1
|
Krishnan ST, Winkler D, Creek D, Anderson D, Kirana C, Maddern GJ, Fenix K, Hauben E, Rudd D, Voelcker NH. Staging of colorectal cancer using lipid biomarkers and machine learning. Metabolomics 2023; 19:84. [PMID: 37731020 PMCID: PMC10511619 DOI: 10.1007/s11306-023-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes. OBJECTIVES The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM). METHODS High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient's preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group. RESULTS Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts. CONCLUSION Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.
Collapse
Affiliation(s)
- Sanduru Thamarai Krishnan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, UK
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - David Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia
- School of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, UK
| | - Darren Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Chandra Kirana
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Guy J Maddern
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Ehud Hauben
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
3
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Al-Emarah MK, Kazerani HR, Taghizad F, Dehghani H, Elahi M. Anti-obesity effect of the bacterial product nisin in an NIH Swiss mouse model. Lipids Health Dis 2023; 22:23. [PMID: 36765351 PMCID: PMC9912503 DOI: 10.1186/s12944-023-01788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Obesity is a life-threatening metabolic disorder that predisposes individuals to other diseases. In this study, the effect of nisin, a bacteriocin produced by some bacteria, on an animal model of obesity based on selected parameters was investigated. Forty Swiss NIH mice were randomly divided into four groups and received either a placebo (saline) or nisin (25, 50, or 100 μg/kg, ip) daily for 8 weeks. The mice in all groups were fed a high-sugar diet throughout the experiment. Bodyweight and food intake were measured weekly, and at the end of the experiment, the levels of FBS, serum triglyceride, cholesterol, high-density lipoprotein, low-density lipoprotein, and hepatic enzymes were tested, and red and white blood cell counts, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were determined. Finally, the expression levels of some obesity-related genes, including stearoyl-CoA desaturase-1 (SCD-1), glucose transporter-4 (GLUT4), zinc finger protein 423 (zfp423), 422 (ap2), and tumor necrosis factor-alpha (TNF-α), were assessed using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). After the experiment, the body weights, abdominal fat, and body mass index were significantly lower in the nisin-treated groups than in the control group. The highest effect was observed with 50 μg/kg nisin. The expression of SCD-1, GLUT4, 422(ap2), and TNF-α decreased significantly following treatment with nisin. No significant differences were observed in the other studied parameters, and no toxic effects were observed for nisin under these experimental conditions. The results suggested that nisin could have antiobesity effects.
Collapse
Affiliation(s)
- M. K. Al-Emarah
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran ,Faculty of Agriculture and Marshlands, University of Thi-qar, Thi-qar, Iraq
| | - H. R. Kazerani
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F. Taghizad
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - H. Dehghani
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran ,grid.411301.60000 0001 0666 1211Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M. Elahi
- grid.411301.60000 0001 0666 1211Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Relationship between 4-Hydroxynonenal (4-HNE) as Systemic Biomarker of Lipid Peroxidation and Metabolomic Profiling of Patients with Prostate Cancer. Biomolecules 2023; 13:biom13010145. [PMID: 36671530 PMCID: PMC9855859 DOI: 10.3390/biom13010145] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.
Collapse
|
6
|
Alzahrani AM, Shait Mohammed MR, Alghamdi RA, Ahmad A, Zamzami MA, Choudhry H, Khan MI. Urolithin A and B Alter Cellular Metabolism and Induce Metabolites Associated with Apoptosis in Leukemic Cells. Int J Mol Sci 2021; 22:ijms22115465. [PMID: 34067305 PMCID: PMC8196872 DOI: 10.3390/ijms22115465] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Leukemia is persistently a significant cause of illness and mortality worldwide. Urolithins, metabolites of ellagic acid and ellagitannins produced by gut microbiota, showed better bioactive compounds liable for the health benefits exerted by ellagic acid and ellagitannins containing pomegranate and walnuts. Here, we assessed the potential antileukemic activities of both urolithin A and urolithin B. Results showed that both urolithin A and B significantly inhibited the proliferation of leukemic cell lines Jurkat and K562, among which urolithin A showed the more prominent antiproliferative capability. Further, urolithin treatment alters leukemic cell metabolism, as evidenced by increased metabolic rate and notable changes in glutamine metabolism, one-carbon metabolism, and lipid metabolism. Next, we evidenced that both urolithins equally promoted apoptosis in leukemic cell lines. Based on these observations, we concluded that both urolithin A and B alter leukemic cell metabolome, resulting in a halt of proliferation, followed by apoptosis. The data can be used for designing new combinational therapies to eradicate leukemic cells.
