1
|
Fazry S, Najm AA, Mahdi IM, Ang A, Lee L, Loh CT, Syed Alwi SS, Li F, Law D. In silico directed evolution of Anabas testudineus AtMP1 antimicrobial peptide to improve in vitro anticancer activity. PeerJ 2024; 12:e17894. [PMID: 39346049 PMCID: PMC11439379 DOI: 10.7717/peerj.17894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024] Open
Abstract
Various studies have demonstrated that directed evolution is a powerful tool in enhancing protein properties. In this study, directed evolution was used to enhance the efficacy of synthesised Anabas testudineus AtMP1 antimicrobial peptides (AMPs) in inhibiting the proliferation of cancer cells. The modification of antimicrobial peptides (AMPs) and prediction of peptide properties using bioinformatic tools were carried out using four databases, including ADP3, CAMP-R3, AMPfun, and ANTICP. One modified antimicrobial peptide (AMP), ATMP6 (THPPTTTTTTTTTTTTTAAPARTT), was chosen based on its projected potent anticancer effect, taking into account factors such as amino acid length, net charge, anticancer activity score, and hydrophobicity. The selected AMPs were subjected to study in deep-learning databases, namely ToxIBTL and ToxinPred2, to predict their toxicity. Furthermore, the allergic properties of these antimicrobial peptides (AMPs) were verified by utilising AllerTOP and AllergenFP. Based on the results obtained from the database study, it was projected that antimicrobial peptides (AMPs) demonstrate a lack of toxicity towards human cells that is indicative of the broader population. After 48 hours of incubation, the IC50 values of ATMP6 against the HS27 and MDA-MB-231 cell lines were found to be 48.03 ± 0.013 µg/ml and 7.52 ± 0.027 µg/ml, respectively. The IC50 values of the original peptide ATMP1 against the MDA-MB-231 and HS27 cell lines were determined to be 59.6 ± 0.14 µg/ml and 8.25 ± 0.14 µg/ml, respectively, when compared. Furthermore, the results indicated that the injection of ATMP6 induced apoptosis in the MDA-MB-231 cell lines. The present investigation has revealed new opportunities for advancing novel targeted peptide therapeutics to tackle cancer.
Collapse
Affiliation(s)
- Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ahmed Abdulkareem Najm
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ibrahim Mahmood Mahdi
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
- Dentistry Department, Al-Rafidain University College, Baghad, Iraq
| | - Arnold Ang
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - LiTing Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Choy-Theng Loh
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
- Hangzhou Foreseebio Biotechnology Co., Ltd, Hangzhou, China
| | | | - Fang Li
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
3
|
Ortega L, Carrera C, Muñoz-Flores C, Salazar S, Villegas MF, Starck MF, Valenzuela A, Agurto N, Montesino R, Astuya A, Parra N, Pérez ET, Santibáñez N, Romero A, Ruíz P, Lamazares E, Reyes F, Sánchez O, Toledo JR, Acosta J. New insight into the biological activity of Salmo salar NK-lysin antimicrobial peptides. Front Immunol 2024; 15:1191966. [PMID: 38655253 PMCID: PMC11035819 DOI: 10.3389/fimmu.2024.1191966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.
Collapse
Affiliation(s)
- Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Santiago Salazar
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F. Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María F. Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS) Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ercilia T. Pérez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natacha Santibáñez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Pamela Ruíz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Talcahuano, Chile
| | - Emilio Lamazares
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fátima Reyes
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
4
|
Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture: a mini-review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The use of antibiotics for the control of infections has not only been banned by FDA for use in food-producing animals, but also several countries have prohibited their use in aquaculture because of several reasons such as the occurrence of antibiotic-tolerant microorganisms, accumulation of antibiotic residues in fish and shrimp flesh, and aquatic environmental effluence concerns. These issues have led researchers and aquaculture scientists to conduct several studies to find antibiotic alternatives. Numerous substitutes have been evaluated, such as probiotics, synbiotics, prebiotics, postbiotics, phytogenics, essential oils, and several others. Results show that these supplements demonstrate proven efficacy in enhancing immune responses, reducing mortalities resulting from experimental infections, and reducing antibiotic usage in medicated aquafeed. Nonetheless, using antimicrobial peptides (AMPs) to control fish diseases and be used as antibiotic alternatives is a promising and interesting research topic. AMPs are a vital class of small peptides that could stimulate the innate immune system against challenging pathogens and also possess significant potent defensive responses against a variety of infectious and non-infectious pathogenic agents, including bacteria, parasites, fungi, and viruses. Regarding their source origin, AMPs can be classified into six main types: mammalian-, amphibian-, insect-, aquatic-, plant-, and microorganism-derived AMPs. On account of their unique structure, they can display an essential function in therapeutic strategies against infectious diseases affecting fish and shrimp. Reports showed several kinds of AMPs had a wide spectrum of antimicrobial properties. These effects are besides their prominent immunostimulatory functions. Thus, they may be considered a functional alternative to antibiotics in aquaculture. This article provides information on the current knowledge about the modes of action, sources, classification, functions, and potential applications for the development of aquatic animal health. The information included in this context will be valuable to enhance the sustainability of aquaculture.
