1
|
Huang J, Jordan HR, Older CE, Griffin MJ, Allen PJ, Wise DJ, Goodman PM, Reifers JG, Yamamoto FY. Lactococcus lactis MA5 is a potential autochthonous probiotic for nutrient digestibility enhancement and bacterial pathogen inhibition in hybrid catfish (Ictalurus punctatus × I. furcatus). JOURNAL OF FISH DISEASES 2024; 47:e13997. [PMID: 38973153 DOI: 10.1111/jfd.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
With the emergence of diseases, the U.S. catfish industry is under challenge. Current trends prefer autochthonous bacteria as potential probiotic candidates owing to their adaptability and capacity to effectively colonize the host's intestine, which can enhance production performance and bolster disease resistance. The objective of this study was to isolate an autochthonous bacterium as probiotic for hybrid catfish. Initially, an analysis of the intestinal microbiota of hybrid catfish reared in earthen ponds was conducted for subsequent probiotic development. Twenty lactic acid bacteria were isolated from the digesta of overperforming catfish, and most of the candidates demonstrated probiotic traits, including proteolytic and lipolytic abilities; antagonistic inhibition of catfish enteric bacterial pathogens, negative haemolytic activity and antibiotic susceptibility. Subsequent to this screening process, an isolate of Lactococcus lactis (MA5) was deemed the most promising probiotic candidate. In silico analyses were conducted, and several potential probiotic functions were predicted, including essential amino acids and vitamin synthesis. Moreover, genes for three bacteriocins, lactococcin A, enterolysin A and sactipeptide BmbF, were identified. Lastly, various protectant media for lyophilization of MA5 were assessed. These findings suggest that Lactococcus lactis MA5 can be an autochthonous probiotic from hybrid catfish, holding promise to be further tested in feeding trials.
Collapse
Affiliation(s)
- Jing Huang
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Heather R Jordan
- Department of Biology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Penelope M Goodman
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - J Grant Reifers
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
2
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
3
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
5
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
6
|
Chelliah R, Kim EJ, Daliri EBM, Antony U, Oh DH. In Vitro Probitotic Evaluation of Saccharomyces boulardii with Antimicrobial Spectrum in a Caenorhabditis elegans Model. Foods 2021; 10:foods10061428. [PMID: 34203095 PMCID: PMC8235530 DOI: 10.3390/foods10061428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, we screened for potential probiotic yeast that could survive under extreme frozen conditions. The antimicrobial and heat-stable properties of the isolated yeast strains Saccharomyces boulardii (S. boulardii) (KT000032, KT000033, KT000034, KT000035, KT000036, and KT000037) was analyzed and compared with commercial probiotic strains. The results revealed that the tested S. boulardii KT000032 strain showed higher resistance to gastric enzymes (bile salts, pepsin, and pancreatic enzyme) at low pH, with broad antibiotic resistance. In addition, the strain also showed efficient auto-aggregation and co-aggregation abilities and efficient hydrophobicity in the in-vitro and in-vivo C. elegens gut model. Further, the KT000032 strain showed higher antimicrobial efficiency against 13 different enteropathogens and exhibited commensal relationships with five commercial probiotic strains. Besides, the bioactive compounds produced in the cell-free supernatant of probiotic yeast showed thermo-tolerance (95 °C for two hours). Furthermore, the thermo-stable property of the strains will facilitate their incorporation into ready-to-eat food products under extreme food processing conditions.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Eun-Ji Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Usha Antony
- Department of Biotechnology and Food Technology, Anna University, Chennai 600 025, India;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
- Correspondence: ; Tel.: +82-33-250-6457
| |
Collapse
|
7
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
8
|
Rad AH, Abbasi A, Kafil HS, Ganbarov K. Potential Pharmaceutical and Food Applications of Postbiotics: A Review. Curr Pharm Biotechnol 2021; 21:1576-1587. [PMID: 32416671 DOI: 10.2174/1389201021666200516154833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.