Collapse
Affiliation(s)
- Abdulaziz Musa Alzahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
| | - Mohammed Razeeth Shait Mohammed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Ahmed Alghamdi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
| | - Abrar Ahmad
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (M.R.S.M.); (R.A.A.); (A.A.); (M.A.Z.); (H.C.)
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Pietzner M, Budde K, Rühlemann M, Völzke H, Homuth G, Weiss FU, Lerch MM, Frost F. Exocrine Pancreatic Function Modulates Plasma Metabolites Through Changes in Gut Microbiota Composition. J Clin Endocrinol Metab 2021; 106:e2290-e2298. [PMID: 33462612 PMCID: PMC8186556 DOI: 10.1210/clinem/dgaa961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Exocrine pancreatic function is critically involved in regulating the gut microbiota composition. At the same time, its impairment acutely affects human metabolism. How these 2 roles are connected is unknown. We studied how the exocrine pancreas contributes to metabolism via modulation of gut microbiota. DESIGN Fecal samples were collected in 2226 participants of the population-based Study of Health in Pomerania (SHIP/SHIP-TREND) to determine exocrine pancreatic function (pancreatic elastase enzyme-linked immunosorbent assay) and intestinal microbiota profiles (16S ribosomal ribonucleic acid gene sequencing). Plasma metabolite levels were determined by mass spectrometry. RESULTS Exocrine pancreatic function was associated with changes in the abundance of 28 taxa and, simultaneously, with those of 16 plasma metabolites. Mediation pathway analysis revealed that a significant component of how exocrine pancreatic function affects the blood metabolome is mediated via gut microbiota abundance changes, most prominently, circulating serotonin and lysophosphatidylcholines. CONCLUSION These results imply that the effect of exocrine pancreatic function on intestinal microbiota composition alters the availability of microbial-derived metabolites in the blood and thus directly contributes to the host metabolic changes associated with exocrine pancreatic dysfunction.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University
Medicine Greifswald, Greifswald, Germany
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University
Medicine Greifswald, Greifswald, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University
of Kiel, Kiel, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine
Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics
and Functional Genomics, University Medicine Greifswald,
Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald,
Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald,
Greifswald, Germany
- Correspondence and Reprint Requests: Markus M. Lerch MD, Department of Medicine A, University Medicine
Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald,
Greifswald, Germany
| |
Collapse
|
8
|
Sun Q, Yu X, Peng C, Liu N, Chen W, Xu H, Wei H, Fang K, Dong Z, Fu C, Xu Y, Lu W. Activation of SREBP-1c alters lipogenesis and promotes tumor growth and metastasis in gastric cancer. Biomed Pharmacother 2020; 128:110274. [PMID: 32464305 DOI: 10.1016/j.biopha.2020.110274] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Aggressively growing tumors are characterized by significant variations in metabolites, including lipids, and can involve the elevated synthesis ofde novo fatty acids. METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics and lipidomics were performed to compare human gastric cancer tissues and adjacent normal tissues from clinical patients. A series of cellular and molecular biological methods were applied to validate the lipidomics results. RESULTS Palmitic acid (PA) was found to be significantly downregulated in gastric cancer tissues, and it was found that a high concentration of PA specifically inhibited cell proliferation and impaired cell invasiveness and migrationin vitro in AGS, SGC-7901, and MGC-803 gastric cancer cell lines. Moreover, sterol regulatory element-binding protein 1 (SREBP-1c) was activated in human gastric cancer tissues, and it promoted the expression of a series of genes associated with the synthesis of fatty acids, such as SCD1 and FASN. SREBP-1c knockdown rescued the migration and invasion defects in AGS and SGC-7901 gastric cancer cells. CONCLUSION Taken together, our findings confirmed the variation in fatty acid synthesis in gastric cancer and identified SREBP-1c as a promising target for gastric cancer treatment.
Collapse
Affiliation(s)
- Qianqian Sun
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Xiaojuan Yu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Chunwei Peng
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei, Anhui, 230022, China
| | - Ning Liu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Hongquan Wei
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Kun Fang
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China; The First Clinical Medicine College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Ziwei Dong
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China; The Second Clinical Medicine College, Anhui Medical University, Hefei, 230032, China
| | - Chuyu Fu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China; The First Clinical Medicine College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China.