Collapse
|
5
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front Mol Biosci 2022; 9:1039286. [PMID: 36567944 PMCID: PMC9772024 DOI: 10.3389/fmolb.2022.1039286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Amidst rising cases of antimicrobial resistance, antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics. Even so, poor pharmacokinetic profiles of certain AMPs impede their utility necessitating, a careful assessment of potential AMPs' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties during novel lead exploration. Accordingly, the present study utilized ADMET scores to profile seven previously isolated African catfish antimicrobial peptides (ACAPs). After profiling, the peptides were docked against approved bacterial protein targets to gain insight into their possible mode of action. Promising ACAPs were then chemically synthesized, and their antibacterial activity was validated in vitro utilizing the broth dilution method. All seven examined antimicrobial peptides passed the ADMET screening, with two (ACAP-IV and ACAP-V) exhibiting the best ADMET profile scores. The ACAP-V had a higher average binding energy (-8.47 kcal/mol) and average global energy (-70.78 kcal/mol) compared to ACAP-IV (-7.60 kcal/mol and -57.53 kcal/mol), with the potential to penetrate and disrupt bacterial cell membrane (PDB Id: 2w6d). Conversely, ACAP-IV peptide had higher antibacterial activity against E. coli and S. aureus (Minimum Inhibitory Concentration, 520.7 ± 104.3 μg/ml and 1666.7 ± 416.7 μg/ml, respectively) compared to ACAP-V. Collectively, the two antimicrobial peptides (ACAP-IV and ACAP-V) are potential novel leads for the food, cosmetic and pharmaceutical industries. Future research is recommended to optimize the expression of such peptides in biological systems for extended evaluation.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | | | - Joseph Nkamwesiga
- International Livestock Research Institute, Nairobi, Kenya
- Institut für Virologie, Freie Universität, Berlin, Germany
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Mulongo Mugeni
- Medical Entomology Laboratory, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Geofrey Ssentamu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Casim Umba Tolo
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Ogwang Engeu
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
7
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
8
|
Bhat RAH, Thakuria D, Tandel RS, Khangembam VC, Dash P, Tripathi G, Sarma D. Tools and techniques for rational designing of antimicrobial peptides for aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1033-1050. [PMID: 35872334 DOI: 10.1016/j.fsi.2022.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Fisheries and aquaculture industries remain essential sources of food and nutrition for millions of people worldwide. Indiscriminate use of antibiotics has led to the emergence of antimicrobial-resistant bacteria and posed a severe threat to public health. Researchers have opined that antimicrobial peptides (AMPs) can be the best possible alternative to curb the rising tide of antimicrobial resistance in aquaculture. AMPs may also help to achieve the objectives of one health approach. The natural AMPs are associated with several shortcomings, like less in vivo stability, toxicity to host cell, high cost of production and low potency in a biological system. In this review, we have provided a comprehensive outline about the strategies for designing synthetic mimics of natural AMPs with high potency. Moreover, the freely available AMP databases and the information about the molecular docking tools are enlisted. We also provided in silico template for rationally designing the AMPs from fish piscidins or other peptides. The rationally designed piscidin (rP1 and rp2) may be used to tackle microbial infections in aquaculture. Further, the protocol can be used to develop the truncated mimics of natural AMPs having more potency and protease stability.
Collapse
Affiliation(s)
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | | | - Victoria C Khangembam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pragyan Dash
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| |
Collapse
|
9
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
10
|
Muñoz-Flores C, González-Chavarría I, Sandoval F, Roa FJ, Palacios P, Astuya A, Fernández K, Altamirano C, Romero A, Acosta J, Toledo JR. New strategy for the design, production and pre-purification of chimeric peptide with immunomodulatory activity in Salmosalar. FISH & SHELLFISH IMMUNOLOGY 2022; 125:120-127. [PMID: 35537671 DOI: 10.1016/j.fsi.2022.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The intensive salmon farming is associated with massive outbreaks of infections. The use of antibiotics for their prevention and control is related to damage to the environment and human health. Antimicrobial peptides (AMPs) have been proposed as an alternative to the use of antibiotics for their antimicrobial and immunomodulatory activities. However, one of the main challenges for its massive clinical application is the high production cost and the complexity of chemical synthesis. Thus, recombinant DNA technology offers a more sustainable, scalable, and profitable option. In the present study, using an AMPs function prediction methodology, we designed a chimeric peptide consisting of sequences derived from cathelicidin fused with the immunomodulatory peptide derived from flagellin. The designed peptide, CATH-FLA was produced by recombinant expression using an easy pre-purification system. The chimeric peptide was able to induce IL-1β and IL-8 expression in Salmo salar head kidney leukocytes, and prevented Piscirickettsia salmonis-induced cytotoxicity in SHK-1 cells. These results suggest that pre-purification of a recombinant AMP-based chimeric peptide designed in silico allow obtaining a peptide with immunomodulatory activity in vitro. This could solve the main obstacle of AMPs for massive clinical applications.
