1
|
Han M, Lu Q, Wang D, Zhou K, Jia C, Teng L, Hamuti A, Peng X, Hu Y, Li W, Yue M, Li Y. Oral co-administration of Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 improves host defense against influenza A virus infection. J Virol 2024; 98:e0095024. [PMID: 39258911 PMCID: PMC11494971 DOI: 10.1128/jvi.00950-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Influenza is an important zoonotic disease that persistently threatens global public health. While it is widely acknowledged that probiotics can modulate the host response to protect the host against infectious disease, the prophylactic efficacy on respiratory viral infection and the detailed mechanism remains elusive. Lactobacillus, the most commonly used probiotic widely applied in food production, has garnered significant attention. In our study utilizing both C57BL/6 and BALB/c mouse models, we explored the protective effect against two strains of influenza virus, A/Mink/China/01/2014(H9N2) and A/California/04/2009(H1N1), through the administration of Lactiplantibacillus plantarum strain 16 (L. plantarum 16) and Lacticaseibacillus rhamnosus strain P118 (L. rhamnosus P118), aiming to identify robust probiotic strains with antiviral properties. Our findings indicate that administering L. plantarum 16 or L. rhamnosus P118 alone does not provide sufficient protection against influenza. However, the co-administration of L. plantarum 16 and L. rhamnosus P118 dramatically reduces viral titers in the respiratory tract and lung, thereby markedly alleviating the clinical symptoms, improving prognosis, and reducing mortality. The mechanisms underlying this effect involve the modulation of host gut microbiota and metabolism through the co-administration of L. plantarum 16 and L. rhamnosus P118, resulting in enrichment of Firmicutes and enhancement of phenylalanine-related metabolism, ultimately leading to an augmentation of the antiviral immune response. Notably, we identified that the circulating metabolic molecule 2-Hydroxycinnamic acid plays a significant role in combating influenza. Our data suggest the potential utility of L. plantarum 16 and L. rhamnosus P118 two-bacterium or 2-Hydroxycinnamic acid in preventing influenza.IMPORTANCEVaccination represents the most optimal strategy to control influenza. Nevertheless, influenza viruses constantly evolve due to antigenic drift and shift, leading to the need for regular updates on influenza vaccines. Additionally, vaccination failure poses significant challenges to influenza prevention. Therefore, it is essential and beneficial to identify novel or universal antiviral measures to protect against influenza. While cumulative data suggest that probiotics offer protection against infectious diseases, the specific mechanisms, such as the effective metabolites or components, remain largely unknown. Our research discovered the capacity of combinational two-bacterium Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 to fight against influenza infection in a mouse model. The protection may occur through modulating the host's gut microbiota and metabolism, further influencing the host's antiviral immune response. Notably, we have identified a novel metabolic molecule, 2-Hydroxycinnamic acid, capable of enhancing antiviral response and restricting viral replication in vivo.
Collapse
Affiliation(s)
- Meiqing Han
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Qi Lu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Di Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Kun Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Chenghao Jia
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lin Teng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Azeguli Hamuti
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Yixiang Hu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
4
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
5
|
Willmott T, Serrage HJ, Cottrell EC, Humphreys GJ, Myers J, Campbell PM, McBain AJ. Investigating the association between nitrate dosing and nitrite generation by the human oral microbiota in continuous culture. Appl Environ Microbiol 2024; 90:e0203523. [PMID: 38440981 PMCID: PMC11022587 DOI: 10.1128/aem.02035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hannah J. Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth C. Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J. Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paul M. Campbell
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023; 13:13398. [PMID: 37592012 PMCID: PMC10435576 DOI: 10.1038/s41598-023-40160-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
Molecular docking is a computational technique that predicts the binding affinity of ligands to receptor proteins. Although it has potential uses in nutraceutical research, it has developed into a formidable tool for drug development. Bioactive substances called nutraceuticals are present in food sources and can be used in the management of diseases. Finding their molecular targets can help in the creation of disease-specific new therapies. The purpose of this review was to explore molecular docking's application to the study of dietary supplements and disease management. First, an overview of the fundamentals of molecular docking and the various software tools available for docking was presented. The limitations and difficulties of using molecular docking in nutraceutical research are also covered, including the reliability of scoring functions and the requirement for experimental validation. Additionally, there was a focus on the identification of molecular targets for nutraceuticals in numerous disease models, including those for sickle cell disease, cancer, cardiovascular, gut, reproductive, and neurodegenerative disorders. We further highlighted biochemistry pathways and models from recent studies that have revealed molecular mechanisms to pinpoint new nutraceuticals' effects on disease pathogenesis. It is convincingly true that molecular docking is a useful tool for identifying the molecular targets of nutraceuticals in the management of diseases. It may offer information about how nutraceuticals work and support the creation of new therapeutics. Therefore, molecular docking has a bright future in nutraceutical research and has a lot of potentials to lead to the creation of brand-new medicines for the treatment of disease.
Collapse
Affiliation(s)
- P C Agu
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Science Laboratory Technology (Biochemistry Option), Our Savior Institute of Science, Agriculture, and Technology, Enugu, Nigeria.
| | - C A Afiukwa
- Department of Biotechnology, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Faculty of Engineering, Caritas University, Amorji-Nike, Enugu, Nigeria
| | - I H Ofoke
- Department of Biochemistry, Faculty of Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - C O Ogbu
- Department of Biochemistry, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - E I Ugwuja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P M Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda.
| |
Collapse
|
7
|
Yoon SL, Grundmann O. Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients 2023; 15:3391. [PMID: 37571328 PMCID: PMC10421404 DOI: 10.3390/nu15153391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is a multi-organ syndrome with unintentional weight loss, sarcopenia, and systemic inflammation. Gastrointestinal (GI) cancer patients are more susceptible to cachexia development due to impaired nutrient absorption and digestion. Given the widespread availability and relatively low cost of dietary supplements, we examined the evidence and effects of fish oil (omega-3 fatty acids), melatonin, probiotics, and green tea for managing symptoms of GI cancer cachexia. A literature review of four specific supplements was conducted using PubMed, Google Scholar, and CINAHL without a date restriction. Of 4621 available literature references, 26 articles were eligible for review. Fish oil decreased C-reactive protein and maintained CD4+ cell count, while melatonin indicated inconsistent findings on managing cachexia, but was well-tolerated. Probiotics decreased serum pro-inflammatory biomarkers and increased the tolerability of chemotherapy by reducing side effects. Green tea preparations and extracts showed a decreased risk of developing various cancers and did not impact tumor growth, survival, or adverse effects. Among these four supplements, probiotics are most promising for further research in preventing systemic inflammation and maintaining adequate absorption of nutrients to prevent the progression of cancer cachexia. Supplements may benefit treatment outcomes in cancer cachexia without side effects while supporting nutritional and therapeutic needs.
Collapse
Affiliation(s)
- Saunjoo L. Yoon
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
| | - Oliver Grundmann
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Kocabay S. Evaluation of probiotic properties of Levilactobacillus brevis isolated from hawthorn vinegar. Arch Microbiol 2023; 205:258. [PMID: 37286902 DOI: 10.1007/s00203-023-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Probiotic microorganisms are increasing their interest today due to the benefits they provide to humans. Vinegar is the process of processing foods containing carbohydrates that can be fermented by acetic acid bacteria and yeasts. Hawthorn vinegar is also important in terms of amino acids, aromatic compounds, organic acids, vitamins and minerals it contains. Depending on the variety of microorganisms in it, the content of hawthorn vinegar changes, especially its biological activity. Bacteria were isolated from handmade hawthorn vinegar obtained in this study. After performing its genotypic characterization, it has been tested that it can grow in low pH environment, survive in artificial gastric and small intestinal fluid, survive against bile acids, surface adhesion characteristics, antibiotic susceptibility, adhesion, and degrade various cholesterol precursors. According to the results obtained, the studied isolate is Levilactobacillus brevis, it can reproduce best at pH 6.3, survives 72.22% in simulated gastric juice, 69.59% in small intestinal fluid, and 97% adhesion to HTC-116. Partially reproduces even in the presence of 2% ox-bile, surface hydrophobicity is 46.29% for n-hexadecane. It has been determined that it can degrade 4 different cholesterol precursors except for Sodium thioglycolate and is generally resistant to antibiotics except for CN30 and N30. Considering the experimental findings of Levilactobacillus brevis isolated from hawthorn vinegar for the first time, it can be said that Levilactobacillus brevis has probiotic properties.
Collapse
Affiliation(s)
- Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University , Malatya, Turkey.
| |
Collapse
|
9
|
Tseng KC, Huang HT, Huang SN, Yang FY, Li WH, Nan FH, Lin YJ. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108661. [PMID: 36906049 DOI: 10.1016/j.fsi.2023.108661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.
