a new viral transmission route by focusing on the environmental media containing viruses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RaTG3-related bat-borne coronavirus (Bat-CoV), which we term the "environmental quasi-host." We reason that the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2; thus, SARS-CoV-2 might be transmitted along the route of natural host-environmental media-human. Reflecting upon viral outbreaks in the history of humanity, we realize that many epidemic events are caused by direct contact between humans and environmental media containing infectious viruses. Indeed, contacts between humans and environmental quasi-hosts are greatly increasing as the space of human activity incrementally overlaps with animals' living spaces, due to the rapid development and population growth of human society. Moreover, viruses can survive for a long time in environmental media. Therefore, we propose a new potential mechanism to trace the origin of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cui
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Salajegheh Tazerji S, Magalhães Duarte P, Rahimi P, Shahabinejad F, Dhakal S, Singh Malik Y, Shehata AA, Lama J, Klein J, Safdar M, Rahman MT, Filipiak KJ, Rodríguez-Morales AJ, Sobur MA, Kabir F, Vazir B, Mboera L, Caporale M, Islam MS, Amuasi JH, Gharieb R, Roncada P, Musaad S, Tilocca B, Koohi MK, Taghipour A, Sait A, Subbaram K, Jahandideh A, Mortazavi P, Abedini MA, Hokey DA, Hogan U, Shaheen MNF, Elaswad A, Elhaig MM, Fawzy M. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: an updated review. J Transl Med 2020; 18:358. [PMID: 32957995 PMCID: PMC7503431 DOI: 10.1186/s12967-020-02534-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal–human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran. .,Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Phelipe Magalhães Duarte
- Faculty of Biological and Health Sciences, Universidade de Cuiabá (UNIC), Primavera Do Leste, MT, Brazil
| | - Parastoo Rahimi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Awad A Shehata
- Research and Development Section, PerNaturam GmbH, 56290, Gödenroth, Germany.,Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Juan Lama
- RetroVirox, Inc., San Diego, CA, USA
| | - Jörn Klein
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Alfonso J Rodríguez-Morales
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farrokhreza Kabir
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Vazir
- Department of Physiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leonard Mboera
- Emerging and Vector-borne Diseases Program, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - John H Amuasi
- Global Health, and Infectious Diseases Research Group, Kumasi Collaborative Center for Research in Tropical Medicine, Kumasi, Ghana
| | - Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Paola Roncada
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Sahar Musaad
- Kanad Hospital, Alain, P.O. Box 1016, Abu Dhabi, UAE
| | - Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Taghipour
- Department of Clinical Science, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ahmet Sait
- Virology Department, Pendik Veterinary Control Institute, Ministry of Food and Forestry, 34890, Pendik-Istanbul, Turkey
| | - Kannan Subbaram
- Department of Preparatory (Biology), Al-Ghad International Colleges for Applied Medical Sciences, Riyadh, Saudi Arabia
| | - Alireza Jahandideh
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Pathobiology Department, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Abedini
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Unarose Hogan
- Infection Prevention and Control, Technical Unit, Americares, Stamford, UK
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, National Research Division, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahmoud M Elhaig
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
22
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020. [PMID: 32580969 DOI: 10.1128/cmr.00028-20/asset/32473ce7-130a–42a6-b589-0dd2f00518eb/assets/graphic/cmr.00028-20-f0007.jpeg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
23
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020. [PMID: 32580969 DOI: 10.20944/preprints202003.0001.v1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
24
|
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020; 33:e00028-20. [PMID: 32580969 PMCID: PMC7405836 DOI: 10.1128/cmr.00028-20] [Citation(s) in RCA: 553] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sharun Khan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Katterine Bonilla-Aldana
- Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
| |
Collapse
|
25
|
Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020; 18:125. [PMID: 32891146 PMCID: PMC7474329 DOI: 10.1186/s12951-020-00685-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. However, the ratio between mortality and number of infections seems to be lower in this case in comparison to other human coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)). These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.