Collapse
Affiliation(s)
- Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Francisco J Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Paulo Palacios
- Salmones Antártica S.A., Camino Los Ángeles, Santa Bárbara, Km. 12,8, BioBio, Chile
| | - Allisson Astuya
- Laboratory of Cell Culture and Marine Genomics, Department of Oceanography and COPAS Sur-Austral, Faculty of Natural and Oceanographic Science, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Khaterina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción. Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2362803, Valparaíso, Chile
| | - Alex Romero
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile; Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción. Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
11
|
Liu M, Hu R, Li W, Yang W, Xu Q, Chen L. Identification of Antibacterial Activity of Hepcidin From Antarctic Notothenioid Fish. Front Microbiol 2022; 13:834477. [PMID: 35495646 PMCID: PMC9039748 DOI: 10.3389/fmicb.2022.834477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hepcidin is a small peptide composed of signal peptide, propeptide, and the bioactive mature peptide from N terminal to C terminal. Mature hepcidin is an antibacterial peptide and iron regulator with eight highly conserved cysteines forming four intramolecular disulfide bonds, giving it a β sheet hairpin-like structure. Hepcidin homologs are found in a variety of vertebrates, especially fish, and their diversity may be associated with different habitats and different levels of pathogens. Dissostichus mawsoni, an Antarctic notothenioid fish that lives in the coldest water unlike most places of the world, with at least two hepcidin variants with eight cysteines. We confirmed the formation process of activated mature hepcidins from D. mawsoni in Chinese hamster ovary (CHO) cell line, obtained recombinant hepcidin protein from prokaryotes, and characterized its binding ability and antibacterial activity against varying bacteria. The expression of hepcidin in CHO cell line showed that the prepropeptide of Dmhep_8cysV1 and Dmhep_8cysV2 cleavage into smaller mature peptide. The antibacterial assay and flow cytometry showed that Dmhep_8cysV1, Dmhep_8cysV2, and Drhep bound to different bacteria and killed them with different minimum inhibitory concentration. These data suggest that hepcidin plays an important role in the innate immunity of D. mawsoni and is of great value in improving resistance to pathogens.
Collapse
Affiliation(s)
- Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenyi Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
SILVA MAURÍCIOB, FEITOSA ALEXYAO, LIMA IGORG, BISPO JAMESR, SANTOS ANACAROLINEM, MOREIRA MAGNAS, CÂMARA PAULOE, ROSA LUIZHENRIQUE, OLIVEIRA VALÉRIAM, DUARTE ALYSSONW, QUEIROZ ALINEC. Antarctic organisms as a source of antimicrobial compounds: a patent review. AN ACAD BRAS CIENC 2022; 94:e20210840. [DOI: 10.1590/0001-3765202220210840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - ALINE C. QUEIROZ
- Universidade Federal de Alagoas, Brazil; Universidade Federal de Alagoas, Brazil
| |
Collapse
|
13
|
Veedu AM, Prahaladhan AP, Vadakkeveettil AV, Krishnakumar A, Surendran N, Philip R. An Antimicrobial peptide hepcidin, St-hep from tuberculated flathead, Sorsogona tuberculata (Cuvier, 1829): Molecular and functional characterization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ma H, Han YC, Palti Y, Gao G, Liu S, Palmquist DE, Wiens GD, Shepherd BS. Structure and regulation of the NK-lysin (1-4) and NK-lysin like (a and b) antimicrobial genes in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103961. [PMID: 33301795 DOI: 10.1016/j.dci.2020.103961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Nk-lysin (Nkl), an antimicrobial peptide (AMP) product of natural killer cells and cytotoxic T cells in mammals, has recently been characterized in a number of finfish species. In this study, we identified six genes with sequence homology to Nkl and characterized their patterns of mRNA expression and abundances in rainbow trout (Oncorhynchus mykiss). The cDNA sequences for the six Nkls encoded precursor peptides of 128-133 aa in length, and mature peptides of 109-111 aa in length. Genomic DNA of the nkl1-4 genes consisted of five exons and four introns, whereas the nkl-like a & b genes consisted of four exons and three introns. Chromosomal locations of these peptides show that nkl1 was located on chromosome arm 25q, whereas the other five nkl genes were clustered on chromosome arm 19q. Phylogenetic analysis revealed a conserved structure of Nkls among the teleosts and further protein sequence analyses suggests that all six nkl genes fall within the Nkl sub-family of the Saposin family of proteins. Patterns of tissue-specific mRNA expression were asymmetric among the six trout Nkl homologues, with nkl1, nkl3, and nkl-like a & b occurring in immune competent organs such as spleen, gill, intestine and kidney, as well as pineal gland, brain and oocytes. However, nkl2 and nkl4, showed primary abundances in brain, pineal gland and oocyte tissues. Using mRNA sequencing, in whole-body pools of juvenile trout fry (1 g bw) exposed to Flavobacterium psychrophilum infection, we observed modest up-regulation (2-3 fold) of five (nkl 2-4 and nkl-like a & b) of the six nkl mRNAs over the five-day post-challenge time-course. However, no upregulation could be recorded in spleen tissue measured by qPCR in juvenile trout (270 g bw). Using mRNA sequencing again, mRNA abundances were determined in gill of juvenile trout (~57.7 g bw) exposed to various aquaculture stressors. The results indicated that all six nkls (nkl1-4 and nkl-like a and nkl-like b) were downregulated when exposed to high temperature, and that nkl1 was significantly downregulated following salinity challenge. Overall, these newly characterized AMPs may contribute to host innate immunity as they are modulated following pathogen challenge and by physiological stressors.