Collapse
Affiliation(s)
- Kuo-Chun Tseng
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Shu-Ning Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Fang-Yi Yang
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan.
| |
Collapse
|
10
|
Sharma N, Kang DK, Paik HD, Park YS. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 2023; 32:413-421. [PMID: 36911329 PMCID: PMC9992473 DOI: 10.1007/s10068-022-01212-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
11
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Thangaleela S, Sivamaruthi BS, Kesika P, Chaiyasut C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022; 10:2268. [PMID: 36422338 PMCID: PMC9696277 DOI: 10.3390/microorganisms10112268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are common in older people. Autism spectrum disorders (ASD), anxiety, depression, stress, and cognitive impairment are prevalent among people irrespective of age. The incidence of neurological disorders has been increasing in recent decades. Communication between the gut microbiota and the brain is intrinsically complicated, and it is necessary for the maintenance of the gut, brain, and immune functions of the host. The bidirectional link among the gut, gut microbiota and the brain is designated as the "microbiota-gut-brain axis." Gut microbiota modulates the host immune system and functions of tissue barriers such as gut mucosa and blood-brain barrier (BBB). Gut microbial dysfunction disturbs the gut-brain interplay and may contribute to various gut disorders, neurocognitive and psychiatric disorders. Probiotics could protect intestinal integrity, enhance gut functions, promote intestinal mucosal and BBB functions, and support the synthesis of brain-derived neurotrophic factors, which enhance neuronal survival and differentiation. Probiotics could be considered an adjunct therapy to manage metabolic and psychiatric diseases. Predominantly, Lactobacillus and Bifidobacterium strains are documented as potent probiotics, which help to maintain the bidirectional interactions between the gut and brain. The consumption of probiotics and probiotics containing fermented foods could improve the gut microbiota. The diet impacts gut microbiota, and a balanced diet could maintain the integrity of gut-brain communication by facilitating the production of neurotrophic factors and other neuropeptides. However, the beneficial effects of probiotics and diet might depend upon several factors, including strain, dosage, duration, age, host physiology, etc. This review summarizes the importance and involvement of probiotics and diet in neuroprotection and managing representative neurological disorders, injuries and mood states.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Neris Almeida Viana S, do Reis Santos Pereira T, de Carvalho Alves J, Tianeze de Castro C, Santana C da Silva L, Henrique Sousa Pinheiro L, Nougalli Roselino M. Benefits of probiotic use on COVID-19: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 64:2986-2998. [PMID: 36178362 DOI: 10.1080/10408398.2022.2128713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SARS-CoV-2 is the virus that causes the new global pandemic, which has already resulted in millions of deaths, affecting the world's health and economy. Probiotics have shown benefits in a variety of diseases, including respiratory infections, and may be beneficial in the adjunctive treatment of COVID-19. This study analyzed the effectiveness of probiotics as adjunctive treatment in reducing symptoms of patients with COVID-19, through a systematic review with meta-analysis. The EMBASE (Elsevier), Pubmed, Scopus, Web of Science and International Clinical Trials Registry Platform (ICTRP) were searched through March 16, 2022. The risk ratio (RR) with 95% confidence intervals (CIs) was estimated using a fixed-effect model. RoB 2 and ROBINS I were used to assess the risk of bias of the included studies. Nine studies were included (7 clinical trials and 2 cohorts), of which three clinical trials comprised the meta-analysis. Results showed that probiotics were associated with a significant 51% reduction in symptoms reported by COVID-19 patients (RR 0.49, 95% CI 0.40-0.61). There was a significant improvement in cough (RR 0.56, 95% CI 0.37-0.83), headaches (RR 0.17, 95% CI 0.05-0.65), and diarrhea (RR 0. 33, 95% CI 0.12-0.96) of patients on probiotic therapy. These findings suggest that probiotic supplementation is effective in improving symptoms of COVID-19.
Collapse
Affiliation(s)
- Suelen Neris Almeida Viana
- Postgraduate Program in Food Science, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Tamires do Reis Santos Pereira
- Postgraduate Program in Food Science, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Janaína de Carvalho Alves
- Graduate Program in Biotechnology, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Caroline Tianeze de Castro
- Postgraduate Program in Collective Health, Institute of Collective Health, Federal University of Bahia, Salvador-Bahia, Brazil
| | | | | | - Mariana Nougalli Roselino
- Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| |
Collapse
|
14
|
Nasreen S, Andleeb S, Ali S, Imdad K, Awan UA, Raja SA, Mughal TA, Abbasi SA. Screening of Antibacterial Efficacy of Chitosan Encapsulated Probiotics (Lactococcus lactis and Lactobacillus curvattus) against Clinical Bacterial Pathogens. J Oleo Sci 2022; 71:1363-1374. [PMID: 35965088 DOI: 10.5650/jos.ess22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Probiotics frontier in depressing the clinical bacterial pathogens to avoid multidrug resistance phenomenon. The present study aimed to determine the antibacterial efficiency of chitosan encapsulated probiotics isolated from buffalo milk samples against clinical bacterial pathogens. The Agar well method was used for antibacterial activity. Lactococcus lactis (A) and Lactobacillus curvattus (B) were isolated from fresh buffalo milk samples, identified via culturing media, Gram's staining, biochemical tests, and antibiogram analysis. Encapsulation of probiotics was carried out using chitosan and was characterized via a scanning electron microscope. Antibiogram analysis elicit that L. lactis culture (A1) was highly sensitive to chloramphenicol (17.66±0.47 mm), tobramycin (15.33±0.47 mm), and ciprofloxacin (12.33±0.47 mm) and resistant against tetracycline, Penicillin G, Erythromycin, Amoxycillin, Ceftriaxone, Cephalothin, and Cephradine, while L. curvattus culture (B1) was affected by Ceftriaxone (18.67±0.47 mm), Amoxycillin (14.33±0.94 mm), Cephalothin (13.67±0.47 mm), Erythromycin (13.33±0.47 mm), Penicillin G (12.67±0.47 mm), Cephradine (10.33±0.47 mm), and Chloramphenicol (9.67±0.47 mm) and resistant against tetracycline, Tobramycin, and Ciprofloxacin. Antibacterial efficacy of non-encapsulated probiotic cultures was significant and maximum inhibition of bacterial were recorded compared to their cellular components. SEM of encapsulated probiotics revealed that they were successfully covered with a chitosan protective layer and could be effective as bio-preservatives due to being slowly released at the target site. The current study concluded that L. lactis, L. curvattus, and their cellular components have a significant bactericidal effect against infectious pathogens and could be used as a potential therapeutic drug against infectious diseases.
Collapse
Affiliation(s)
- Sundas Nasreen
- Microbial Biotechnology Laboratory, Department of Zoology, The University of Azad Jammu and Kashmir, King Abdullah Campus
| | - Saiqa Andleeb
- Microbial Biotechnology Laboratory, Department of Zoology, The University of Azad Jammu and Kashmir, King Abdullah Campus
| | - Shaukat Ali
- Department of Zoology, Government College University
| | | | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS)
| | | | | | | |
Collapse
|
15
|
Siziya IN, Yoon DJ, Kim M, Seo MJ. Enhanced Production of C 30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226 T. J Microbiol Biotechnol 2022; 32:892-901. [PMID: 35637169 PMCID: PMC9628921 DOI: 10.4014/jmb.2204.04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25°C incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Mibang Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Corresponding author Phone: +82-32-835-8267 Fax: +82-32-835-0804 E-mail:
| |
Collapse
|
16
|
Exploratory Study for Probiotic Enrichment of a Sea Fennel ( Crithmum maritimum L.) Preserve in Brine. Foods 2022; 11:foods11152219. [PMID: 35892805 PMCID: PMC9331750 DOI: 10.3390/foods11152219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Considering the increasing consumer demand for vegan and vegetarian health foods, different vegetables have been already exploited to produce non-dairy probiotic foods. In addition to being rich in bioactive compounds, sea fennel (Crithmum maritimum L.), also known as rock samphire, represents a valuable candidate in the production of probiotic-enriched foods, and, to the authors' knowledge, it has not yet been explored as carrier for probiotics. Hence, the present study was aimed at evaluating the survival of a commercially available probiotic formulation, SYNBIO®, and Lactiplantibacillus plantarum IMC 509 in an artificially acidified, pasteurized sea fennel preserve in brine during a refrigerated storage of 44 days. Despite slight reductions in the microbial loads, at the end of the storage, both the probiotic formulations showed loads higher than 7.0 Log CFU g-1 of sea fennel or mL-1 of brine, above the recommended administration dose to exert beneficial health effects. Thus, acidified sea fennel sprouts in brine represent a potential vehicle for probiotics delivery to humans.