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, 81 MeiShan Road, Hefei, 230032, China.
| |
Collapse
|
9
|
Ferreri C, Sansone A, Buratta S, Urbanelli L, Costanzi E, Emiliani C, Chatgilialoglu C. The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers (Basel) 2020; 12:E900. [PMID: 32272739 PMCID: PMC7226157 DOI: 10.3390/cancers12040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
A new pathway leading to the n-10 fatty acid series has been recently evidenced, starting from sapienic acid, a monounsaturated fatty acid (MUFA) resulting from the transformation of palmitic acid by delta-6 desaturase. Sapienic acid has attracted attention as a novel marker of cancer cell plasticity. Here, we analyzed fatty acids, including the n-10 fatty acid contents, and for the first time, compared cell membranes and the corresponding extracellular vesicles (EV) of two human prostatic adenocarcinoma cell lines of different aggressiveness (PC3 and LNCaP). The n-10 components were 9-13% of the total fatty acids in both cancer cell lines and EVs, with total MUFA levels significantly higher in EVs of the most aggressive cell type (PC3). High sapienic/palmitoleic ratios indicated the preference for delta-6 versus delta-9 desaturase enzymatic activity in these cell lines. The expressions analysis of enzymes involved in desaturation and elongation by qRT-PCR showed a higher desaturase activity in PC3 and a higher elongase activity toward polyunsaturated fatty acids than toward saturated fatty acids, compared to LNCaP cells. Our results improve the present knowledge in cancer fatty acid metabolism and lipid phenotypes, highlighting EV lipidomics to monitor positional fatty acid isomer profiles and MUFA levels in cancer.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| |
Collapse
|
10
|
Chen WL, Jin X, Wang M, Liu D, Luo Q, Tian H, Cai L, Meng L, Bi R, Wang L, Xie X, Yu G, Li L, Dong C, Cai Q, Jia W, Wei W, Jia L. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 2020; 5:131596. [PMID: 32051337 DOI: 10.1172/jci.insight.131596] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer (LC) is a leading cause of cancer-related deaths worldwide. Its rapid growth requires hyperactive catabolism of principal metabolic fuels. It is unclear whether fructose, an abundant sugar in current diets, is essential for LC. We demonstrated that, under the condition of coexistence of metabolic fuels in the body, fructose was readily used by LC cells in vivo as a glucose alternative via upregulating GLUT5, a major fructose transporter encoded by solute carrier family 2 member 5 (SLC2A5). Metabolomic profiling coupled with isotope tracing demonstrated that incorporated fructose was catabolized to fuel fatty acid synthesis and palmitoleic acid generation in particular to expedite LC growth in vivo. Both in vitro and in vivo supplement of palmitoleic acid could restore impaired LC propagation caused by SLC2A5 deletion. Furthermore, molecular mechanism investigation revealed that GLUT5-mediated fructose utilization was required to suppress AMPK and consequently activate mTORC1 activity to promote LC growth. As such, pharmacological blockade of in vivo fructose utilization using a GLUT5 inhibitor remarkably curtailed LC growth. Together, this study underscores the importance of in vivo fructose utilization mediated by GLUT5 in governing LC growth and highlights a promising strategy to treat LC by targeting GLUT5 to eliminate those fructose-addicted neoplastic cells.
Collapse
Affiliation(s)
- Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hechuan Tian
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Bi
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Xie
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanzhen Yu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiliang Cai
- Ministry of Education and Ministry of Health Key Lab of Medical Molecular Virology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Mika A, Kobiela J, Pakiet A, Czumaj A, Sokołowska E, Makarewicz W, Chmielewski M, Stepnowski P, Marino-Gammazza A, Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci Rep 2020; 10:1954. [PMID: 32029824 PMCID: PMC7005037 DOI: 10.1038/s41598-020-58895-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Sokołowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Makarewicz
- Department of Oncologic Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Antonella Marino-Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100, Palermo, Italy
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
12
|
Chemical Composition and Antiproliferative Effects of a Methanol Extract of Aspongopus chinensis Dallas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2607086. [PMID: 31275405 PMCID: PMC6582901 DOI: 10.1155/2019/2607086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Natural products from insects can be potent sources for developing a variety of pharmaceutical products. Aspongopus chinensis Dallas has been used as a traditional Chinese medicine and there are several clinical evidences to support its anticancer activity. However, the anticancer active ingredients present in A. chinensis remain unidentified. In the present study, we investigated the anticancer effects of a methanol extract of A. chinensis (AME). Gas chromatography mass spectrometry was used to analyse the chemical composition of AME. The cell viability of MDA-MB-453 and HCC-1937 cells treated with different concentrations of AME was detected by MTT assay and the ratio of cells in different cell cycle phases was analysed by flow cytometry. The expression of genes associated with cell cycle was analysed by real-time PCR assay. The results showed that oleic acid (25.39%) and palmitic acid (21.798%) are the main anticancer compounds present in AME. There was a concentration-dependent decrease in the proliferation of MDA-MB-453 and HCC-1937 cells. Moreover, treatment with AME induced a S-phase arrest in the cells. Real-time PCR assay demonstrated that AME could significantly downregulate the expression of CDC20, AURKB, PLK1, CCNB2, and TOP2A mRNAs and upregulate the expression of GADD45A mRNA. We demonstrate that the methanol extract of A. chinensis could be a potential natural alternative or complementary therapy for breast cancer.