Collapse
Affiliation(s)
- Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| |
Collapse
|
9
|
Biofilm-Producing Ability and Antibiotic Resistance Pattern of Pathogenic Strains of Aeromonas hydrophila. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.97640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Mukherjee A, Banerjee G, Mukherjee P, Ray AK, Chandra G, Ghosh K. Antibacterial substances produced by pathogen inhibitory gut bacteria in Labeo rohita: Physico-chemical characterization, purification and identification through MALDI-TOF mass spectrometry. Microb Pathog 2019; 130:146-155. [PMID: 30826430 DOI: 10.1016/j.micpath.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
Application of antibiotics to combat bacterial diseases in fish has been criticized due to likely emergence of drug resistance. Therefore, investigation of new bioactive compounds from natural sources has been taken into account. This study was designed to purify and characterize the bioactive compound in the cell free supernatant (CFSs) of autochthonous gut bacteria (Bacillus methylotrophicus KU556164, B. amyloliquefaciens KU556165, Pseudomonas fluorescens KU556166 and B. licheniformis KU556167) isolated from rohu, Labeo rohita. CFSs were antagonistic to fish pathogenic Aeromonas spp., moderately thermo-tolerant and active in wide range of pH (5-11). Antibacterial activity of the CFSs was reduced by the action of proteases (e.g., Proteinase K and Trypsin), indicating proteinaceous nature of the bioactive compound like the bacteriocins. Three-step purification procedure resulted in recovery of 16.97%, 18.04%, 33.33% and 6.38% activity of the antimicrobial protein produced by B. methylotrophicus, B. amyloliquefaciens, P. fluorescens and B. licheniformis, respectively. Purification at each step revealed decrease in protein content with gradual increase in the specific activity of the antimicrobial protein. The purified antibacterial compound ranged between 18.2 and 25.6 kDa. Identification through MALDI-TOF MS/MS and database search through Mascot search engine predicted that the bactericidal compound belonged to either alkaline proteases, or, transcriptional regulator and some hypothetical proteins. Apart from potential technological application of the antibacterial compound, the present study might show promise for application of gut-associated bacteriocinogenic bacteria to control diseases in fish caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Anjan Mukherjee
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Goutam Banerjee
- Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 7131235, West Bengal, India; Department of Biochemistry, University of Calcutta, Kolkata 7000019, India
| | - Piyali Mukherjee
- Department of Biotechnology, The University of Burdwan, Burdwan 713104, west Bengal, India
| | - Arun Kumar Ray
- Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 7131235, West Bengal, India
| | - Goutam Chandra
- Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
11
|
Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Sci Data 2017; 4:170135. [PMID: 28994821 PMCID: PMC5634326 DOI: 10.1038/sdata.2017.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/25/2017] [Indexed: 11/09/2022] Open
Abstract
During floods, human exposure to pathogens through contaminated water leads to the outbreak of epidemic diseases. This research presents the first extensive assessment of surface and groundwater samples collected immediately after a flood (December 2015) and post-flood (April 2016) from the Adyar River of Chennai, a major city in India, for major ions, trace metals, bacterial population, and pathogens. Severe rains in a short period of time resulted in flooding which inundated the wells, allowing the entry of sewage contaminated river water into the groundwater zone. This has led to bacterial counts and chemical ions exceeding Bureau of Indian Standard's recommended limits in most flood affected areas. Pathogens isolated from the groundwater showed resistance to antibiotics, namely ceftriaxone, doxycycline and nalidixic acid. However, they were sensitive to chloramphenicol, ciprofloxacin, norfloxacin, and tetracycline. Determining the antibiotic susceptibility of pathogens will help in the treatment of humans affected by contaminated water through an appropriate selection of prescribed medication.