Collapse
|
17
|
Kohil A, Chouliaras S, Alabduljabbar S, Lakshmanan AP, Ahmed SH, Awwad J, Terranegra A. Female infertility and diet, is there a role for a personalized nutritional approach in assisted reproductive technologies? A Narrative Review. Front Nutr 2022; 9:927972. [PMID: 35938101 PMCID: PMC9353397 DOI: 10.3389/fnut.2022.927972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Female infertility is a major public health concern and a global challenge. It is a disorder of the reproductive system, defined as the inability to achieve a clinical pregnancy. Nutrition and other environmental factors are found to impact reproductive health in women as well as the outcome of assisted reproductive technologies (ART). Dietary factors, such as polyunsaturated fatty acids (PUFA), fiber as well as the intake of Mediterranean diet appear to exert beneficial effects on female reproductive outcomes. The exact mechanisms associating diet to female fertility are yet to be identified, although genomic, epigenomic, and microbial pathways may be implicated. This review aims to summarize the current knowledge on the impact of dietary components on female reproduction and ART outcomes, and to discuss the relevant interplay of diet with genome, epigenome and microbial composition.
Collapse
Affiliation(s)
- Amira Kohil
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra
| |
Collapse
|
18
|
Effects of Postbiotics and Paraprobiotics as Replacements for Antibiotics on Growth Performance, Carcass Characteristics, Small Intestine Histomorphology, Immune Status and Hepatic Growth Gene Expression in Broiler Chickens. Animals (Basel) 2022; 12:ani12070917. [PMID: 35405905 PMCID: PMC8997137 DOI: 10.3390/ani12070917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: This experiment was designed to investigate how replacing antibiotics with postbiotics and paraprobiotics could affect growth performance, small intestine morphology, immune status, and hepatic growth gene expression in broiler chickens. Methods: The experiment followed a completely randomized design (CRD) in which eight treatments were replicated six times with seven birds per replicate. A total of 336, one-day-old (COBB 500) chicks were fed with the eight treatment diets, which include T1 = negative control (Basal diet), T2 = positive control (Basal diet + 0.01% (w/w) Oxytetracycline), T3 = Basal diet + 0.2% (v/w) postbiotic TL1, T4 = Basal diet + 0.2% (v/w) postbiotic RS5, T5 = Basal diet + 0.2% (v/w) paraprobiotic RG11, T6 = Basal diet + 0.2% (v/w) postbiotic RI11, T7 = Basal diet + 0.2% (v/w) paraprobiotic RG14, T8 = Basal diet + 0.2% (v/w) paraprobiotic RI11, for 35 days in a closed house system. Results: The growth performance indicators (final body weight, cumulative weight gain, and feed conversion ratio) were not significantly (p > 0.05) affected by the dietary treatments. However, feed intake recorded a significant (p < 0.05) change in the starter and finisher phases across the dietary treatments. Paraprobiotic RG14 had significantly (p < 0.05) lower abdominal fat and intestines. Villi heights were significantly (p < 0.05) increased, while the crypt depth decreased significantly due to dietary treatments. The dietary treatments significantly influenced colon mucosa sIgA (p < 0.05). Similarly, plasma immunoglobulin IgM level recorded significant (p < 0.05) changes at the finisher phase. In this current study, the hepatic GHR and IGF-1 expressions were significantly (p < 0.05) increased by postbiotics and paraprobiotics supplementation. Conclusions: Therefore, it was concluded that postbiotics and paraprobiotics differ in their effect on broiler chickens. However, they can replace antibiotics without compromising the growth performance, carcass yield, and immune status of broiler chickens.
Collapse
|
19
|
Role of Gastric Microorganisms Other than Helicobacter pylori in the Development and Treatment of Gastric Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6263423. [PMID: 35321071 PMCID: PMC8938066 DOI: 10.1155/2022/6263423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
The microenvironment in the stomach is different from other digestive tracts, mainly because of the secretion of gastric acid and digestive enzymes, bile reflux, special mucus barrier, gastric peristalsis, and so on, which all contribute to the formation of antibacterial environment. Microecological disorders can lead to gastric immune disorders or lead to the decrease of dominant bacteria and the increase of the abundance and virulence of pathogenic microorganisms and then promote the occurrence of diseases. The body performs its immune function through innate and adaptive immunity and maintains microbial balance through the mechanism of immune homeostasis. Microecological imbalance can lead to the invasion of pathogenic microorganisms and damage mucosal barrier and immune system. The coexistence of gastric microorganisms (including viruses and fungi) may play a synergistic or antagonistic role in the pathogenesis of gastric diseases. Probiotics have the ability to compete with intestinal pathogens, increase the secretion of immunoglobulin A (IgA), stimulate the production of mucin, bacteriocin, and lactic acid, regulate the expression and secretion of cytokines, and regulate the growth of microbiota, which all have beneficial effects on the host microbial environment. At present, most studies focused on Helicobacter pylori, ignoring other stomach microbes and the overall stomach microecology. So, in this article, we reviewed advances in human gastric microecology, the relationship between gastric microecology and immunity or gastric diseases, and the treatment of probiotics in gastric diseases, in order to explore new area for further study of gastric microorganisms and treatment of gastric diseases.
Collapse
|
20
|
Damholt A, Keller MK, Baranowski K, Brown B, Wichmann A, Melsaether C, Eskesen D, Westphal V, Arltoft D, Habicht A, Gao Q, Crawford G. Lacticaseibacillus rhamnosus GG DSM 33156 effects on pathogen defence in the upper respiratory tract: a randomised, double-blind, placebo-controlled paediatric trial. Benef Microbes 2021; 13:13-23. [PMID: 34895109 DOI: 10.3920/bm2021.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute upper respiratory tract infections (URTIs) are caused by numerous viruses and bacteria. URTIs can be a cause of morbidity and are among the most common reasons for visiting healthcare practitioners and prescribing antibiotics to children in addition to causing absenteeism from school and work. Oral intake of Lacticaseibacillus rhamnosus GG DSM 33156 has shown beneficial health effects in several clinical trials, primarily relating to immune function and gastrointestinal health in children and adults. It has also been suggested that oral intake of L. rhamnosus GG DSM 33156 can reduce the incidence rate and alleviate symptoms of URTIs in children. We here report the results of a randomised, double-blind, placebo-controlled trial of 619 children aged 2-6 years conducted at a single centre in Scotland. The children, who were in day care or primary school, were followed over a 16-week intervention period with 309 randomised in the active group and 310 in the placebo group. The parents or guardians reported a daily healthcare status and any presumed episodes of URTI, which were subsequently confirmed by a general practitioner. The investigational product was well tolerated in the trial. Although a general trend towards a beneficial effect was observed, this trial did not demonstrate that L. rhamnosus GG DSM 33156 significantly reduced the incidence of URTIs, diagnosed by a general practitioner according to prespecified criteria (primary endpoint). Moreover, none of the secondary efficacy endpoints were met. Applying a Ward's hierarchical clustering, two separate clusters, focussing on four quality of life-related endpoints, were identified. Cluster 1 was associated with more severe URTI characteristics than cluster 2. Cluster 2 was significantly enriched with children who consumed the product, indicating that the symptoms children experience during an URTI are alleviated by the intake of L. rhamnosus GG DSM 33156. The study is registered at ClinicalTrials.gov ID: NCT03636191.
Collapse
Affiliation(s)
- A Damholt
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - M K Keller
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - K Baranowski
- CPS Research, 3 Acre Road, Todd Campus, Glasgow G20 0XA, United Kingdom
| | - B Brown
- CPS Research, 3 Acre Road, Todd Campus, Glasgow G20 0XA, United Kingdom
| | - A Wichmann
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - C Melsaether
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - D Eskesen
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - V Westphal
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - D Arltoft
- Chr. Hansen A/S, Kogle allé 6, Hørsholm 2970, Denmark
| | - A Habicht
- Signifikans Aps, Bygstubben 16, Vedbæk 2950, Denmark
| | - Q Gao
- Signifikans Aps, Bygstubben 16, Vedbæk 2950, Denmark
| | - G Crawford
- CPS Research, 3 Acre Road, Todd Campus, Glasgow G20 0XA, United Kingdom
| |
Collapse
|
21
|
Rashidi K, Darand M, Garousi N, Dehghani A, Alizadeh S. Effect of infant formula supplemented with prebiotics and probiotics on incidence of respiratory tract infections: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2021; 63:102795. [PMID: 34861367 DOI: 10.1016/j.ctim.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous investigations have proposed that the consumption of infant formula supplemented with prebiotics, probiotics and synbiotics (PRO-formula) may have protective impacts on respiratory tract infections (RTIs). Nevertheless, the findings of studies are contradictory. This meta-analysis aimed to explore the influence of PRO-formula on RTIs in infants by pooling randomized controlled trials (RCTs). METHODS To obtain eligible RCTs, Scopus and PubMed databases were systematically searched from their inception to November 2020. A random-effects model was applied to pool the relative risks (RR) and corresponding 95% confidence intervals (CI) for RTIs following consumption of PRO-formula. RESULTS A total of 15 RCTs, with a total sample size of 3805 participants (1957 for intervention and 1848 for placebo), were included in the present meta-analysis. In the overall analysis, in comparison to placebo, consumption of PRO-formula had a significant protective impact against RTIs (RR = 0.89, 95%CI: 0.82-0.97) in infants, with a remarkable evidence of heterogeneity across studies (I2 = 61.4%, P < 0.001). In the meta-regression analysis, the effect of PRO-formula on RTIs was not modified by the follow-up duration. No evidence for publication bias was detected. CONCLUSIONS Administration of PRO-formula may be a potential approach for the prevention of respiratory tract infections in infants.