Collapse
Affiliation(s)
- Estefânia V R Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. dos Estados, 5001. Bl. A, T3 Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Anderson E S Pereira
- São Paulo State University-UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | | | | | | | - Renata de Lima
- Universidade de Sorocaba, Rodovia Raposo Tavares km 92,5, Sorocaba, São Paulo, Brazil.
| | | |
Collapse
|
26
|
Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI, Malik YS, Sah R, Rabaan AA, Panwar PK, Singh KP, Michalak I, Chaicumpa W, Martinez-Pulgarin DF, Bonilla-Aldana DK, Rodriguez-Morales AJ. SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med Infect Dis 2020; 37:101830. [PMID: 32755673 PMCID: PMC7396141 DOI: 10.1016/j.tmaid.2020.101830] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome - Coronavirus-2) of the family Coronaviridae, appeared in China in December 2019. This disease was declared as posing Public Health International Emergency by World Health Organization on January 30, 2020, attained the status of a very high-risk category on February 29, and now having a pandemic status (March 11). COVID-19 has presently spread to more than 215 countries/territories while killing nearly 0.75 million humans out of cumulative confirmed infected asymptomatic or symptomatic cases accounting to almost 20.5 million as of August 12, 2020, within a short period of just a few months. Researchers worldwide are pacing with high efforts to counter the spread of this virus and to design effective vaccines and therapeutics/drugs. Few of the studies have shown the potential of the animal-human interface and zoonotic links in the origin of SARS-CoV-2. Exploring the possible zoonosis and revealing the factors responsible for its initial transmission from animals to humans will pave ways to design and implement effective preventive and control strategies to counter the COVID-19. The present review presents a comprehensive overview of COVID-19 and SARS-CoV-2, with emphasis on the role of animals and their jumping the cross-species barriers, experiences learned from SARS- and MERS-CoVs, zoonotic links, and spillover events, transmission to humans and rapid spread, and highlights the new advances in diagnosis, vaccine and therapies, preventive and control measures, one health concept along with recent research developments to counter this pandemic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India.
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, 190025, Srinagar, Jammu and Kashmir, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | | | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, 50-370, Poland
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Dayron F Martinez-Pulgarin
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - D Katterine Bonilla-Aldana
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia; Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de Las Américas, Sede Pereira, Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia; Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia; School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
27
|
MALIK YASHPALSINGH, SIRCAR SHUBHANKAR, BHAT SUDIPTA, R VINODHKUMARO, TIWARI RUCHI, SAH RANJIT, RABAAN ALIA, RODRIGUEZ-MORALES ALFONSOJ, DHAMA KULDEEP. Emerging Coronavirus Disease (COVID-19), a pandemic public health emergency with animal linkages: Current status update. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i3.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After the appearance of first cases of ‘pneumonia of unknown origin’ in the Wuhan city, China, during late 2019, the disease progressed fast. Its cause was identified as a novel coronavirus, named provisionally 2019-nCoV. Subsequently, an official name was given as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) by the International Committee on Taxonomy of Viruses (ICTV) study group. The World Health Organization (WHO) named the Coronavirus disease-2019 as COVID-19. The epidemics of COVID-2019 have been recorded over 113 countries/territories/areas apart from China and filched more than 4,292 humans, affecting severely around 1,18,326 cases in a short span. The status of COVID-2019 emergency revised by the WHO within 42 days from Public Health International Emergency (January 30, 2020) to a pandemic (March 11, 2020). Nonetheless, the case fatality rate (CFR) of the current epidemic is on the rise (between 2–4%), relatively is lower than the previous SARS-CoV (2002/2003) and MERS-CoV (2012) outbreaks. Even though investigations are on its way, the researchers across the globe have assumptions of animal-origin of current SARS-CoV-2. A recent case report provides evidence of mild COVID-2019 infection in a pet dog that acquired COVID-2019 infection from his owner in Hong Kong. The news on travellers associated spread across the globe have also put many countries on alert with the cancellation of tourist visa to all affected countries and postponement of events where international visits were required. A few diagnostic approaches, including quantitative and differential real-time polymerase chain reaction assays, have been recommended for the screening of the individuals at risk. In the absence of any selective vaccine against SARS-CoV-2, re-purposed drugs are advocated in many studies. This article discourse the current worldwide situation of COVID-2019 with information on virus, epidemiology, host, the role of animals, effective diagnosis, therapeutics, preventive and control approaches making people aware on the disease outcomes.
Collapse
|
28
|
Abstract
Initially recognized of COVID-19 within the world in 2019, the World Health Organization situational report from May 22nd, 2020, globally, there is a complete of 5,204,508 confirmed cases, with 212 countries being affected by the novel coronavirus. 2019 novel coronavirus (SARS-CoV-2) is that the seventh member of the family of coronaviruses is enveloped viruses with a positive sense, single-stranded RNA genome. The SARS-CoV-2 may be a �-CoV of group 2B there is 70% comparability in genetic sequence to SARS-CoV. The source of the new coronavirus infection has been resolved as bats. With whole-genome sequences of SARS-CoV-2 is 96% comparatively at the whole-genome level to a bat coronavirus. Mechanisms of transmission are concluded to incorporate contact, droplet, and possibly airborne under certain circumstances supported ancient experiences associated with SARS-CoV outbreaks. Although antiretroviral therapy is being widely used everywhere the globe for such patents, effects at finding a SARS-CoV vaccine haven�t succeeded so far.