Collapse
|
13
|
Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040832. [PMID: 30769921 PMCID: PMC6412212 DOI: 10.3390/ijms20040832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.
Collapse
Affiliation(s)
- Roberta Scanferlato
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | | | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco De Spirito
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Giuseppe Maulucci
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| |
Collapse
|
14
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
15
|
Matejcic M, Lesueur F, Biessy C, Renault AL, Mebirouk N, Yammine S, Keski-Rahkonen P, Li K, Hémon B, Weiderpass E, Rebours V, Boutron-Ruault MC, Carbonnel F, Kaaks R, Katzke V, Kuhn T, Boeing H, Trichopoulou A, Palli D, Agnoli C, Panico S, Tumino R, Sacerdote C, Quirós JR, Duell EJ, Porta M, Sánchez MJ, Chirlaque MD, Barricarte A, Amiano P, Ye W, Peeters PH, Khaw KT, Perez-Cornago A, Key TJ, Bueno-de-Mesquita HB, Riboli E, Vineis P, Romieu I, Gunter MJ, Chajès V. Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort. Int J Cancer 2018; 143:2437-2448. [PMID: 30110135 DOI: 10.1002/ijc.31797] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/11/2024]
Abstract
There are both limited and conflicting data on the role of dietary fat and specific fatty acids in the development of pancreatic cancer. In this study, we investigated the association between plasma phospholipid fatty acids and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The fatty acid composition was measured by gas chromatography in plasma samples collected at recruitment from375 incident pancreatic cancer cases and375 matched controls. Associations of specific fatty acids with pancreatic cancer risk were evaluated using multivariable conditional logistic regression models with adjustment for established pancreatic cancer risk factors. Statistically significant inverse associations were found between pancreatic cancer incidence and levels of heptadecanoic acid (ORT3-T1 [odds ratio for highest versus lowest tertile] =0.63; 95%CI[confidence interval] = 0.41-0.98; ptrend = 0.036), n-3 polyunsaturated α-linolenic acid (ORT3-T1 = 0.60; 95%CI = 0.39-0.92; ptrend = 0.02) and docosapentaenoic acid (ORT3-T1 = 0.52; 95%CI = 0.32-0.85; ptrend = 0.008). Industrial trans-fatty acids were positively associated with pancreatic cancer risk among men (ORT3-T1 = 3.00; 95%CI = 1.13-7.99; ptrend = 0.029), while conjugated linoleic acids were inversely related to pancreatic cancer among women only (ORT3-T1 = 0.37; 95%CI = 0.17-0.81; ptrend = 0.008). Among current smokers, the long-chain n-6/n-3 polyunsaturated fatty acids ratio was positively associated with pancreatic cancer risk (ORT3-T1 = 3.40; 95%CI = 1.39-8.34; ptrend = 0.007). Results were robust to a range of sensitivity analyses. Our findings suggest that higher circulating levels of saturated fatty acids with an odd number of carbon atoms and n-3 polyunsaturated fatty acids may be related to lower risk of pancreatic cancer. The influence of some fatty acids on the development of pancreatic cancer may be sex-specific and modulated by smoking.