Collapse
Affiliation(s)
- Kamil Rashidi
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Darand
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nazila Garousi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Azadeh Dehghani
- Nutrition Research Center, Department of Community Nutrition, faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
22
|
Zhang H, Miao J, Su M, Liu BY, Liu Z. Effect of fermented milk on upper respiratory tract infection in adults who lived in the haze area of Northern China: a randomized clinical trial. PHARMACEUTICAL BIOLOGY 2021; 59:647-652. [PMID: 34062085 PMCID: PMC8172217 DOI: 10.1080/13880209.2021.1929344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Upper respiratory tract infection (URTI) is the most common illness in humans. Fermented milk containing probiotics can mitigate URTI symptoms. OBJECTIVE This study tests the effect of fermented milk (Qingrun), a yogurt supplemented with Bifidobacterium animalis subsp. lactis Bl-04, on adults with URTIs who live in a haze-covered area in a randomized clinical trial. MATERIALS AND METHODS A total of 136 subjects were enrolled in the study at the baseline and randomized to consume either control yogurt or Qingrun yogurt (250 g) once daily for 12 weeks. The duration and severity of URTI were evaluated by the Wisconsin Upper Respiratory Symptom Survey-24. Blood and faecal samples were collected at the baseline and post-intervention, to determine the changes of immune biomarkers. RESULTS Qingrun yogurt significantly reduced the incidence of the common cold (OR, 0.38; 95% CI, 0.17-0.81; p = 0.013) and influenza-like illness (OR, 0.32; 95% CI, 0.11-0.97; p = 0.045). Compared to the control yogurt, Qingrun yogurt significantly reduced the duration (1.23 ± 2.73 vs. 4.78 ± 5.09 d) and severity score (3.58 ± 7.12 vs. 11.37 ± 11.73) of URTI. In addition, the post-intervention levels of interferon-γ (139.49 ± 59.49 vs. 113.45 ± 65.12 pg/mL) and secretory immunoglobulin A (529.19 ± 91.70 vs. 388.88 ± 53.83 mg/dL) significantly increased in the Qingrun group, compared with those in the control group. CONCLUSIONS Qingrun yogurt showed a protective effect against URTI in adults, suggesting that the use of yogurt with probiotics could be a promising dietary supplement for mitigating URTI.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junli Miao
- Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Miya Su
- Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Bryan Y. Liu
- College of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhenmin Liu
- Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| |
Collapse
|
23
|
Spooner HC, Derrick SA, Maj M, Manjarín R, Hernandez GV, Tailor DS, Bastani PS, Fanter RK, Fiorotto ML, Burrin DG, La Frano MR, Sikalidis AK, Blank JM. High-Fructose, High-Fat Diet Alters Muscle Composition and Fuel Utilization in a Juvenile Iberian Pig Model of Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:nu13124195. [PMID: 34959747 PMCID: PMC8705774 DOI: 10.3390/nu13124195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious metabolic condition affecting millions of people worldwide. A “Western-style diet” has been shown to induce pediatric NAFLD with the potential disruption of skeletal muscle composition and metabolism. To determine the in vivo effect of a “Western-style diet” on pediatric skeletal muscle fiber type and fuel utilization, 28 juvenile Iberian pigs were fed either a control diet (CON) or a high-fructose, high-fat diet (HFF), with or without probiotic supplementation, for 10 weeks. The HFF diets increased the total triacylglycerol content of muscle tissue but decreased intramyocellular lipid (IMCL) content and the number of type I (slow oxidative) muscle fibers. HFF diets induced autophagy as assessed by LC3I and LC3II, and inflammation, as assessed by IL-1α. No differences in body composition were observed, and there was no change in insulin sensitivity, but HFF diets increased several plasma acylcarnitines and decreased expression of lipid oxidation regulators PGC1α and CPT1, suggesting disruption of skeletal muscle metabolism. Our results show that an HFF diet fed to juvenile Iberian pigs produces a less oxidative skeletal muscle phenotype, similar to a detraining effect, and reduces the capacity to use lipid as fuel, even in the absence of insulin resistance and obesity.
Collapse
Affiliation(s)
- Heather C. Spooner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Stefani A. Derrick
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
| | - Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Rodrigo Manjarín
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (R.M.); (G.V.H.)
| | - Gabriella V. Hernandez
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (R.M.); (G.V.H.)
| | - Deepali S. Tailor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Parisa S. Bastani
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Rob K. Fanter
- College of Agriculture Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Marta L. Fiorotto
- United States Department of Agriculture-Agricultural Research Services, Children’s Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (M.L.F.); (D.G.B.)
| | - Douglas G. Burrin
- United States Department of Agriculture-Agricultural Research Services, Children’s Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (M.L.F.); (D.G.B.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Angelos K. Sikalidis
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
| | - Jason M. Blank
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
- Correspondence: ; Tel.: +1-805-756-5629
| |
Collapse
|
24
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Effect of Continuous Feeding of Ayu-Narezushi on Lipid Metabolism in a Mouse Model of Metabolic Syndrome. ScientificWorldJournal 2021; 2021:1583154. [PMID: 34531707 PMCID: PMC8440109 DOI: 10.1155/2021/1583154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Ayu-narezushi, a traditional Japanese fermented food, comprises abundant levels of lactic acid bacteria (LAB) and free amino acids. This study aimed to examine the potential beneficial effects of ayu-narezushi and investigated whether ayu-narezushi led to improvements in the Tsumura Suzuki obese diabetes (TSOD) mice model of spontaneous metabolic syndrome because useful LAB are known as probiotics that regulate intestinal function. In the present study, the increased body weight of the TSOD mice was attenuated in those fed the ayu-narezushi-comprised chow (ayu-narezushi group) compared with those fed the normal rodent chow (control group). Serum triglyceride and cholesterol levels were significantly lower in the Ayu-narezushi group than in the control group at 24 weeks of age. Furthermore, hepatic mRNA levels of carnitine-palmitoyl transferase 1 and acyl-CoA oxidase, which related to fatty acid oxidation, were significantly increased in the ayu-narezushi group than in the control group at 24 weeks of age. In conclusion, these results suggested that continuous feeding with ayu-narezushi improved obesity and dyslipidemia in the TSOD mice and that the activation of fatty acid oxidation in the liver might contribute to these improvements.
Collapse
|
26
|
Taye Y, Degu T, Fesseha H, Mathewos M. Isolation and Identification of Lactic Acid Bacteria from Cow Milk and Milk Products. ScientificWorldJournal 2021; 2021:4697445. [PMID: 34421398 PMCID: PMC8371643 DOI: 10.1155/2021/4697445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
Lactic acid bacteria (LAB) have long been consumed by people in several fermented foods such as dairy products. A study was conducted on lactating dairy cows to isolate and characterize LAB from dairy products found in and around Bahir-Dar city, North Western Ethiopia. Milk and milk products were randomly collected from dairy farms, milk vending shops, individual households, and supermarkets for bacteriological investigations. A total of sixteen samples were taken from different sources and cultured on different selective media: de Man, Rogosa, and Sharpe (MRS) agar for Lactobacillus spp.; M17 agar for Lactococcus spp.; Rogasa SL agar for Streptococci spp.; and MRS supplemented with cysteine (0.5%) for Bifidobacteria spp. Different laboratory techniques were implemented for LAB isolation and identification. A total of 41 bacterial isolates were grouped under five different genera of LAB and Bifidobacteria spp. were identified based on the growth morphology on the selective media, growth at a different temperature, gas production from glucose, carbohydrate fermentation, and other biochemical tests. LAB genera such as Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, and Bifidobacterium spp. were isolated and identified from raw milk, cheese, and yogurt. Based on the current study, the majority of the LAB (24.38%) was isolated from cheese and yogurt. Among these, Lactobacillus, Lactococcus (21.94%), Streptococcus (19.51%), Leuconostoc (14.64%), Bifidobacteria (12.19%), and Pediococcus (7.31%) spp. were also identified from these products. Furthermore, based on the bacterial load count and different identification methodologies, our study revealed that Lactobacillus spp. were the dominant LAB isolated from milk and milk products. As a result, since there are few studies on the isolation and identification of lactic acid bacteria from dairy products in Ethiopia, more research studies are needed to complete the identification and characterization to species level and their possible role as probiotics.