Collapse
|
12
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
13
|
Banerjee G, Nandi A, Ray AK. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch Microbiol 2016; 199:115-124. [PMID: 27590016 DOI: 10.1007/s00203-016-1283-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/30/2016] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg-1 protein ml-1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, 7131235, India.
| | - Ankita Nandi
- Department of Zoology, Visva-Bharati University, Santiniketan, 7131235, India
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, 7131235, India
| |
Collapse
|
14
|
|
15
|
Farias THV, Levy-Pereira N, Alves LDO, Dias DDC, Tachibana L, Pilarski F, Belo MADA, Ranzani-Paiva MJT. Probiotic feeding improves the immunity of pacus, Piaractus mesopotamicus, during Aeromonas hydrophila infection. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria from the Gut of Labeo rohita and Catla catla. Probiotics Antimicrob Proteins 2015; 7:126-36. [DOI: 10.1007/s12602-015-9184-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Crit Rev Food Sci Nutr 2014; 56:817-34. [DOI: 10.1080/10408398.2012.729231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
C De B, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:921-971. [PMID: 24419543 DOI: 10.1007/s10695-013-9897-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Aquaculture is emerging as one of the most viable and promising enterprises for keeping pace with the surging need for animal protein, providing nutritional and food security to humans, particularly those residing in regions where livestock is relatively scarce. With every step toward intensification of aquaculture practices, there is an increase in the stress level in the animal as well as the environment. Hence, disease outbreak is being increasingly recognized as one of the most important constraints to aquaculture production in many countries, including India. Conventionally, the disease control in aquaculture has relied on the use of chemical compounds and antibiotics. The development of non-antibiotic and environmentally friendly agents is one of the key factors for health management in aquaculture. Consequently, with the emerging need for environmentally friendly aquaculture, the use of alternatives to antibiotic growth promoters in fish nutrition is now widely accepted. In recent years, probiotics have taken center stage and are being used as an unconventional approach that has numerous beneficial effects in fish and shellfish culture: improved activity of gastrointestinal microbiota and enhanced immune status, disease resistance, survival, feed utilization and growth performance. As natural products, probiotics have much potential to increase the efficiency and sustainability of aquaculture production. Therefore, comprehensive research to fully characterize the intestinal microbiota of prominent fish species, mechanisms of action of probiotics and their effects on the intestinal ecosystem, immunity, fish health and performance is reasonable. This review highlights the classifications and applications of probiotics in aquaculture. The review also summarizes the advancement and research highlights of the probiotic status and mode of action, which are of great significance from an ecofriendly, sustainable, intensive aquaculture point of view.
Collapse
Affiliation(s)
- Bidhan C De
- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | | | | | | | | | | |
Collapse
|
19
|
Qian YF, Yang SP, Xie J, Xiong Q, Gao ZL. Impact of the O2 concentrations on bacterial communities and quality of modified atmosphere packaged Pacific white shrimp (Litopenaeus vannamei). J Food Sci 2013; 78:M1878-84. [PMID: 24329954 DOI: 10.1111/1750-3841.12305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/26/2013] [Indexed: 12/01/2022]
Abstract
The importance of spoilage-related bacteria in fresh Pacific white shrimp (Litopenaeus vannamei) under different modified atmospheres (MAs) at 4 °C and the effect of O2 were demonstrated in the current study. The changes of bacterial communities in MA-packed shrimp during cold storage were studied by a combined method of plate counts with isolation and identification. Three gas mixtures were applied: 80% CO2 /5% O2 /15% N2, 80% CO2 /10% O2 /10% N2 and 80% CO2 /20% O2, and unsealed packages of shrimp were used as the control. In addition, the TVB-N, pH, whiteness index, and sensory scores were also determined to evaluate the quality changes of shrimp. MA packaging effectively inhibited the increase of total psychrotrophic bacteria counts and H2 S-producing bacteria counts by about 1.7 and 2.1 log cycles, respectively. The growth of Gram-negative spoilage bacteria in shrimp, including Shewanella spp., Aeromonas spp., and Pseudomonas spp., was inhibited by MA packaging, but the growth rate of Gram-positive bacteria such as lactic acid bacteria (LAB) and Brochothrix spp. were less affected by MA as effectively as Gram-negative bacteria. In comparison with the MA-packaged samples, the counts of H2 S producers in shrimp under a CO2 -enriched atmosphere with 20% O2 were slightly lower than the count in samples under an atmosphere with 5% O2 . However, MA with 20% O2 led to higher concentrations of TVB-N, and lower whiteness values and sensory scores. The shelf life of shrimp under 80% CO2 /10% O2 /10% N2 has been prolonged by > 6 d in comparison with the control according to the sensory scores.