Collapse
|
29
|
Turk C, Turk S, Temirci ES, Malkan UY, Haznedaroglu İC. In vitro analysis of the renin-angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320928872. [PMID: 32490715 PMCID: PMC7271679 DOI: 10.1177/1470320320928872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus family member that triggers a respiratory disease similar to severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV and SARS-CoV-2 are very similar to each other in many respects, such as structure, genetics, and pathobiology. We hypothesized that coronaviruses could affect pulmonary tissues via integration with the critical immune genes after their interaction with renin-angiotensin system (RAS) elements. The aim of the present bioinformatics study was to assess expression changes of the RAS and non-RAS genes, particularly immune response genes, in the lung epithelial cells after infection with SARS-CoV. METHODS Linear regression, hierarchical clustering, pathway analysis, and network analysis were performed using the E-GEOD-17400 data set. RESULTS The whole-genome expression data of the lung epithelial cells infected with SARS-CoV for 12, 24, and 48 hours were analyzed, and a total of 15 RAS family and 29 immune genes were found to be highly correlated with the exposure time to the virus in the studied groups. CONCLUSION RAS genes are important at the initiation of the infections caused by coronavirus family members and may have a strong relationship with the exchange of immune genes in due course following the infection.
Collapse
Affiliation(s)
- Can Turk
- Department of Medical Microbiology,
Lokman Hekim University, Faculty of Medicine, Turkey
| | - Seyhan Turk
- Department of Biochemistry, Hacettepe
University, Faculty of Pharmacy, Turkey
| | - Elif Sena Temirci
- Department of Molecular Biology and
Genetics, Bilkent University, Faculty of Science, Turkey
| | - Umit Yavuz Malkan
- Department of Haematology, Dışkapı
Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences,
Turkey
| | | |
Collapse
|
30
|
Lv DF, Ying QM, Weng YS, Shen CB, Chu JG, Kong JP, Sun DH, Gao X, Weng XB, Chen XQ. Dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a Coronavirus Disease 2019 patient. Clin Chim Acta 2020; 506:172-175. [PMID: 32229107 PMCID: PMC7118663 DOI: 10.1016/j.cca.2020.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
We report the dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a COVID-19 patient: from successive negative results to successive single positive nucleocapsid gene, to two positive target genes (orf1ab and nucleocapsid) by RT-PCR testing of SARS-Cov-2, and describe the diagnosis, clinical course, and management of the case. In this case, negative results of RT-PCR testing was not excluded to diagnose a suspected COVID-19 patient, clinical signs and symptoms, other laboratory findings, and chest CT images should be taken into account for the absence of enough positive evidence. This case highlights the importance of successive sampling and testing SARS-Cov-2 by RT-PCR as well as the increased value of single positive target gene from pending to positive in two specimens to diagnose laboratory-confirmed COVID-19.
Collapse
Affiliation(s)
- Ding-Feng Lv
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China; Department of Blood Transfusion, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China; Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Qi-Ming Ying
- Department of Blood Transfusion, Ningbo First Hospital, Ningbo, China; Department of Blood Transfusion, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yue-Song Weng
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Chi-Bin Shen
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jin-Guo Chu
- Department of General Practice, Ningbo First Hospital, Ningbo, China; Department of General Practice, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jing-Ping Kong
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Ding-He Sun
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xing-Bei Weng
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, China; Department of Laboratory Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.
| | - Xue-Qin Chen
- Department of Chinese Traditional Medicine, Ningbo First Hospital, Ningbo, China; Department of Chinese Traditional Medicine, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.
| |
Collapse
|
31
|
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47:119-121. [PMID: 32173287 PMCID: PMC7128649 DOI: 10.1016/j.jgg.2020.02.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Xin Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Qiu T, Mao T, Wang Y, Zhou M, Qiu J, Wang J, Xu J, Cao Z. Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus. J Genet Genomics 2020; 47:115-117. [PMID: 32171450 PMCID: PMC7111282 DOI: 10.1016/j.jgg.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Tiantian Mao
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengdi Zhou
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jingxuan Qiu
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China.
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|