Collapse
Affiliation(s)
- Hao Ma
- USDA-ARS-NADC-Ruminant Diseases and Immunology Research Unit, 1920 Dayton Ave, Ames, IA, 50010, USA; USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Yueh-Chiang Han
- USDA-ARS-School of Freshwater Sciences, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA
| | - Yniv Palti
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Guangtu Gao
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Sixin Liu
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Debra E Palmquist
- USDA/ARS-Midwest Area Statistics Unit, 1815 N. Street, Peoria, IL, 61604, USA
| | - Gregory D Wiens
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Brian S Shepherd
- USDA-ARS-School of Freshwater Sciences, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA.
| |
Collapse
|
15
|
Kang M, Ahn B, Yum J, Cho H, Choi M, Hong K, Choi Y, Kim J, Park C. Influence of habitat change from land to sea on the evolution of antimicrobial peptide gene families, including
β‐defensin
gene clusters, in mammals. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Joori Yum
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Hye‐sun Cho
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Munjeong Choi
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Jin‐Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology Konkuk University Seoul South Korea
| |
Collapse
|
16
|
Comparative analysis of chemical composition of some commercially important fishes with an emphasis on various Malaysian diets. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis study compares the chemical composition of cockle (Anadara granosa) and some commercially important marine (Asian seabass Lates calcarifer, grouper Epinephelus bleekeri, hardtail scad Megalaspis cordyla, longtail tuna Thunnus tonggol and Indian mackerel Rastrelliger kanagurta) and freshwater (sutchi catfish Pangasius hypophthalmus, Nile tilapia Oreochromis niloticus and eel Monopterus albus) fishes in Peninsular Malaysia. The results show that the proximate composition and trace metal content were significantly different (P < 0.05) among species investigated. The mean protein content was the highest in eel (19.1%) and the lowest in sutchi catfish (13.0%) and cockle (13.0%). The mean lipid content of Indian mackerel (3.9%) was higher than cockle (2.0%), followed by eel (1.3%) and longtail tuna (0.8%). The mean ash content was the highest in Indian mackerel (1.4%) and the lowest in cockle (0.9%). Zinc and manganese contents in cockle (Zn: 61.2 mg kg−1, Mn: 22.7 mg kg−1) were very high compared to other species investigated. The copper content was minimum in sutchi catfish (1.0 mg kg−1) and a maximum in the hardtail scad (11.7 mg kg−1). Trace metal content in sutchi catfish, Nile tilapia, grouper, longtail tuna, eel and cockle followed an order Zn > Mn > Cu, whereas Asian seabass, hardtail scad and Indian mackerel followed a different order Zn > Cu > Mn. Trace metal content in the tissue of the fishes examined was within safe limits for human consumption except Mn content in the cockle and Cu content in the hardtail scad, which is a matter of concern. When considering the daily fish fat, mineral and trace metal intake, marine fishes and shellfish are better than freshwater fishes.
Collapse
|
17
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
18
|
Shirdel I, Kalbassi MR, Hosseinkhani S, Paknejad H, Wink M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. FISH & SHELLFISH IMMUNOLOGY 2019; 90:288-296. [PMID: 31071462 DOI: 10.1016/j.fsi.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides have a wide range of antimicrobial activity and widely occur in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine-rich antimicrobial peptides that are active against a variety of pathogens including gram-positive and gram-negative bacteria, as well as viruses. In this study, the hepcidin gene of Caspian trout (CtHep) was identified and characterized. Our results showed that CtHep cDNA has a 267-bp Open Reading Frame (ORF), which is translated to 88 amino acids. The CtHep was classified in the HAMP1 class of hepcidins. Comparison of DNA and cDNA sequences showed that CtHep has 3 exons and 2 introns. The signal, prodomain and mature part of CtHep have 24, 39 and 25 amino acids, respectively. The mature peptide has a molecular weight of 2881.43 Da and a theoretical isoelectric point of 8.53. The expression of CtHep mRNA was detected in different tissues of healthy and infected fish. CtHep expression in the liver, head kidney, spleen and skin was significantly enhanced after bacterial challenge. Expression of CtHep in different embryonic development stages was also substantial. Antibacterial activity of synthetic CtHep peptides was investigated against a number of Gram-positive and Gram-negative bacteria. CtHep inhibited some pathogenic bacteria such as Streptococcus iniae and Aeromonas hydrophila. In the in vivo experiment, CtHep upregulated the cytokines IL-6 and TNF-α in both kidney and spleen tissues after 24 h of the peptide injection. In conclusion, our study showed that CtHep plays an important role in the immune system of Caspian trout and also in the embryonic stages. Moreover, CtHep peptide has a potential to be used as an antimicrobial therapeutic agent as well as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Iman Shirdel
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Reza Kalbassi
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Paknejad
- Department of Fisheries, Division of Genetics and Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