Collapse
Affiliation(s)
- Yun-Fang Qian
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation College of Food Science & Technology, Shanghai Ocean Univ., Shanghai, 201306, P. R. China
| | | | | | | | | |
Collapse
|
20
|
Tong Thi AN, Noseda B, Samapundo S, Nguyen BL, Broekaert K, Rasschaert G, Heyndrickx M, Devlieghere F. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing. Int J Food Microbiol 2013; 167:144-52. [DOI: 10.1016/j.ijfoodmicro.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022]
|
21
|
Biswas G, Korenaga H, Nagamine R, Takayama H, Kawahara S, Takeda S, Kikuchi Y, Dashnyam B, Kono T, Sakai M. Cytokine responses in the Japanese pufferfish (Takifugu rubripes) head kidney cells induced with heat-killed probiotics isolated from the Mongolian dairy products. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1170-1177. [PMID: 23422813 DOI: 10.1016/j.fsi.2013.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Cytokine responses in the Japanese pufferfish (Takifugu rubripes) head kidney (HK) cells to heat-killed lactic acid bacteria probiotics isolated from the Mongolian dairy products were investigated by transcriptomic examination. The HK cells were incubated with two heat-killed bacteria, namely Lactobacillus paracasei spp. paracasei (strain 06TCa22) and L. plantarum (strain 06CC2) and the responses of 16 cytokine genes at 0 (control), 1, 4, 8, 12, 24 and 48 h post-stimulation were assayed by multiplex RT-PCR analysis (GenomeLab Genetic Analysis System, GeXPS; Beckman Coulter, Inc.). The 16 genes included in the assay were pro-inflammatory cytokines (IL-1β, IL-6, IL-17A/F-3, TNF-α and TNF-N), cell-mediated immune regulators (IL-12p35, IL-12p40 and IL-18), antiviral (I-IFN-1 and IFN-γ) and other regulatory (IL-2, IL-7, IL-15, IL-21, IL-10 and TGF-β1) cytokines. Despite the differences in the transcriptional profiles, expression of all the cytokines tested here was significantly elevated by both the probiotic bacterial stimulants compared with the unstimulated control. Therefore, this in vitro study has demonstrated the modulation of cytokine defense mechanisms in the HK cells by the two heat-killed probiotics indicating their potentiality as novel immunostimulants to fish. However, strain-dependent varied expression of important cytokines (cell-mediated immune regulators, antiviral and anti-inflammatory cytokines) suggests better efficacy of L. paracasei spp. paracasei strain as fish immunostimulant. Further in vivo studies to elucidate the cytokine regulation networks will validate our present observations. A careful evaluation of ant-inflammatory properties may be undertaken using single strain to affirm the immunostimulatory capability. Moreover, application timings and frequency to assess the longevity of immunostimulant effects and to make the application cost-effective need to be evaluated before any practical use in aquaculture.
Collapse
Affiliation(s)
- G Biswas
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sharma P, C. Sihag R, Gahlawat S. Relative Efficacy of Two Probiotics in Controlling the Epizootic Ulcerative Syndrome Disease in Mrigal (Cirrhinus mrigala Ham.). ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jfas.2013.305.322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
|
24
|
Kamgar M, Ghane M. Evaluation of Bacillus subtilis Effect as Probiotic on Hematological Parameters of Rainbow Trout, Oncorhynchus mykiss (Walbaum) Following Experimental Infection with Streptococcus iniae. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jfas.2012.422.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Dahiya T, Sihag R, Gahlawat S. Effect of Probiotics on the Haematological Parameters of Indian Magur (Clarius batrachus L.). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jfas.2012.279.290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Noseda B, Islam MT, Eriksson M, Heyndrickx M, De Reu K, Van Langenhove H, Devlieghere F. Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiol 2012; 30:408-19. [DOI: 10.1016/j.fm.2011.12.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 11/26/2022]
|
27
|
Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 2012; 97:405-30. [PMID: 22512693 DOI: 10.1111/j.1439-0396.2012.01301.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.