Collapse
Affiliation(s)
- Yeshambel Taye
- Raya Kobo Woreda Animal Health Disease Surveillance and Control Expert, Kobo, Ethiopia
| | - Tadesse Degu
- Raya Kobo Woreda Animal Health Expert, Kobo, Ethiopia
| | - Haben Fesseha
- School of Veterinary Medicine, Wolaita Sodo University, P.O Box: 138, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wolaita Sodo University, P.O Box: 138, Wolaita Sodo, Ethiopia
| |
Collapse
|
27
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Pyle S, Shahzad M, Andrews S, Walton GE. Malnutrition and Gut Microbiota in Children. Nutrients 2021; 13:nu13082727. [PMID: 34444887 PMCID: PMC8401185 DOI: 10.3390/nu13082727] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition continues to threaten the lives of millions across the world, with children being hardest hit. Although inadequate access to food and infectious disease are the primary causes of childhood malnutrition, the gut microbiota may also contribute. This review considers the evidence on the role of diet in modifying the gut microbiota, and how the microbiota impacts childhood malnutrition. It is widely understood that the gut microbiota of children is influenced by diet, which, in turn, can impact child nutritional status. Additionally, diarrhoea, a major contributor to malnutrition, is induced by pathogenic elements of the gut microbiota. Diarrhoea leads to malabsorption of essential nutrients and reduced energy availability resulting in weight loss, which can lead to malnutrition. Alterations in gut microbiota of severe acute malnourished (SAM) children include increased Proteobacteria and decreased Bacteroides levels. Additionally, the gut microbiota of SAM children exhibits lower relative diversity compared with healthy children. Thus, the data indicate a link between gut microbiota and malnutrition in children, suggesting that treatment of childhood malnutrition should include measures that support a healthy gut microbiota. This could be of particular relevance in sub-Saharan Africa and Asia where prevalence of malnutrition remains a major threat to the lives of millions.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Simone Pyle
- Unilever R&D, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK;
| | - Gemma Emily Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
- Correspondence:
| |
Collapse
|
28
|
Comparative genomics of in vitro and in vivo evolution of probiotics reveals energy restriction not the main evolution driving force in short term. Genomics 2021; 113:3373-3380. [PMID: 34311046 DOI: 10.1016/j.ygeno.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Probiotics have attracted much attention because of their health-promoting effects, but little is known about the in vivo evolution of probiotics. This study analyzed the genome adaptation of the probiotic Lactiplantibacillus plantarum P-8 strain cultivated in ordinary and glucose restrictive growth media. Then, this study re-analyzed genomes of P-8 isolates recovered from the gut contents of subjects in two feeding trials (in rat and human). The sampling time points were similar to that of the in vitro evolution experiment, which might give parallel comparison of the in vitro and in vivo evolution processes. Our results showed that intra-individual specific microbial genomic variants of the original strain were detected in all human and some rat subjects. The divergent patterns of evolution within the host gastrointestinal tract suggested intra-individual-specific environmental adaptation. Based on comprehensive analysis of adapted-isolates recovered from these experiments, our results showed that the energy restriction was not the main driving force for evolution of probiotics. The individual-specific adaptation of probiotics might partially explain the varying extent of health effects seen between different individuals after probiotic consumption. In addition, the results suggest that probiotics should not only adapt to the environment of the birth canal, but also adapt to other species in the gut, revealing the Red Queen hypothesis in the process of intestinal flora.
Collapse
|
29
|
Rashidi K, Razi B, Darand M, Dehghani A, Janmohammadi P, Alizadeh S. Effect of probiotic fermented dairy products on incidence of respiratory tract infections: a systematic review and meta-analysis of randomized clinical trials. Nutr J 2021; 20:61. [PMID: 34183001 PMCID: PMC8240278 DOI: 10.1186/s12937-021-00718-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have suggested that the consumption of probiotic fermented dairy products (PFDP) may have a protective effect on respiratory tract infections (RTIs). However, the results of studies are inconclusive. We aimed to systematically investigate the effect of PFDP on RTIs by performing a meta-analysis of randomized controlled trials (RCTs). METHODS PubMed and Scopus databases were systematically searched up to October 2020 to identify eligible RCTs. Meta-analysis outcomes were risk of incidence of upper (URTIs ) and lower (LRTIs ) respiratory tract infections. A random-effects model was used to pool the relative risks (RR) and corresponding 95 % confidence intervals (CI) for outcomes following conception of PFDP. RESULTS A total of 22 RCTs, with a total sample size of 10,190 participants, were included in this meta-analysis. Compared with placebo, consumption of PFDP had a significant protective effect against RTIs in the overall analysis (RR = 0.81, 95 %CI: 0.74 to 0.89) and in children (RR = 0.82, 95 %CI: 0.73 to 0.93), adults (RR = 0.81, 95 %CI: 0.66 to 1.00), and elderly population (RR = 0.78, 95 %CI: 0.61 to 0.98). The significant decreased risk of RTIs was also observed for URTIs (RR = 0.83, 95 %CI: 0.73 to 0.93), while, this effect was marginal for LRTIs (RR = 0.78, 95 %CI: 0.60 to 1.01, P = 0.06). The disease-specific analysis showed that PFDP have a protective effect on pneumonia (RR = 0.76, 95 %CI: 0.61 to 0.95) and common cold (RR = 0.68, 95 %CI: 0.49 to 0.96). CONCLUSIONS Consumption of PFDP is a potential dietary approach for the prevention of RTIs.