Buonocore F, Picchietti S, Porcelli F, Della Pelle G, Olivieri C, Poerio E, Bugli F, Menchinelli G, Sanguinetti M, Bresciani A, Gennari N, Taddei AR, Fausto AM, Scapigliati G. Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:9-17. [PMID: 30790604 DOI: 10.1016/j.dci.2019.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The increasing resistance to conventional antibiotics is an urgent problem that can be addressed by the discovery of new antimicrobial drugs such as antimicrobial peptides (AMPs). AMPs are components of innate immune system of eukaryotes and are not prone to the conventional mechanisms that are responsible of drug resistance. Fish are an important source of AMPs and, recently, we have isolated and characterized a new 22 amino acid residues peptide, the chionodracine (Cnd), from the Antarctic icefish Chionodraco hamatus. In this paper we focused on a new Cnd-derived mutant peptide, namely Cnd-m3a, designed to improve the selectivity against prokaryotic cells and the antimicrobial activity against human pathogens of the initial Cnd template. Cnd-m3a was used for immunization of rabbits, which gave rise to a polyclonal antibody able to detect the peptide. The interaction kinetic of Cnd-m3a with the Antarctic bacterium Psychrobacter sp. (TAD1) was imaged using a transmission electron microscopy (TEM) immunogold method. Initially the peptide was associated with the plasma membrane, but after 180 min of incubation, it was found in the cytoplasm interacting with a DNA target inside the bacterial cells. Using fluorescent probes we showed that the newly designed mutant can create pores in the outer membrane of the bacteria E. coli and Psychrobacter sp. (TAD1), confirming the results of TEM analysis. Moreover, in vitro assays demonstrated that Cnd-m3a is able to bind lipid vesicles of different compositions with a preference toward negatively charged ones, which mimics the prokaryotic cell. The Cnd-m3a peptide showed quite low hemolytic activity and weak cytotoxic effect against human primary and tumor cell lines, but high antimicrobial activity against selected Gram - human pathogens. These results highlighted the high potential of the Cnd-m3a peptide as a starting point for developing a new human therapeutic agent.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Simona Picchietti
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Giulia Della Pelle
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Cristina Olivieri
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA.
| | - Elia Poerio
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Francesca Bugli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giulia Menchinelli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | - Nadia Gennari
- IRBM Science Park SpA, Biology Department, Rome, Italy.
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Viterbo, Italy.
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
20
|
Marine Antimicrobial Peptides: A Promising Source of New Generation Antibiotics and Other Bio-active Molecules. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9789-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Dawson P, Al-Jeddawi W, Remington N. Effect of Freezing on the Shelf Life of Salmon. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2018; 2018:1686121. [PMID: 30159321 PMCID: PMC6109546 DOI: 10.1155/2018/1686121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 11/17/2022]
Abstract
Food shelf-life extension is important not only to food manufacturers, but also to home refrigeration/freezing appliance companies, whose products affect food quality and food waste. While freezing and refrigerating both extend the shelf life of foods, food quality deterioration continues regardless of the preservation method. This review article discusses the global fish market, the composition of fish meat, and the effects of freezing and thawing on salmon quality.
Collapse
Affiliation(s)
- Paul Dawson
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Wesam Al-Jeddawi
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Nanne Remington
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
22
|
Shepherd BS, Spear AR, Philip AM, Leaman DW, Stepien CA, Sepulveda-Villet OJ, Palmquist DE, Vijayan MM. Effects of cortisol and lipopolysaccharide on expression of select growth-, stress- and immune-related genes in rainbow trout liver. FISH & SHELLFISH IMMUNOLOGY 2018; 74:410-418. [PMID: 29325711 DOI: 10.1016/j.fsi.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Many studies have shown that stress-induced cortisol levels negatively influence growth and immunity in finfish. Despite this knowledge, few studies have assessed the direct effects of cortisol on liver immune function. Using real-time PCR, the expression of three cortisol-responsive genes (GR: glucocorticoid receptor, IGF-1: insulin-like growth factor-I and SOCS-1: suppressor of cytokine signaling-I), genes involved with innate and adaptive immunity (IL-1β: interleukin-1 beta, IgM: immunoglobin-M and Lyz: lysozyme), and liver-specific antimicrobial peptides (hepcidin and LEAP-2A: liver-expressed antimicrobial peptide-2A) was studied in vitro using rainbow trout liver slices. The abundances of GR, SOCS-1 and IGF-1 mRNAs were suppressed by cortisol treatment. Abundance of IL-1β mRNA was upregulated by LPS and suppressed by cortisol treatment in a time-dependent manner. While abundance of IgM mRNA was suppressed by cortisol treatment and stimulated by LPS, there were no effects of cortisol or LPS on abundance of Lyz mRNA. Abundance of hepcidin and LEAP-2A mRNA levels were suppressed by cortisol treatment and stimulated by LPS. These results demonstrate that cortisol directly suppresses abundance of GR, IGF-1, IL-1β, IgM, hepcidin, LEAP-2A and SOCS-1 mRNA transcripts in the rainbow trout liver. We report for the first time, a suppressive effect of cortisol (within 8 h of treatment) on hepcidin and LEAP-2A mRNAs in rainbow trout liver, which suggests that acute stress may negatively affect liver immune function in rainbow trout.