Collapse
Affiliation(s)
- S Mohapatra
- Laboratory of Freshwater Fish Reproduction and Development, School of Life Science, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|
28
|
Bourouni OC, El Bour M, Calo-Mata P, Mraouna R, Abedellatif B, Barros-Velàzquez J. Phylogenetic analysis of antimicrobial lactic acid bacteria from farmed seabass Dicentrarchus labrax. Can J Microbiol 2012; 58:463-74. [DOI: 10.1139/w2012-014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of lactic acid bacteria (LAB) in the prevention or reduction of fish diseases is receiving increasing attention. In the present study, 47 LAB strains were isolated from farmed seabass ( Dicentrarchus labrax ) and were phenotypically and phylogenetically analysed by 16S rDNA and randomly amplified polymorphic DNA – polymerase chain reaction (RAPD–PCR). Their antimicrobial effect was tested in vitro against a wide variety of pathogenic and spoilage bacteria. Most of the strains isolated were enterococci belonging to the following species: Enterococcus faecium (59%), Enterococcus faecalis (21%), Enterococcus sanguinicola (4 strains), Enterococcus mundtii (1 strain), Enterococcus pseudoavium (1 strain), and Lactococcus lactis (1 strain). An Aerococcus viridans strain was also isolated. The survey of their antimicrobial susceptibility showed that all isolates were sensitive to vancomycin and exhibited resistance to between 4 and 10 other antibiotics relevant for therapy in human and animal medicine. Different patterns of resistance were noted for skin and intestines isolates. More than 69% (32 strains) of the isolates inhibited the growth of the majority of pathogenic and spoilage bacteria tested, including Listeria monocytogenes , Staphylococcus aureus , Aeromonas hydrophila , Aeromonas salmonicida , Vibrio anguillarum , and Carnobacterium sp. To our knowledge, this is the first report of bioactive enterococcal species isolated from seabass that could potentially inhibit the undesirable bacteria found in food systems.
Collapse
Affiliation(s)
- Ouissal Chahad Bourouni
- Institut national des sciences et technologies de la mer (INSTM), rue 2 Mars 1934, 2025 Salammbô; Tunis, Tunisia
| | - Monia El Bour
- Institut national des sciences et technologies de la mer (INSTM), rue 2 Mars 1934, 2025 Salammbô; Tunis, Tunisia
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, LHICA, School of Veterinary Sciences, University of Santiago de Compostela, E-27002 Lugo, Spain
| | - Radhia Mraouna
- Institut national des sciences et technologies de la mer (INSTM), rue 2 Mars 1934, 2025 Salammbô; Tunis, Tunisia
| | - Boudabous Abedellatif
- Laboratoire de microorganismes et biomolécules actives, Faculté des Sciences, Tunis, Tunisia
| | - Jorge Barros-Velàzquez
- Department of Analytical Chemistry, Nutrition and Food Science, LHICA, School of Veterinary Sciences, University of Santiago de Compostela, E-27002 Lugo, Spain
| |
Collapse
|
29
|
Sihag RC, Sharma P. Probiotics: The New Ecofriendly Alternative Measures of Disease Control for Sustainable Aquaculture. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jfas.2012.72.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Talpur A, Memon A, Khan M, Ikhwanuddi M, Daniel MD, Abol-Munaf A. Isolation and Screening of Lactic Acid Bacteria from the Gut of Blue Swimming Crab, P. pelagicus, an in vitro Inhibition Assay and Small Scale in vivo Model for Validation of Isolates as Probiotics. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jfas.2012.1.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Chahad OB, El Bour M, Calo-Mata P, Boudabous A, Barros-Velàzquez J. Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Res Microbiol 2011; 163:44-54. [PMID: 22041547 DOI: 10.1016/j.resmic.2011.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022]
Abstract
