1
|
Zumaraga MP, Borel P, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Desmarchelier C. Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males. Nutrients 2024; 16:2556. [PMID: 39125437 PMCID: PMC11314220 DOI: 10.3390/nu16152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In humans, α-tocopherol (α-TOC) is mainly stored in adipose tissue, where it participates in preventing damages induced by inflammation and reactive oxygen species. Factors, including genetic ones, that explain adipose tissue α-TOC concentration remain poorly understood. This study, therefore, aimed to characterize the interindividual variability of adipose tissue α-TOC concentration in healthy individuals and to identify single nucleotide polymorphisms (SNPs) associated with it. The study used a randomized cross-over design with 42 healthy adult males. α-TOC concentration was measured in fasting plasma and periumbilical adipose tissue samples, both at fast and 8 h after consumption of three standard meals. Partial least squares (PLS) regression was performed to identify SNPs associated with the interindividual variability of adipose tissue α-TOC concentration. Adipose tissue α-TOC concentration was not associated with fasting plasma concentration (Pearson's r = 0.24, 95% CI: [-0.08, 0.51]). There was a high interindividual variability of adipose tissue α-TOC concentration (CV = 61%). A PLS regression model comprising 10 SNPs in five genes (PPARG, ABCA1, BUD13, CD36, and MGLL) explained 60% (adjusted R2) of the variability of this concentration. The interindividual variability of adipose tissue α-TOC concentration in humans is due, at least partly, to SNPs in genes involved in α-TOC and triglyceride metabolism.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
- Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City 1631, Philippines
| | - Patrick Borel
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Beatrice Gleize
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Marion Nowicki
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, 75017 Paris, France;
| | - Jean-François Landrier
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Charles Desmarchelier
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
2
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Traber MG, Vrolijk M, Bercovici CM, de Sesmaisons Lecarré A, Fabiani L, Karavasiloglou N, Mendes V, Valtueña Martínez S, Naska A. Scientific opinion on the tolerable upper intake level for vitamin E. EFSA J 2024; 22:e8953. [PMID: 39099617 PMCID: PMC11294871 DOI: 10.2903/j.efsa.2024.8953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for vitamin E. As α-tocopherol is recognised as the only essential form of vitamin E, the Panel restricted its evaluation to α-tocopherol. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of vitamin E, namely risk of impaired coagulation and bleeding, cardiovascular disease and prostate cancer. The effect on blood clotting and associated increased risk of bleeding is considered as the critical effect to establish an UL for vitamin E. No new evidence has been published that could improve the characterisation of a dose-response. The ULs for vitamin E from all dietary sources, which were previously established by the Scientific Committee on Food, are retained for all population groups, i.e. 300 mg/day for adults, including pregnant and lactating women, 100 mg/day for children aged 1-3 years, 120 mg/day for 4-6 years, 160 mg/day for 7-10 years, 220 mg/day for 11-14 years and 260 mg/day for 15-17 years. A UL of 50 mg/day is established for infants aged 4-6 months and a UL of 60 mg/day for infants aged 7-11 months. ULs apply to all stereoisomeric forms of α-tocopherol. ULs do not apply to individuals receiving anticoagulant or antiplatelet medications (e.g. aspirin), to patients on secondary prevention for CVD or to patients with vitamin K malabsorption syndromes. It is unlikely that the ULs for vitamin E are exceeded in European populations, except for regular users of food supplements containing high doses of vitamin E.
Collapse
|
3
|
Sun G, Ye H, Liu H, Li T, Li J, Zhang X, Cheng Y, Wang K, Shi J, Dai L, Wang P. ZPR1 is an immunodiagnostic biomarker and promotes tumor progression in esophageal squamous cell carcinoma. Cancer Sci 2024; 115:70-82. [PMID: 37964506 PMCID: PMC10823283 DOI: 10.1111/cas.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
To evaluate the potential of zinc finger protein 1 (ZPR1) as a diagnostic biomarker and explore the underlying role for esophageal squamous cell carcinoma (ESCC). A human proteome microarray was customized to identify anti-ZPR1 autoantibody, and enzyme-linked immunosorbent assay (ELISA) was adopted to assess the diagnostic performance of anti-ZPR1 autoantibody in 294 patients with ESCC and 294 normal controls. The expression of ZPR1 protein was measured by immunohistochemistry. The effect of ZPR1 on the proliferation, migration, and invasion of ESCC cells was investigated through CCK-8, wound healing, and Transwell assays. The expression level of anti-ZPR1 autoantibody (fold change = 2.77) in ESCC patients was higher than that in normal controls. The receiver operating characteristic (ROC) analysis manifested anti-ZPR1 autoantibody achieved area under the ROC curve (AUC) of 0.726 and 0.734 to distinguish ESCC from normal controls with sensitivity of 50.0% and 42.3%, and specificity of 91.0% and 92.0% in the test group and validation group, respectively. The positive rate of ZPR1 protein was significantly higher in ESCC tissues (75.5%, 80/106) than paracancerous tissues (9.4%, 5/53). Compared with the human normal esophageal cell line, the expression level of ZPR1 mRNA and protein in ESCC lines (KYSE150, Eca109, and TE1) had an increased trend. The knockdown or overexpression of ZPR1 reduced and enhanced the proliferation, migration, and invasion of ESCC cell, respectively. ZPR1 was a potential immunodiagnostic biomarker for noninvasive detection and could be a promotional factor in tumor progression of ESCC.