Collapse
Affiliation(s)
- M Matejcic
- International Agency for Research on Cancer, Lyon, France
| | - F Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - C Biessy
- International Agency for Research on Cancer, Lyon, France
| | - A L Renault
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - N Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - S Yammine
- International Agency for Research on Cancer, Lyon, France
| | | | - K Li
- International Agency for Research on Cancer, Lyon, France
| | - B Hémon
- International Agency for Research on Cancer, Lyon, France
| | - E Weiderpass
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain
| | - V Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France
| | - M C Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France
- Université Paris Sud, UMRS, Villejuif, France
| | - F Carbonnel
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France
- Université Paris Sud, UMRS, Villejuif, France
- Department of Gastroenterology, Bicêtre University Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - R Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - V Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Kuhn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Boeing
- Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - A Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - D Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - C Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Panico
- Clinical Medicine and Surgery Department, Università degli Studi di Napoli Federico II, Naples, Italy
| | - R Tumino
- Cancer Registry and Histopathology Department, ASP, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy
| | - C Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy
| | - J R Quirós
- EPIC Asturias, Public Health Directorate, Asturias, Spain
| | - E J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - M Porta
- Hospital del Mar Research Institute - IMIM, CIBER Epidemiología y Salud Pública (CIBERESP) and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M J Sánchez
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M D Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - A Barricarte
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Navarra Public Health Institute, Pamplona, Spain
| | - P Amiano
- Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - W Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- The Medical Biobank at Umeå University, Umeå, Sweden
| | - P H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - K T Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - T J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - E Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - P Vineis
- MRC-PHE Center for Environment and Health, School of Public Health, Imperial College, London, United Kingdom
| | - I Romieu
- International Agency for Research on Cancer, Lyon, France
| | - M J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - V Chajès
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
16
|
Messedi M, Naifar M, Grayaa S, Frikha F, Messoued M, Sethom MM, Feki M, Kaabach N, Bahloul Z, Jamoussi K, Ayedi F. Plasma Saturated and Monounsaturated Fatty Acids in Behçet's Disease. Open Rheumatol J 2018; 12:139-151. [PMID: 30258503 PMCID: PMC6128021 DOI: 10.2174/1874312901812010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Fatty Acid (FA) composition of serum has been associated with many markers of inflammation. In this study, we tried to examine plasma Saturated Fatty Acid (SFA) and Monounsaturated Fatty Acid (MUFA) composition in Behçet's Disease (BD) patients. The associations between the circulating FA levels and some markers of inflammation have also been investigated. Methods: This study is a cross-sectional one. In fact, a total of 101 BD patients and healthy controls group of 99 subjects are enrolled. Gas Chromatograph equipped with a Capillary Split/Splitless Injector and flame ionization detector was used to analyze the plasma SFA and MUFA compositions. The high sensitivity C-Reactive Protein (hsCRP) and fibrinogen levels were measured using standard techniques. Results: BD patients had significantly higher proportions of Mystiric Acid (MA), Palmitic Acid (PAM), Palmitoleic Acid (POA) and Stearoyl-CoA Desaturase (SCD)-16, compared to controls. The results revealed that patients with severe involvements had high levels of POA and total MUFA associated with higher SCD-16 activity compared to those with minor ones. The receiver operator characteristic curve analysis revealed that POA could well discriminate BD patients with severe clinical manifestations. In the bivariate analysis, hsCRP was found to be positively correlated with total SAFA and POA elongase activity index but negatively correlated with SCD-18 activity index. The STA, POA, elongase and SCD-16 activity index are correlated with fibrinogen. On the other hand, the multivariate analysis showed that POA remained associated with higher levels of hsCRP. Conclusion: Unfavourable plasma SFA and MUFA profile were reported in BD patients. POA, which is associated with higher plasma hsCRP level, may play a role in the pathogenesis of BD.
Collapse
Affiliation(s)
- Meriam Messedi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Manel Naifar
- Biochemistry laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Sfax, Tunisia
| | - Sahar Grayaa
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Faten Frikha
- Internal Medicine Department, Hedi Chaker Hospital, 3029 Sfax, Sfax, Tunisia
| | - Mariem Messoued
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Mohamed Marouene Sethom
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Naziha Kaabach
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Zouheir Bahloul
- Internal Medicine Department, Hedi Chaker Hospital, 3029 Sfax, Sfax, Tunisia
| | - Kamel Jamoussi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Fatma Ayedi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia.,Biochemistry laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Wu Y, Baylin A, Colacino JA. Iron, Oxidative Stress, and Δ9 Stearoyl-CoenzymeA Desaturase Index (C16:1/C16:0): An Analysis Applying the National Health and Nutrition Examination Survey 2003-04. Curr Dev Nutr 2018; 2:1-8. [PMID: 29955721 PMCID: PMC5998366 DOI: 10.1093/cdn/nzx001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stearoyl-coenzyme A desaturase (SCD) is a key enzyme in fatty acid metabolism, and elevated SCD activity is associated with multiple adverse health outcomes. Diet, hormone levels, and environmental exposures are potential factors affecting SCD activity. Less is known about the relationship between micronutrients, including iron, and SCD activity. OBJECTIVE The aim of this study was to investigate the association between serum ferritin level, a biomarker of circulating iron levels, and the Δ9 desaturase index (C16:1/C16:0), a biomarker of estimated SCD activity, among women in the United States. METHODS The association between serum ferritin and the Δ9 desaturase index was assessed in a cross-sectional study of 447 female participants, aged 20-49 y, from NHANES 2003-2004. The multivariate analyses were performed utilizing generalized linear modeling, adjusting for potential confounders. Mediation of the relationship between serum ferritin and Δ9 desaturase index by γ-glutamyltranspeptidase (GGT), a biomarker of oxidative stress, was also assessed. RESULTS Increased ferritin was significantly associated with a higher Δ9 desaturase index. Adjusting for waist circumference, age, race, and cotinine levels, an interquartile range increase in serum ferritin corresponded to 3.92% (95% CI: 0.88%, 7.05%) higher Δ9 desaturase index. GGT, the biomarker used to measure oxidative stress level, did not appear to mediate the association between ferritin and Δ9 desaturase index. After stratifying by pregnancy status, these associations were limited to nonpregnant individuals. CONCLUSIONS Elevated SCD activity may be associated with increased iron storage inside the human body; the association did not appear to be mediated via oxidative stress, as estimated by GGT levels.