Collapse
Affiliation(s)
- Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| | - Allyn R Spear
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Anju M Philip
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft St., MS 601, Toledo, OH 43606, USA
| | - Carol A Stepien
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, The University of Toledo, Toledo, OH 43616, USA
| | - Osvaldo J Sepulveda-Villet
- School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Debra E Palmquist
- USDA/ARS-Midwest Area Statistics Unit, 1815 N. Street, Peoria, IL 61604, USA
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Nsrelden RM, Horiuchi H, Furusawa S. Expression of ayu antimicrobial peptide genes after LPS stimulation. J Vet Med Sci 2017; 79:1072-1080. [PMID: 28484129 PMCID: PMC5487786 DOI: 10.1292/jvms.16-0609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plecoglossus altivelis (ayu) is one of the most important fish species
in the Japanese islands and in internal fish hatcheries. Living in open aquatic
environments exposes fish to many pathogens. Therefore, they require rapid and strong
immune defenses. We investigated in vivo the direct association between
the ayu innate immune response, represented by the relative transcription of genes
encoding the cathelicidin and hepcidin antimicrobial peptides, and lipopolysaccharide
(LPS), a conventional pathogen-associated molecular patterns (PAMPs) of Gram-negative
bacteria. Different concentrations of LPS (1, 10 and 100 µg/fish) were
injected intraperitoneally into young (sexually immature) and adult (fully sexually
mature) ayu. The relative expression of the antimicrobial peptide genes was measured 6 hr,
24 hr and 1 week after stimulation with LPS. We found a direct association between the
expression of the antimicrobial peptide genes investigated and LPS stimulation. This
relationship was time-, dose- and age-dependent. Further research is required to determine
the cell-specific transcriptional regulation and posttranscriptional regulation of these
antimicrobial peptides.
Collapse
Affiliation(s)
- Rehab Marray Nsrelden
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
24
|
Molecular Characterisation of a Novel Isoform of Hepatic Antimicrobial Peptide, Hepcidin (Le-Hepc), from Leiognathus equulus and Analysis of Its Functional Properties In Silico. Probiotics Antimicrob Proteins 2017. [PMID: 28631249 DOI: 10.1007/s12602-017-9294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepcidin represents a family of cysteine-rich antimicrobial peptides that are mainly expressed in the liver of living organisms. In this study, we have identified and characterised a novel isoform of hepcidin from the common pony fish, Leiognathus equulus (Le-Hepc). A 261-bp fragment cDNA coding for 86 amino acids was obtained. Homologous analysis showed that Le-Hepc belongs to the hepcidin super family and shares sequence identity with other known fish pre-propeptide hepcidin sequences. The ORF encodes for a 24-amino acid (aa) signal peptide coupled to a 36-aa prodomain followed by a 26-aa mature peptide. The mature peptide region has a calculated molecular weight of 2.73 kDa, a net positive charge of +2 and a theoretical pI of 8.23. Phylogenetic analysis of Le-Hepc showed a strong relationship with other fish hepcidin sequences and clustered into HAMP2 group hepcidins. Secondary structural analysis indicated that Le-Hepc mature peptide contains two antiparallel β-sheets strengthened by four disulphide bonds formed by eight conserved cysteine residues. The physicochemical properties of the peptide and its structural parameters are in agreement with characteristic features of an antimicrobial peptide. This is the first report of an antimicrobial peptide from the common pony fish, L. equulus.
Collapse
|
25
|
Liu QN, Xin ZZ, Zhang DZ, Jiang SH, Chai XY, Wang ZF, Li CF, Zhou CL, Tang BP. cDNA cloning and expression analysis of a hepcidin gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). FISH & SHELLFISH IMMUNOLOGY 2017; 60:247-254. [PMID: 27815205 DOI: 10.1016/j.fsi.2016.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Hepcidin is a small, cysteine-rich antimicrobial peptide with a highly conserved β-sheet structure that plays a vital role in innate host immunity against pathogenic organisms. In this study, a hepcidin gene was identified in Pelteobagrus fulvidraco, an economically important freshwater fish in China. The gene is named PfHep. The complete PfHep cDNA was 723 bp, including a 5'-untranslated region (UTR) of 102 bp, a 3'-UTR of 339 bp and an open reading frame of 282 bp encoding a polypeptide of 93 amino acids, which includes a predicted signal peptide and the Hepcidin domain. The predicted mature, cationic PfHep protein has a typical hepcidin RX (K/R)R motif and eight conserved cysteine residues. The deduced PfHep protein sequence has 70%, 54% and 39% percent identity with hepcidins from Ictalurus punctatus, Danio rerio, and Homo sapiens, respectively. The predicted tertiary structure of PfHep is very similar to that of hepcidin in other animals. Phylogenetic analysis revealed that PfHep is closely related to the hepcidins of I. punctatus and I. furcatus. Real-time quantitative reverse transcription-PCR showed that the PfHep gene was expressed most in liver of healthy P. fulvidraco, and expressed to some extent in all the tissues tested. After challenge with lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (poly I:C), respectively, the expression levels of PfHep were markedly upregulated in liver, spleen, head kidney and blood at different time points. Together these results imply that PfHep may be an important component of the innate immune system and be involved in immune defense against invading pathogens.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China.