Selection of protective cultures is relevant in order to biopreserve and improve the functional safety of food products, mainly through inhibition of spoilage and/or pathogenic bacteria. Accordingly, the present study investigated potential applications of lactic acid bacteria (LAB) in the biopreservation of fish and shellfish products. For this purpose, a collection of 84 LAB strains isolated from sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) was identified and characterized for their inhibitory activities against the most relevant seafood-spoilage and pathogenic bacteria potentially present in commercial products. The bioactive strains belonged to the genus Enterococcus and exhibited inhibition against Carnobacterium sp, Bacillus sp, Listeria monocytogenes, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio anguillarum. Treatment of cell-free extracts of the LAB strains with proteases revealed the proteinaceous nature of the inhibition. Interestingly, the cell-free extracts containing bacteriocins remained 100% active after treatment up to 100 °C for 30 min or 121 °C for 15 min. Molecular analysis led to identification of the bacteriocins investigated, including enterocins A, B, L50 and P. All of these proteins demonstrated remarkable anti-Listeria activity and were found to be heat-resistant small class IIa bacteriocins. The results presented in this work open the way for potential applications of these LAB strains to the biopreservation of minimally-processed seafood products.
Collapse
Affiliation(s)
- Ouissal Bourouni Chahad
- Institut National des Sciences et Technologies de la Mer (INSTM), Rue 2 Mars 1934, 2025 Salammbô, Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
32
|
Chantharas K, Warong T, Mapatsa P, Leelavatch V. High Potential Probiotic Bacillus Species from Gastro-intestinal Tract of Nile Tilapia (Oreochromis niloticus). ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.498.505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Fernandez R, Sridhar M, Sridhar N. Effect of Lactic Acid Bacteria Administered Orally on Growth Performance of Penaeus indicus (H. Milne Edwards) Juveniles. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jm.2011.466.479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Nayak SK. Probiotics and immunity: a fish perspective. FISH & SHELLFISH IMMUNOLOGY 2010; 29:2-14. [PMID: 20219683 DOI: 10.1016/j.fsi.2010.02.017] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/12/2010] [Accepted: 02/19/2010] [Indexed: 05/20/2023]
Abstract
Probiotics are usually live microorganisms which when administered in adequate amounts confer a health benefits on host. Nowadays, probiotics are also becoming an integral part of the aquaculture practices to obtain high production. The common probiotics that are used for aquaculture practices include Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Carnobacterium, Shewanella, Bacillus, Aeromonas, Vibrio, Enterobacter, Pseudomonas, Clostridium, and Saccharomyces species. The involvement of probiotics in nutrition, disease resistance and other beneficial activities in fish has proven beyond any doubt. Among the numerous health benefits attributed to probiotics, modulation of immune system is one of the most commonly purported benefits of the probiotics and their potency to stimulate the systemic and local immunity under in vitro and in vivo conditions is noteworthy. Different probiotics either monospecies or multispecies supplementation can eventually elevate phagocytic, lysozyme, complement, respiratory burst activity as well as expression of various cytokines in fish. Similarly, probiotics can stimulate the gut immune system of fish with marked increase in the number of Ig(+) cells and acidophilic granulocytes. Furthermore, mono-bacterial association studies (with non-probiotic bacterial strains) in gnotobiotic fish also indicate the up-regulation of various immune related genes. Though the exact mode of action of probiotics is yet to be established in any animal including fish, probiotics often exert host specific and strain specific differences in their activities. Various factors like source, type, dose and duration of supplementation of probiotics can significantly affect the immunomodulatory activity of probiotics. The review is therefore, aiming to highlight the immunomodulatory activity of probiotics and also to evaluate the factors that regulate for the optimum induction of immune responses in fish.
Collapse
Affiliation(s)
- S K Nayak
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Japan.
| |
Collapse
|