Collapse
Affiliation(s)
- Kamil Rashidi
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Razi
- Department of Hematology and Blood Banking, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mina Darand
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Janmohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
30
|
Ye J, Erland LAE, Gill SK, Bishop SL, Verdugo-Meza A, Murch SJ, Gibson DL. Metabolomics-Guided Hypothesis Generation for Mechanisms of Intestinal Protection by Live Biotherapeutic Products. Biomolecules 2021; 11:738. [PMID: 34063522 PMCID: PMC8156236 DOI: 10.3390/biom11050738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The use of live biotherapeutic products (LBPs), including single strains of beneficial probiotic bacteria or consortiums, is gaining traction as a viable option to treat inflammatory-mediated diseases like inflammatory bowel disease (IBD). However, LBPs' persistence in the intestine is heterogeneous since many beneficial bacteria lack mechanisms to tolerate the inflammation and the oxidative stress associated with IBD. We rationalized that optimizing LBPs with enhanced colonization and persistence in the inflamed intestine would help beneficial bacteria increase their bioavailability and sustain their beneficial responses. Our lab developed two bioengineered LBPs (SBT001/BioPersist and SBT002/BioColoniz) modified to enhance colonization or persistence in the inflamed intestine. In this study, we examined colon-derived metabolites via ultra-high performance liquid chromatography-mass spectrometry in colitic mice treated with either BioPersist or BioColoniz as compared to their unmodified parent strains (Escherichia coli Nissle 1917 [EcN] and Lactobacillus reuteri, respectively) or to each other. BioPersist administration resulted in lowered concentrations of inflammatory prostaglandins, decreased stress hormones such as adrenaline and corticosterone, increased serotonin, and decreased bile acid in comparison to EcN. In comparison to BioColoniz, BioPersist increased serotonin and antioxidant production, limited bile acid accumulation, and enhanced tissue restoration via activated purine and pyrimidine metabolism. These data generated several novel hypotheses for the beneficial roles that LBPs may play during colitis.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Lauren A E Erland
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Sandeep K Gill
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Stephanie L Bishop
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
- Department of Medicine, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| |
Collapse
|
31
|
López-Moreno A, Acuña I, Torres-Sánchez A, Ruiz-Moreno Á, Cerk K, Rivas A, Suárez A, Monteoliva-Sánchez M, Aguilera M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients 2021; 13:1617. [PMID: 34065873 PMCID: PMC8151043 DOI: 10.3390/nu13051617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
The combination of diet, lifestyle, and the exposure to food obesogens categorized into "microbiota disrupting chemicals" (MDC) could determine obesogenic-related dysbiosis and modify the microbiota diversity that impacts on individual health-disease balances, inducing altered pathogenesis phenotypes. Specific, complementary, and combined treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation beneficial microbes or next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, this review presents a perspective through compiling information and key strategies for directed searching and culturing of NGP that could be administered for obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analyzing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to obesogens' neutralization effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps, and proposals of solutions are also considered in this review.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Inmaculada Acuña
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ana Rivas
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonio Suárez
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
| |
Collapse
|
32
|
Collinson S, Deans A, Padua-Zamora A, Gregorio GV, Li C, Dans LF, Allen SJ. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 2020; 12:CD003048. [PMID: 33295643 PMCID: PMC8166250 DOI: 10.1002/14651858.cd003048.pub4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Probiotics may be effective in reducing the duration of acute infectious diarrhoea. OBJECTIVES To assess the effects of probiotics in proven or presumed acute infectious diarrhoea. SEARCH METHODS We searched the trials register of the Cochrane Infectious Diseases Group, MEDLINE, and Embase from inception to 17 December 2019, as well as the Cochrane Controlled Trials Register (Issue 12, 2019), in the Cochrane Library, and reference lists from studies and reviews. We included additional studies identified during external review. SELECTION CRITERIA Randomized controlled trials comparing a specified probiotic agent with a placebo or no probiotic in people with acute diarrhoea that is proven or presumed to be caused by an infectious agent. DATA COLLECTION AND ANALYSIS Two review authors independently applied inclusion criteria, assessed risk of bias, and extracted data. Primary outcomes were measures of diarrhoea duration (diarrhoea lasting ≥ 48 hours; duration of diarrhoea). Secondary outcomes were number of people hospitalized in community studies, duration of hospitalization in inpatient studies, diarrhoea lasting ≥ 14 days, and adverse events. MAIN RESULTS We included 82 studies with a total of 12,127 participants. These studies included 11,526 children (age < 18 years) and 412 adults (three studies recruited 189 adults and children but did not specify numbers in each age group). No cluster-randomized trials were included. Studies varied in the definitions used for "acute diarrhoea" and "end of the diarrhoeal illness" and in the probiotic(s) tested. A total of 53 trials were undertaken in countries where both child and adult mortality was low or very low, and 26 where either child or adult mortality was high. Risk of bias was high or unclear in many studies, and there was marked statistical heterogeneity when findings for the primary outcomes were pooled in meta-analysis. Effect size was similar in the sensitivity analysis and marked heterogeneity persisted. Publication bias was demonstrated from funnel plots for the main outcomes. In our main analysis of the primary outcomes in studies at low risk for all indices of risk of bias, no difference was detected between probiotic and control groups for the risk of diarrhoea lasting ≥ 48 hours (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.91 to 1.09; 2 trials, 1770 participants; moderate-certainty evidence); or for duration of diarrhoea (mean difference (MD) 8.64 hours shorter, 95% CI 29.4 hours shorter to 12.1 hours longer; 6 trials, 3058 participants; very low-certainty evidence). Effect size was similar and marked heterogeneity persisted in pre-specified subgroup analyses of the primary outcomes that included all studies. These included analyses limited to the probiotics Lactobacillus rhamnosus GG and Saccharomyces boulardii. In six trials (433 participants) of Lactobacillus reuteri, there was consistency amongst findings (I² = 0%), but risk of bias was present in all included studies. Heterogeneity also was not explained by types of participants (age, nutritional/socioeconomic status captured by mortality stratum, region of the world where studies were undertaken), diarrhoea in children caused by rotavirus, exposure to antibiotics, and the few studies of children who were also treated with zinc. In addition, there were no clear differences in effect size for the primary outcomes in post hoc analyses according to decade of publication of studies and whether or not trials had been registered. For other outcomes, the duration of hospitalization in inpatient studies on average was shorter in probiotic groups than in control groups but there was marked heterogeneity between studies (I² = 96%; MD -18.03 hours, 95% CI -27.28 to -8.78, random-effects model: 24 trials, 4056 participants). No differences were detected between probiotic and control groups in the number of people with diarrhoea lasting ≥ 14 days (RR 0.49, 95% CI 0.16 to 1.53; 9 studies, 2928 participants) or in risk of hospitalization in community studies (RR 1.26, 95% CI 0.84 to 1.89; 6 studies, 2283 participants). No serious adverse events were attributed to probiotics. AUTHORS' CONCLUSIONS Probiotics probably make little or no difference to the number of people who have diarrhoea lasting 48 hours or longer, and we are uncertain whether probiotics reduce the duration of diarrhoea. This analysis is based on large trials with low risk of bias.
Collapse
Affiliation(s)
- Shelui Collinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Deans
- Urgent Care, Team Medical, Paraparaumu, New Zealand
| | - April Padua-Zamora
- Department of Pediatrics, University of the Philippines Manila College of Medicine-Philippine General Hospital, Manila, Philippines
| | - Germana V Gregorio
- Department of Pediatrics, University of the Philippines Manila College of Medicine-Philippine General Hospital, Manila, Philippines
| | - Chao Li
- Tropical Clinical Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leonila F Dans
- Department of Pediatrics, University of the Philippines Manila College of Medicine-Philippine General Hospital, Manila, Philippines
| | - Stephen J Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
33
|
Hou Q, Zhao F, Liu W, Lv R, Khine WWT, Han J, Sun Z, Lee YK, Zhang H. Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes 2020; 12:1736974. [PMID: 32200683 PMCID: PMC7524168 DOI: 10.1080/19490976.2020.1736974] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
As an effective means to improve quality of life and prevent diseases, the demand for probiotics and related products has increased in recent years. However, it is still unclear whether a particular probiotic strain will have similar beneficial effects on healthy adults from different regions. In this study, the probiotic Lactobacillus casei Zhang (LCZ) was consumed by healthy adults from six different Asian regions and the changes in gut microbiota were compared using PacBio single molecule, real-time (SMRT) sequencing technology based on samples collected before, during and after consumption of LCZ. Our results reveal that the effect of LCZ consumption on individuals was closely related to the composition of that individual's basal gut microbiota. A Gut Microbiota Variability Index (GMVI) was proposed to quantitatively compare the effects of LCZ on human gut microecology. Subjects from Xinjiang and Singapore regions had the highest and lowest GMVI, respectively. In general, consumption of LCZ increased the relative abundance of certain beneficial bacteria such as Lactobacillus, Roseburia, Coprococcus and Eubacterium rectale, while it inhibited growth of certain harmful bacteria such as Blautia and Ralstonia pickettii. In addition, consumption of LCZ was responsible for the conversion of some participants from Prevotella copri/Faecalibacterium prausnitzii (PF) enterotype to Faecalibacterium prausnitzii/Bacteroides dorei (FB) enterotype and consistently increased the abundance of lactic acid bacteria in the gut. It also increased/enhanced phosphate metabolic modules, amino acid transport systems, and isoleucine biosynthesis, but conversely decreased lipopolysaccharide biosynthesis. These changes could have health benefits for healthy adults.