| |
Collapse
|
26
|
Wang D, Li S, Zhao J, Liu H, Lu T, Yin J. Genomic organization, expression and antimicrobial activity of a hepcidin from taimen (Hucho taimen, Pallas). FISH & SHELLFISH IMMUNOLOGY 2016; 56:303-309. [PMID: 27452973 DOI: 10.1016/j.fsi.2016.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Hepcidin, an antimicrobial peptide, plays a crucial role in innate immune system of teleost fish. As a cysteine-rich peptide, hepcidin possesses a dual function including iron regulation and innate immunity. In the present study, a full-length hepcidin cDNA (HtHep) was cloned and characterized by RT-PCR and RACE techniques from taimen (Hucho taimen, Pallas), which is a type of rare, precious and cold-water fish species in China. The cDNA contains an open reading frame (ORF) of 267 bp encoding 88 amino acid (aa), with 170 bp located in the 5(') untranslated region (UTR) and 151 bp in the 3' UTR. The genomic sequences analysis showed that the HtHep gene consisted of three exons and two introns (with the length 94 and 251 bp, respectively). With a predicted molecular mass of 2881.4 Da and a theoretical pI of 8.53, the deduced amino acid encodes a signal peptide of 24 aa, prodomain of 39 aa and mature peptide of 25 aa. The signal peptidase (SA-VP) and the motif RX (K/R)R of propeptide convertase suggested the cleavage site of signal and mature peptide. Eight conserved cysteine residues were also identified and formed four disulfide bonds. Pair-wise alignments showed that HtHep clustered together with two fish species of Salmonidae family (Salmo salar and Oncorhynchus mykiss) in HAMP1 branch. Quantitative RT-PCR analysis indicated that the mRNA levels of HtHep were detected in a wide range of tissues and the highest level was detected in the liver. Its expression was also detected early during embryonic stage and could be up-regulated in the liver when challenged with pathogenic bacteria (Yersinia ruckeri). The recombinant HtHep (rHtHep) had antimicrobial activity against both gram-positive (Micrococcus lysodeikticus and Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). Our results suggested that HtHep might be involved in the innate immune defense against bacterial pathogens in taimen.
Collapse
Affiliation(s)
- Di Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shaowu Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Jingzhuang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Tongyan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Jiasheng Yin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| |
Collapse
|
27
|
Yu P, Gu H. Bioactive substances from marine fishes, shrimps, and algae and their functions: present and future. Crit Rev Food Sci Nutr 2015; 55:1114-36. [PMID: 24915345 DOI: 10.1080/10408398.2012.686933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Marine fishes, shrimps, and algae have many important bioactive substances, such as peptides, unsaturated fatty acids, polysaccharides, trace elements, and natural pigments. The introduction of these substances contributes to a significant improvement in developing them in final processed products. In fact, the knowledge of these bioactive substances has experienced a rapid increase in the past 20 years and prompted the relevant technological revolution with a decisive contribution to the final application. The purpose of this review was to introduce critically and comprehensively the present knowledge of these bioactive substances and pointed out their future developmental situation.
Collapse
Affiliation(s)
- Ping Yu
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | | |
Collapse
|
28
|
Das A, Mohapatra A, Sahoo PK. Cloning and Characterization of Antimicrobial Peptide, Hepcidin in Medium Carp, Puntius sarana. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9438-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Gong LC, Wang H, Deng L. Molecular characterization, phylogeny and expression of a hepcidin gene in the blotched snakehead Channa maculata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:1-11. [PMID: 24287270 DOI: 10.1016/j.dci.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 06/02/2023]
Abstract
A hepcidin-like gene (cmHep) was cloned and characterized from the liver of the blotched snakehead Channa maculata. The complete cmHep cDNA was 756 bp in length, containing an open reading frame of 270 bp (encoding 89 amino acids), flanked by 210 bp and 276 bp of 5' and 3' untranslated regions, respectively. The deduced peptide of 89 amino acids consisted of 24 aa, 40 aa and 25 aa for signal peptide, prodomain and mature peptide, respectively. The mature peptide had eight cysteines at the identical conserved positions in common with most of other known hepcidins in vertebrates. cmHepc gene displayed a tripartite structure (three exons interrupted by two introns), which organisation was conserved between the blotched snakehead and other fish species. Phylogenetic analysis of hepcidins from C. maculata and other vertebrates showed that major phylogenetic grouping of fish hepcidin coincided with the current euteleosts classification, indicating the multiphyletic evolution of hepcidin in the teleosts. In the Acanthopterygii subclade, there were two distinct additional subclades named as HAMP-Ac1 and HAMP-Ac2. The blotched snakehead hepcidin was in the group HAMP-Ac1, which has the hypothetical iron regulatory sequence [Q-S/I-H-L/I-S/A] motif in N-terminal of mature peptide. The RT-PCR showed cmHep mRNA transcripts were widely distributed in all tissues tested in the blotched snakehead including the liver, gill, intestine, spleen, head kidney and peripheral white blood cell. The most abundant of cmHep mRNA was detected in liver. A significant up-regulation of cmHep expression was detected only in head kidney at 24h post-challenge with Vibrio parahaemolyticus in blotched snakehead adults, no significant differences found in liver, gill, intestine and spleen. The cmHep expression was up-regulated in spleen, head kidney and intestine at 24h post-injection with LPS in blotched snakehead juveniles, liver cmHep expression was not altered. Iron overloading and poly I:C stimulation down-regulated cmHep expression in liver, but did not significantly change cmHep expression in spleen, head kidney and intestine in blotched snakehead juveniles.