Collapse
Affiliation(s)
- Yue Wu
- Departments of Nutritional Sciences, Epidemiology, and Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Departments of Epidemiology, and Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Departments of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ana Baylin
- Departments of Epidemiology, and Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Departments of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | | |
Collapse
|
18
|
Cui L, Liu J, Yan X, Hu S. Identification of Metabolite Biomarkers for Gout Using Capillary Ion Chromatography with Mass Spectrometry. Anal Chem 2017; 89:11737-11743. [PMID: 28972752 DOI: 10.1021/acs.analchem.7b03232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gout is a common form of inflammatory arthritis, and the detailed pathogenic mechanisms for this metabolic disorder remain largely unknown. In this study, we first profiled the salivary metabolites in 8 patients with gout, 15 patients with hyperuricaemia (HUA), and 15 healthy individuals using capillary ion chromatography (CIC) with tandem mass spectrometry (MS/MS). Forty-nine salivary metabolites were found to be significantly changed between gout patient and healthy control groups, and 26 salivary metabolites were significantly different between gout and HUA patient groups. Three metabolite biomarkers, uric acid, oxalic acid, and l-homocysteic acid (HCA), were selected for validation in the saliva samples of 30 patients with gout, 30 patients with HUA, and 30 healthy control subjects. By using commercial assay kits for the measurements, salivary uric acid and oxalic acid levels were found to be significantly higher in gout patients than healthy controls, whereas salivary HCA level was significantly higher in gout patients than both HUA patients and healthy controls. These assay measurements were in line with those obtained by CIC-MS/MS. In conclusion, we have demonstrated a new application of CIC-MS/MS for the discovery of novel metabolite biomarkers of gout. Validated biomarkers may be used for noninvasive, diagnostic and prognostic applications in gout. Future studies are warranted to investigate the clinical utility of these identified biomarkers for monitoring gout flare and/or treatment efficacy.
Collapse
Affiliation(s)
- Li Cui
- School of Dentistry, University of California , Los Angeles, California 90095, United States
| | - Juan Liu
- Changzhou Second People's Hospital, Nanjing Medical University , Changzhou 213000, China
| | - Xinmin Yan
- Changzhou Second People's Hospital, Nanjing Medical University , Changzhou 213000, China
| | - Shen Hu
- School of Dentistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Rosqvist F, Bjermo H, Kullberg J, Johansson L, Michaëlsson K, Ahlström H, Lind L, Risérus U. Fatty acid composition in serum cholesterol esters and phospholipids is linked to visceral and subcutaneous adipose tissue content in elderly individuals: a cross-sectional study. Lipids Health Dis 2017; 16:68. [PMID: 28372558 PMCID: PMC5379570 DOI: 10.1186/s12944-017-0445-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Visceral adipose tissue (VAT) and truncal fat predict cardiometabolic disease. Intervention trials suggest that saturated fatty acids (SFA), e.g. palmitic acid, promote abdominal and liver fat storage whereas polyunsaturated fatty acids (PUFA), e.g. linoleic acid, prevent fat accumulation. Such findings require investigation in population-based studies of older individuals. We aimed to investigate the relationships of serum biomarkers of PUFA intake as well as serum levels of palmitic acid, with abdominal and total adipose tissue content. METHODS In a population-based sample of 287 elderly subjects in the PIVUS cohort, we assessed fatty acid composition in serum cholesterol esters (CE) and phospholipids (PL) by gas chromatography and the amount of VAT and abdominal subcutaneous (SAT) adipose tissue by magnetic resonance imaging (MRI), liver fat by MR spectroscopy (MRS), and total body fat, trunk fat and leg fat by dual-energy X-ray absorptiometry (DXA). Insulin resistance was estimated by HOMA-IR. RESULTS VAT and trunk fat showed the strongest correlation with insulin resistance (r = 0.49, P < 0.001). Linoleic acid in both CE and PL was inversely related to all body fat depots (r = -0.24 to -0.33, P < 0.001) including liver fat measured in a sub-group (r = -0.26, P < 0.05, n = 73), whereas n-3 PUFA showed weak inverse (18:3n-3) or positive (20:5n-3) associations. Palmitic acid in CE, but not in PL, was directly correlated with VAT (r = 0.19, P < 0.001) and trunk fat (r = 0.18, P = 0.003). Overall, the significant associations remained after adjusting for energy intake, height, alcohol, sex, smoking, education and physical activity. The inverse correlation between linoleic acid and VAT remained significant after further adjustment for total body fat. CONCLUSIONS Serum linoleic acid is inversely related to body fat storage including VAT and trunk fat whereas palmitic acid was less consistently but directly associated, in line with recent feeding studies. Considering the close link between VAT and insulin resistance, a potential preventive role of plant-based PUFA in VAT accumulation warrants further study.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Helena Bjermo