Collapse
Affiliation(s)
- Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Wei Wei Thwe Khine
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Han
- Department of Nutrition and Food Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China,CONTACT Heping Zhang Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot010018, China
| |
Collapse
|
34
|
Bhattacharya S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol Trace Elem Res 2020; 197:440-444. [PMID: 31933279 DOI: 10.1007/s12011-020-02025-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/01/2020] [Indexed: 10/25/2022]
Abstract
Cadmium is extremely toxic heavy metal, and there is no specific, safe, and efficacious therapeutic management of cadmium toxicity. Scientific literature reveals several probiotic microorganisms which alleviate experimentally induced cadmium toxicity in animals. The present review attempts to collate the experimental studies on probiotics and probiotic-derived natural products with cadmium toxicity ameliorative effects. Literature survey revealed that seven (7) types of probiotic microorganisms exhibited significant protection from cadmium toxicity in experimental pre-clinical studies. Clinical study with significant outcome was not found in literature. From the outcomes of the pre-clinical studies, it appears that probiotics have the prospect for alleviation and treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
35
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
36
|
López-Moreno A, Suárez A, Avanzi C, Monteoliva-Sánchez M, Aguilera M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-analysis. Nutrients 2020; 12:E1921. [PMID: 32610476 PMCID: PMC7400323 DOI: 10.3390/nu12071921] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing health threat worldwide. Administration of probiotics in obesity has also parallelly increased but without any protocolization. We conducted a systematic review exploring the administration pattern of probiotic strains and effective doses for obesity-related disorders according to their capacity of positively modulating key biomarkers and microbiota dysbiosis. Manuscripts targeting probiotic strains and doses administered for obesity-related disorders in clinical studies were sought. MEDLINE, Scopus, Web of Science, and Cochrane Library databases were searched using keywords during the last fifteen years up to April 2020. Two independent reviewers screened titles, abstracts, and then full-text papers against inclusion criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. From 549 interventional reports identified, we filtered 171 eligible studies, from which 24 full-text assays were used for calculating intervention total doses (ITD) of specific species and strains administered. Nine of these reports were excluded in the second-step because no specific data on gut microbiota modulation was found. Six clinical trials (CT) and 9 animal clinical studies were retained for analysis of complete outcome prioritized (body mass index (BMI), adiposity parameters, glucose, and plasma lipid biomarkers, and gut hormones). Lactobacillus spp. administered were double compared to Bifidobacterium spp.; Lactobacillus as single or multispecies formulations whereas most Bifidobacteria only through multispecies supplementations. Differential factors were estimated from obese populations' vs. obesity-induced animals: ITD ratio of 2 × 106 CFU and patterns of administrations of 11.3 weeks to 5.5 weeks, respectively. Estimation of overall probiotics impact from selected CT was performed through a random-effects model to pool effect sizes. Comparisons showed a positive association between the probiotics group vs. placebo on the reduction of BMI, total cholesterol, leptin, and adiponectin. Moreover, negative estimation appeared for glucose (FPG) and CRP. While clinical trials including data for positive modulatory microbiota capacities suggested that high doses of common single and multispecies of Lactobacillus and Bifidobacterium ameliorated key obesity-related parameters, the major limitation was the high variability between studies and lack of standardized protocols. Efforts in solving this problem and searching for next-generation probiotics for obesity-related diseases would highly improve the rational use of probiotics.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Antonio Suárez
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Camila Avanzi
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|
37
|
López-Moreno A, Aguilera M. Probiotics Dietary Supplementation for Modulating Endocrine and Fertility Microbiota Dysbiosis. Nutrients 2020; 12:E757. [PMID: 32182980 PMCID: PMC7146451 DOI: 10.3390/nu12030757] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Human microbiota seems to play a key role in endocrine and reproductive systems. Fortunately, microbiota reproductive dysbiosis start to be treated by probiotics using typical species from genus Lactobacillus. This work presents the compiled and analysed results from the most up-to-date information from clinical trials regarding microbiota, fertility, probiotics and oral route administration, reviewing open access scientific documents. These studies analyse the clinical impact of probiotics administered on several endocrine disorders' manifestations in women: mastitis; vaginal dysbiosis; pregnancy complication disorders; and polycystic ovary syndrome. In all cases, the clinical modulation achieved by probiotics was evaluated positively through the improvement of specific disease outcomes with the exception of the pregnancy disorders studies, where the sample sizes results were statistically insufficient. High amounts of studies were discarded because no data were provided on specific probiotic strains, doses, impact on the individual autochthon microbiota, or data regarding specific hormonal values modifications and endocrine regulation effects. However, most of the selected studies with probiotics contained no protocolised administration. Therefore, we consider that intervention studies with probiotics might allocate the focus, not only in obtaining a final outcome, but in how to personalise the administration according to the disorder to be palliated.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Armilla, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Armilla, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|
38
|
Pourjafar H, Noori N, Gandomi H, Basti AA, Ansari F. Viability of microencapsulated and non-microencapsulated Lactobacilli in a commercial beverage. ACTA ACUST UNITED AC 2020; 25:e00432. [PMID: 32099822 PMCID: PMC7030990 DOI: 10.1016/j.btre.2020.e00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Ca-alginate-chitosan and eudragit S100 nanoparticles were used for encapsulation. The encapsulation increased the viability of probiotics into Iranian Doogh beverage. The encapsulation increased the viability of probiotics under GI conditions.
The survival rate of free and encapsulated L. acidophilus and L. rhamnosus into Doogh beverage and simulated gastrointestinal conditions during 42-day were studied. Microencapsulation considerably protected both L. acidophilus and L. rhamnosus in Doogh beverage storage and in gastrointestinal conditions. Microencapsulation provided better protection to L. acidophilus than to L. rhamnosus during Doogh storage. In beverages containing the free form of bacteria, pH and acidity changes were greater than those of microencapsulated and control groups. More activity of the free probiotic bacteria (during a 42-day period especially after 21-day) produced more acid and metabolites inside the product, thereby reducing the organoleptic properties scores, However, acidity, pH and organoleptic characteristics of Doogh containing microencapsulated bacteria did not change considerably. In conclusion, this study suggests that the encapsulation and double coating of L. acidophilus and L. rhamnosus can increase the viability of them in Doogh beverage and in simulated GI conditions.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Negin Noori
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Hasan Gandomi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Iran
| | | | - Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Iran.,Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran. Iran
| |
Collapse
|
39
|
Yang H, Sun Y, Cai R, Chen Y, Gu B. The impact of dietary fiber and probiotics in infectious diseases. Microb Pathog 2019; 140:103931. [PMID: 31846741 DOI: 10.1016/j.micpath.2019.103931] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Although antibiotics are commonly used to treat infectious diseases, emergence of antibiotic resistant strains highlights the necessity for developing novel alternative approaches. Meanwhile, clinically, antibiotics can destroy the gut microbes balance, which is not conducive to the recovery of infectious disorders. As a result, recent studies have begun to explore potential prevention and treatment methods for infectious diseases, starting with more readily available dietary fiber and probiotics. Moreover, researches have shown the personalized nature of host responses to dietary fiber intervention, with outcomes being dependent on individual pre-treatment gut microbes. In this review, we will focus on the roles of dietary fiber and probiotics on infectious diseases, how probiotics and dietary fiber work on infectious diseases and then explore their mechanisms, so as to guide clinical consideration of new therapies for infectious diseases.
Collapse
Affiliation(s)
- Huan Yang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiran Sun
- Clinical School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Cai
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Chen
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
40
|
Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 2019; 108:712-731. [PMID: 31821833 DOI: 10.1016/j.neubiorev.2019.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
There has been an accumulation of knowledge about the human microbiome, some detailed investigations of the gastrointestinal microbiota and its functions, and the highlighting of complex interactions between the gut, the gut microbiota, and the central nervous system. That assumes the involvement of the microbiome in the pathogenesis of various CNS diseases, including schizophrenia. Given this information and the fact, that the gut microbiota is sensitive to internal and environmental influences, we have speculated that among the factors that influence the formation and composition of gut microbiota during life, possible key elements in the schizophrenia development chain are hidden where gut microbiota is a linking component. This article aims to describe and understand the developmental relationships between intestinal microbiota and the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Bogdana Golofast
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| |
Collapse
|
41
|
Isolation and characterization of five novel probiotic strains from Korean infant and children faeces. PLoS One 2019; 14:e0223913. [PMID: 31671118 PMCID: PMC6822945 DOI: 10.1371/journal.pone.0223913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
Probiotics are dietary supplements containing viable, non-pathogenic microorganisms that interact with the gastrointestinal microflora and directly with the immune system. The possible health effects of probiotics include modulating the immune system and exerting antibacterial, anticancer, and anti-mutagenic effects. The purpose of this study was to isolate, identify, and characterize novel strains of probiotics from the faeces of Korean infants. Various assays were conducted to determine the physiological features of candidate probiotic isolates, including Gram staining, 16S rRNA gene sequencing, tolerance assays to stimulated gastric juice and bile salts, adherence ability assays, antibiotic susceptibility testing, and assays of immunomodulatory effects. Based on these morphological and biochemical characteristics, five potential probiotic isolates (Enterococcus faecalis BioE EF71, Lactobacillus fermentum BioE LF11, Lactobacillus plantarum BioE LPL59, Lactobacillus paracasei BioE LP08, and Streptococcus thermophilus BioE ST107) were selected. E. faecalis BioE EF71 and L. plantarum BioE LPL59 showed high tolerance to stimulated gastric juice and bile salts, and S. thermophilus BioE ST107 as well as these two strains exhibited stronger adherence ability than reference strain Lactobacillus rhamnosus GG. All five strains inhibited secretion of lipopolysaccharide-induced pro-inflammatory cytokines IL-6 and TNF-α in RAW264.7 macrophages in vitro. L. fermentum BioE LF11, L. plantarum BioE LPL59, and S. thermophilus BioE ST107 enhanced the production of anti-inflammatory cytokine IL-10. Overall, our findings demonstrate that the five novel strains have potential as safe probiotics and encouraged varying degrees of immunomodulatory effects.