Collapse
Affiliation(s)
- Li-cai Gong
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Hao Wang
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Li Deng
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| |
Collapse
|
30
|
Kasthuri SR, Wan Q, Umasuthan N, Bathige SDNK, Lim BS, Jung HB, Lee J, Whang I. Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1406-1415. [PMID: 23968692 DOI: 10.1016/j.fsi.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Antimicrobial peptides are important innate effector molecules, playing a vital role in antimicrobial immunity in all species. Glyrichin is a transmembrane protein and an antibacterial peptide, exerting its functions against a wide range of pathogenic bacteria. In this study, cDNA and a BAC clone harboring the glyrichin gene were identified from rock bream and characterized. Genomic characterization showed that the OfGlyrichin gene exhibited a 3 exon-2 intron structure. OfGlyrichin is a 79-amino-acid protein with a transmembrane domain at (22)GFMMGFAVGMAAGAMFGTFSCLR(44). Pairwise and multiple sequence alignments showed high identity and conservation with mammalian orthologues. Phylogenetic analysis showed a close relationship with fish species. Higher levels of OfGlyrichin transcripts were detected in the liver from healthy rock bream which were induced by immunogens like lipopolysaccharide, poly I:C, rock bream irido virus, Edwardsiella tarda and Streptococcus iniae. The synthetic peptide (pOf19) showed antibacterial activity against Escherichia coli, E. tarda, and S. iniae. Analysis of the bacterial morphological features after pOf19 peptide treatment showed breakage of the cell membrane, affirming that antibacterial function is accomplished through membrane lysis. The pOf19 peptide also showed antiviral activity against RBIV infection. The high conservation of the genomic structure and protein, together with the antimicrobial roles of OfGlyrichin, provide evidence for the evolutionary existence of this protein playing a vital role in innate immune defense in rock bream.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Álvarez CA, Santana PA, Guzmán F, Marshall S, Mercado L. Detection of the hepcidin prepropeptide and mature peptide in liver of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:77-81. [PMID: 23603124 DOI: 10.1016/j.dci.2013.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Hepcidin is a small, cationic peptide which displays antimicrobial activities and iron regulatory function. Originally identified in mammals, this peptide is also present in fish. Hepcidin mRNA is predominantly expressed in liver and is regulated by iron and pathogen infection. In this work, we characterized the expression of trout hepcidin at protein level using rabbit antisera. Results showed that the prepropeptide of hepcidin can be detected by Western Blot in liver tissue from trout injected with iron or lipopolysaccharide. The mature hepcidin peptide was detected at the ionized state 5+(m/z 577.2) by HPLC-ESI-MS in acid extracts from liver tissue. Moreover, hepcidin peptide was located in trout liver imprints by immunofluorescence. These results showed that hepcidin peptide is up-regulated by iron and bacterial components in the trout liver. This up-regulation could be a potential indicator of disease susceptibility, suggesting that hepcidin regulates iron homeostasis in salmonids.
Collapse
Affiliation(s)
- Claudio A Álvarez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | | | | | | | | |
Collapse
|
32
|
Antimicrobial peptides: versatile biological properties. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:675391. [PMID: 23935642 PMCID: PMC3710626 DOI: 10.1155/2013/675391] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 01/08/2023]
Abstract
Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.
Collapse
|
33
|
Thangapand V, Balaji S, Balasubram V, Baskaran S, Pavaraj M. Evaluation of Immunomodulatory Effect of Dietary Probiotics on the Common Carp, Cyprinus carpio. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/rji.2013.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Buonocore F, Randelli E, Casani D, Picchietti S, Belardinelli MC, de Pascale D, De Santi C, Scapigliati G. A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): molecular characterization, localization and bactericidal activity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1183-1191. [PMID: 22982327 DOI: 10.1016/j.fsi.2012.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/29/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Antimicrobial peptides (AMPs) are considered one of the most ancient components of the innate immune system. They are able to exert their protection activity against a variety of microorganisms, and are widely distributed in both vertebrates and invertebrates. In this paper we focused on an AMP identified in the Antarctic teleost Chionodraco hamatus, an icefish species. The cDNA sequence of the AMP, named chionodracine, is comprised of 515 bp and translates for a putative protein precursor of 80 amino acids, with a signal peptide of 22 amino acids. The structural features evidenced in the primary sequence of chionodracine lead to the inclusion of the peptide in the antimicrobial family of piscidins. The analysis by real-time PCR of the basal gene transcripts of chionodracine in different icefish tissues showed that the highest expression was found in gills, followed by head kidney. The chionodracine expression levels in head kidney leukocytes were up-regulated in vitro both by LPS and poly I:C, and in vivo by LPS. A putative chionodracine mature peptide was synthesized and employed to obtain a polyclonal antiserum, which was used in immunohistochemistry of gills sections and revealed a significant positivity associated with mast cells. The bactericidal activity of the peptide was investigated and found significant against Antarctic psychrophilic bacteria strains (Psychrobacter sp. TAD1 and TA144), the Gram-positive Bacillus cereus, and at a lesser extent against the Gram-negative Escherichia coli. Interestingly, the haemolytic activity of chionodracine was tested in vitro on human erythrocytes and no significant lysis occurred until peptide concentration of 50 μM.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pavaraj M, Balasubram V, Baskaran S, Ramasamy P. Development of Immunity by Extract of Medicinal Plant Ocimum sanctum on Common Carp Cyprinus carpio (L.). ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rji.2011.12.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|