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Radiology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Radiology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Radiology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Frigolet ME, Gutiérrez-Aguilar R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv Nutr 2017; 8:173S-181S. [PMID: 28096141 PMCID: PMC5227969 DOI: 10.3945/an.115.011130] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The monounsaturated fatty acid palmitoleate (palmitoleic acid) is one of the most abundant fatty acids in serum and tissues, particularly adipose tissue and liver. Its endogenous production by stearoyl-CoA desaturase 1 gives rise to its cis isoform, cis-palmitoleate. Although trans-palmitoleate is also synthesized in humans, it is mainly found as an exogenous source in ruminant fat and dairy products. Recently, palmitoleate was considered to be a lipokine based on evidence demonstrating its release from adipose tissue and its metabolic effects on distant organs. After this finding, research has been performed to determine whether palmitoleate has beneficial effects on metabolism and to elucidate the underlying mechanisms. Thus, the aim of this work was to review the current status of knowledge about palmitoleate, its metabolism, and its influence on metabolic abnormalities. Results have shown mixed cardiovascular effects, direct or inverse correlations with obesity, and hepatosteatosis, but a significant amelioration or prevention of insulin resistance and diabetes. Finally, the induction of palmitoleate release from adipose tissue, dietary intake, and its supplementation are all interventions with a potential impact on certain metabolic diseases.
Collapse
Affiliation(s)
- María E Frigolet
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
| | - Ruth Gutiérrez-Aguilar
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
- Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
21
|
Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1865-1880. [PMID: 27639967 DOI: 10.1016/j.bbalip.2016.09.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
The processes of cell proliferation, cell death and differentiation involve an intricate array of biochemical and morphological changes that require a finely tuned modulation of metabolic pathways, chiefly among them is fatty acid metabolism. The critical participation of stearoyl CoA desaturase-1 (SCD1), the fatty acyl Δ9-desaturing enzyme that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), in the mechanisms of replication and survival of mammalian cells, as well as their implication in the biological alterations of cancer have been actively investigated in recent years. This review examines the growing body of evidence that argues for a role of SCD1 as a central regulator of the complex synchronization of metabolic and signaling events that control cellular metabolism, cell cycle progression, survival, differentiation and transformation to cancer.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Medical Center, New York City, NY, United States.
| |
Collapse
|
22
|
Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem Phys Lipids 2016; 197:3-12. [DOI: 10.1016/j.chemphyslip.2015.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023]
|
23
|
Pickens CA, Lane-Elliot A, Comstock SS, Fenton JI. Altered Saturated and Monounsaturated Plasma Phospholipid Fatty Acid Profiles in Adult Males with Colon Adenomas. Cancer Epidemiol Biomarkers Prev 2016; 25:498-506. [PMID: 26721667 PMCID: PMC4779661 DOI: 10.1158/1055-9965.epi-15-0696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Altered lipid metabolism and plasma fatty acid (FA) levels are associated with colorectal cancer. Obesity and elevated waist circumference (WC) increase the likelihood of developing precancerous colon adenomas. METHODS Venous blood was collected from 126 males, ages 48 to 65 years, who received routine colonoscopies. Plasma phospholipid (PPL) FAs were isolated, derivatized, and then analyzed using gas chromatography. ORs and 95% confidence intervals were determined using polytomous logistic regression after adjusting for confounding factors [i.e., age, smoking, WC, and body mass index (BMI)]. RESULTS PPL palmitic acid (PA) was inversely correlated with the presence of colon adenomas (P = 0.01). For each unit increase in palmitoleic acid (OR, 3.75; P = 0.04) or elaidic acid (OR, 2.92; P = 0.04), an individual was more likely to have adenomas relative to no colon polyps. Higher enzyme activity estimates (EAE) of stearoyl-CoA desaturase-1 (SCD-1; P = 0.02) and elongation of very long chain fatty acids protein-6 (ELOVL-6; P = 0.03) were associated with an individual being approximately 1.5 times more likely to have an adenoma compared with no polyps. CONCLUSIONS PPL FAs and EAEs, which have previously been associated with colorectal cancer, are significantly different in those with adenomas when compared with those without polyps. PPL PA, elaidic acid, and SCD-1 and ELOVL-6 EAEs are associated with adenomas independent of BMI and WC. IMPACT PPL PA, elaidic acid, and SCD-1 and ELOVL-6 EAEs are associated with adenomas even after adjusting for obesity-related risk factors and may function as novel biomarkers of early colorectal cancer risk.