Collapse
|
42
|
An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Bhattacharya S. Probiotics against alleviation of lead toxicity: recent advances. Interdiscip Toxicol 2019; 12:89-92. [PMID: 32206029 PMCID: PMC7071839 DOI: 10.2478/intox-2019-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Lead is a toxic heavy metal and there is no specific, safe and efficacious therapeutic management of lead toxicity. Scientific literature reported that some probiotic microorganisms alleviated experimentally induced lead toxicity. The present review attempts to collate the experimental studies on probiotics with ameliorative effects. Literature survey revealed that four (4) types of probiotic microorganisms exhibited significant protection from lead toxicity in experimental pre-clinical studies. No clinical study with significant outcome was found in the literature. From the outcomes of the preclinical studies it appears that probiotics are prospective for alleviation and treatment of lead toxicity.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
44
|
Rahmati F. Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01174-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Xia Y, Wang M, Gao F, Lu M, Chen G. Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia ( Oreochromis niloticus). ACTA ACUST UNITED AC 2019; 6:69-79. [PMID: 32211531 PMCID: PMC7082692 DOI: 10.1016/j.aninu.2019.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
This study investigated the effects of the Streptococcus agalactiae antagonizing probiotics Bacillus cereus NY5 and Bacillus subtilis as feed additives for Nile tilapia in terms of growth performance, intestinal health and resistance to S. agalactiae. A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into 4 equal groups with 3 replicates for each group. Fish were fed a basal diet (control check group, CK group) supplemented with B. subtilis (1 × 108 CFU/g feed, BS group), B. cereus NY5 (1 × 108 CFU/g feed, BC group), and B. subtilis + B. cereus NY5 (0.5 × 108 CFU/g feed of each probiotic, BS + BC group) for 6 wk, and the probiotic supplementation groups were then fed the basal diet for 1 wk to investigate the gut microbial community. The results of this study showed that BS + BC and BC treatments significantly increased weight gain (WG), feed conversion ratio (FCR) and S. agalactiae resistance in Nile tilapia (P < 0.05). Gut microvilli length and density and c-type lysozyme (lyzc) gene expression were significantly increased by probiotic supplementation (P < 0.05). The results of high-throughput sequencing showed that the B. cereus NY5 and B. subtilis + B. cereus NY5-supplemented feed resulted in a significant improvement in tilapia autochthonous gut bacterial communities and had a stimulation effect on a variety of potential probiotics after 6 wk of feeding. After cessation of probiotic administration for 1 wk, the gut bacteria of the fish in the BS + BC and BC groups had minor changes and maintained a stable state. Consequently, it was inferred that, as a feed supplement, B. cereus NY5 and the mixture of B. subtilis and B. cereus NY5 at 1 × 108 CFU/g feed were able to promote growth and disease resistance, which may be associated with the supplement's effects on gut immune status, intestinal morphology, and intestinal microbial community composition.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| |
Collapse
|
46
|
Zhang M, Cai D, Song Q, Wang Y, Sun H, Piao C, Yu H, Liu J, Liu J, Wang Y. Effect on Viability of Microencapsulated Lactobacillus rhamnosus with the Whey Protein-pullulan Gels in Simulated Gastrointestinal Conditions and Properties of Gels. Food Sci Anim Resour 2019; 39:459-473. [PMID: 31304474 PMCID: PMC6612782 DOI: 10.5851/kosfa.2019.e42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) has low resistance to low pH and bile salt in the gastrointestinal juice. In this study, the gel made from whey protein concentrate (WPC) and pullulan (PUL) was used as the wall material to prepare the microencapsulation for LGG protection. The gelation process was optimized and the properties of gel were also determined. The results showed the optimal gel was made from 10% WPC and 8.0% PUL at pH 7.5, which could get the best protective effect; the viable counts of LGG were 6.61 Log CFU/g after exposure to simulated gastric juice (SGJ) and 9.40 Log CFU/g to simulated intestinal juice (SIJ) for 4 h. Sodium dodecyl sulphite polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that the WPC-PUL gel had low solubility in SGJ, but dissolved well in SIJ, which suggested that the gel can protect LGG under SGJ condition and release probiotics in the SIJ. Moreover, when the gel has highest hardness and water-holding capacity, the viable counts of LGG were not the best, suggesting the relationship between the protection and the properties of the gel was non-linear.
Collapse
Affiliation(s)
- Minghao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Qiumei Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
47
|
Kim YJ, Park KH, Park DA, Park J, Bang BW, Lee SS, Lee EJ, Lee HJ, Hong SK, Kim YR. Guideline for the Antibiotic Use in Acute Gastroenteritis. Infect Chemother 2019; 51:217-243. [PMID: 31271003 PMCID: PMC6609748 DOI: 10.3947/ic.2019.51.2.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Acute gastroenteritis is common infectious disease in community in adults. This work represents an update of 'Clinical guideline for the diagnosis and treatment of gastrointestinal infections' that was developed domestically in 2010. The recommendation of this guideline was developed regarding the following; epidemiological factors, test for diagnosis, the indications of empirical antibiotics, and modification of antibiotics after confirming pathogen. Ultimately, it is expected to decrease antibiotic misuse and prevent antibiotic resistance.
Collapse
Affiliation(s)
- Youn Jeong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Park
- Division of Infectious Diseases, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong Ah Park
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Daejeon St. Mary's hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Byoung Wook Bang
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Seung Soon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hyo Jin Lee
- Division of Infectious Diseases, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Sung Kwan Hong
- Division of Infectious Diseases, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yang Ree Kim
- Division of Infectious Diseases, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea.
| |
Collapse
|
48
|
Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2018; 11:nu11010022. [PMID: 30577661 PMCID: PMC6357009 DOI: 10.3390/nu11010022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Various environmental contaminants including heavy metals, pesticides and antibiotics can contaminate food and water, leading to adverse effects on human health, such as inflammation, oxidative stress and intestinal disorder. Therefore, remediation of the toxicity of foodborne contaminants in human has become a primary concern. Some probiotic bacteria, mainly Lactobacilli, have received a great attention due to their ability to reduce the toxicity of several contaminants. For instance, Lactobacilli can reduce the accumulation and toxicity of selective heavy metals and pesticides in animal tissues by inhibiting intestinal absorption of contaminants and enhancing intestinal barrier function. Probiotics have also shown to decrease the risk of antibiotic-associated diarrhea possibly via competing and producing antagonistic compounds against pathogenic bacteria. Furthermore, probiotics can improve immune function by enhancing the gut microbiota mediated anti-inflammation. Thus, these probiotic bacteria are promising candidates for protecting body against foodborne contaminants-induced toxicity. Study on the mechanism of these beneficial bacterial strains during remediation processes and particularly their interaction with host gut microbiota is an active field of research. This review summarizes the current understanding of the remediation mechanisms of some probiotics and the combined effects of probiotics and gut microbiota on remediation of foodborne contaminants in vivo.
Collapse
Affiliation(s)
- Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Amanpreet Kaur Virk
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
49
|
Ghattargi VC, Kalam SH, Pandit SS, Pawar SP, Shouche YS. Survey of probiotic preparations and labeling practices in Indian market. Indian J Med Microbiol 2018; 36:116-118. [PMID: 29735839 DOI: 10.4103/ijmm.ijmm_18_63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cross-sectional survey was conducted across 320 chemists shop in Pune city for their availability and labeling practices. The questionnaire revealed the data about the most sold probiotic preparations, their mode of sale, and their available forms such as tablet, capsule, and sachet. Top ten probiotic preparations were evaluated for labeling practice as per the existing regulations of the Indian Council of Medical Research-Department of Biotechnology, Indian guidelines. Majority of probiotic preparations were listing the best before date, viability, probiotic organisms, net quantity, and batch number, but none of them mentioned the health claims.
Collapse
Affiliation(s)
| | - Swapnil H Kalam
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, India
| | - Sumeet S Pandit
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, India
| |
Collapse
|
50
|
Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci Rep 2018; 8:14147. [PMID: 30237565 PMCID: PMC6148029 DOI: 10.1038/s41598-018-32375-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post-weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had significant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA significantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the beneficial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential beneficial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control. Furthermore, the pathogenic bacterium, Peptoclostridium, was reduced (FDR = 1.58E-02) by SCB only while LA reduced (FDR = 1.74E-05) Ruminococcus_2. Functional prediction analysis suggested that both DFMs impacted (p < 0.05) pathways such as cell cycle, bile secretion, proteasome, cAMP signaling pathway, thyroid hormone synthesis pathway and dopaminergic synapse pathway. Compared to the DFMs, ATB had similar impact on bacterial diversity in all GIT sites but greater impact on the bacterial composition of the ileum. Overall, this study provides an insight on the bacteria genera impacted by DFMs and the potential mechanisms by which DFMs affect the GIT microbiota and may therefore facilitate development of DFMs as alternatives to ATB use in dairy calf management.
Collapse
|