Collapse
Affiliation(s)
- C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Ami Lane-Elliot
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
24
|
Huang J, Zhang T, Zhang Q, Chen M, Wang Z, Zheng B, Xia G, Yang X, Huang C, Huang Y. The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg. BMC Genomics 2016; 17:113. [PMID: 26878846 PMCID: PMC4755018 DOI: 10.1186/s12864-016-2434-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background Hickory (Carya cathayensis Sarg.) accumulates more than 70 % oil and 90 % unsaturated fatty acids with considerably high oleic acid in its mature embryo. The concurrent global trancriptomic and lipidomic analyses provided a framework for better understanding of glycerolipid biosynthesis and metabolism in the hickory nut. Results The synthetical regulation of numerous leading lipid-related genes harmonized with the oil accumulation and fatty acid conversion in embryo development. The high level of ACCase correlated positively with fatty acids de novo synthesis, and the synergy of DGAT2 and PDAT promoted the TAG assembly, and oleosins, caleosins and steroleosins were transcribed considerably high for timely energy reserve in oil body. Glycolysis possibly provided sufficient precursors and energy for lipid synthesis. The perfect harmonization of the high level of SAD with low level of FAD2 facilitated the oleic acid accumulation. And the ratio of FATA/FATB or SAD/FATB was proposed for determining the saturated degree of oil. The gene multi-copy event was generated probably for accommodating various survival environments. A thermotolerant defense system including TAG hydrolysis determinants, heat shock proteins, and high ratio of MUFA to PUFA constrained the lipid degradation and provided a guarantee for high lipid content. A batch of potential genes recruited from the co-expression network helps us to understand the lipid synthesis and the response to high temperature better. Conclusions The high transcriptional levels of key genes in lipid synthesis promoted the oil accumulation, and the harmonious expression of key ones for unsaturated fatty acids led oleic acid to high levels. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2434-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianqin Huang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Tong Zhang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Qixiang Zhang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Ming Chen
- School of Life Science, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Zhengjia Wang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Bingsong Zheng
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Guohua Xia
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Xianyou Yang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Chunying Huang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China.
| | - Youjun Huang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, P. R. China. .,School of Life Science, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
25
|
Byagowi S, Naserpour Farivar T, Najafipour R, Sahmani M, Darabi M, Fayezi S, Mirshahvaladi S, Darabi M. Effect of PPARδ agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. Can J Diabetes 2015; 39:123-7. [PMID: 25575964 DOI: 10.1016/j.jcjd.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The stearoyl-CoA desaturase 1 (SCD1), also known as Δ9-desaturase, is a regulatory enzyme in the cellular lipid modification process that has been linked to pancreatic cancer and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and ERK1/2- and EGF receptor (EGFR)-dependent pathways on the expression of SCD1 in human pancreatic carcinoma cell line PANC-1. METHODS PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used MEK inhibitor PD98059, EGFR-selective inhibitor AG1478, and PPARδ agonist GW0742. Changes in mRNA, protein expression and activity index of SCD1 were then determined using real-time reverse transcription polymerase chain reaction, Western blot and gas liquid chromatography, respectively. RESULTS The activity index and expression of SCD1 (p<0.01) decreased following treatment with PPARδ agonist at both mRNA and protein levels, whereas significant increases were observed after treatment with MEK or EGFR inhibitor. It was also found that the activity index of SCD1 were lower (p<0.01) in the combined treatment compared to the incubation with either inhibitor alone. CONCLUSIONS PPARδ and MEK/ERK1/2- and EGFR-dependent pathways affect the expression and activity of SCD1 in pancreatic cancer cells. Furthermore, the aforementioned kinase signalling pathways were involved in an inhibitory effect on the expression and activity of SCD1 in these cells, possibly via PPARδ activation.
Collapse
Affiliation(s)
- Shima Byagowi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Naserpour Farivar
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Students Research Committee, Faculty of Medicine, Department of Anatomy and Cell Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Biotechnology, Cellular and Molecular and Burns Research Centers, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Darabi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|