Collapse
Affiliation(s)
- Guiying Sun
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Huijuan Liu
- Scientific Research Department, The First Affiliated Hospital of Henan University of CMHenan University of Chinese MedicineZhengzhouChina
| | - Tiandong Li
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Xiaoyue Zhang
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Yifan Cheng
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and TreatmentZhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Loh WQ, Youn J, Seow WJ. Vitamin E Intake and Risk of Prostate Cancer: A Meta-Analysis. Nutrients 2022; 15:nu15010014. [PMID: 36615673 PMCID: PMC9824720 DOI: 10.3390/nu15010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin E is a group of antioxidative tocopherols and tocotrienols that play a potential role in chemoprevention. Studies investigating the association between vitamin E and prostate cancer risk have been conflicting. We identified observational and interventional studies examining the association between vitamin E intake and prostate cancer risk from PubMed, EMBASE and the Cochrane Library. A random-effects model was used to perform a meta-analysis and estimate relative risks (RRs) and the corresponding 95% confidence intervals (CIs) of prostate cancer risk according to vitamin E intake. Subgroup analyses were conducted by study design, sample size, study population characteristics, geographical region, and dose of vitamin E intake. The association between dietary (RR = 0.97; 95% CI = 0.92-1.02) and supplemental (RR = 0.99; 95% CI = 0.94-1.04) vitamin E intake on prostate cancer risk was non-significant. In subgroup analyses, supplemental vitamin E was significantly associated with reduced prostate cancer risk in studies in Europe (RR = 0.81, 95% CI = 0.69-0.97). Overall, this meta-analysis demonstrates little evidence for a beneficial effect of vitamin E intake on prostate cancer risk but suggests that there may be some conditions in which supplements could confer a protective effect on prostate cancer risk.
Collapse
Affiliation(s)
- Wei Qi Loh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Jiyoung Youn
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
- Correspondence: ; Tel.: +65-6601-1243
| |
Collapse
|
5
|
Lawrence WR, Lim JE, Huang J, Weinstein SJ, Mӓnnistӧ S, Albanes D. A 28-year prospective analysis of serum vitamin E, vitamin E-related genetic variation and risk of prostate cancer. Prostate Cancer Prostatic Dis 2022; 25:553-560. [PMID: 35197557 PMCID: PMC9391251 DOI: 10.1038/s41391-022-00511-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Objective: Investigate the relationship between serum α-tocopherol concentration and long-term risk of prostate cancer, and evaluate the interaction with vitamin E–related genetic variants and their polygenic risk score (PRS). Methods: We conducted a biochemical analysis of 29 102 male Finnish smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Serum α-tocopherol was measured at baseline using high-performance liquid chromatography, and 2 724 prostate cancer cases were identified during 28 years of follow-up. Cox proportional hazards models examined whether serum α-tocopherol concentrations were associated with prostate cancer risk. Among 8 383 participants, three SNPs related to vitamin E status (rs964184, rs2108622, and rs11057830) were examined to determine whether they modified the relationship between serum α-tocopherol concentrations and prostate cancer risk, both individually and as a PRS using logistic regression models. Results: No association was observed between serum α-tocopherol and prostate cancer risk (fifth quintile (Q5) versus Q1 hazard ratio (HR)=0.87, 95% confidence interval (95% CI) 0.75, 1.02; p-trend=0.57). Though no interactions were seen by population characteristics, high α-tocopherol concentration was associated with reduced prostate cancer risk among the trial α-tocopherol supplementation group (Q5 quintile versus Q1 HR=0.79, 95% CI 0.64, 0.99). Finally, no associated interaction between the three SNPs or their PRS and prostate cancer risk was observed. Conclusion: Although there was a weak inverse association between α-tocopherol concentration and prostate cancer risk over nearly three decades, our findings suggest that men receiving the trial α-tocopherol supplementation who had higher baseline serum α-tocopherol concentration experienced reduced prostate cancer risk. Vitamin E–related genotypes did not modify the serum α-tocopherol-prostate cancer risk association.
Collapse
Affiliation(s)
- Wayne R Lawrence
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jung-Eun Lim
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiaqi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satu Mӓnnistӧ
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Gasmi A, Bjørklund G, Noor S, Semenova Y, Dosa A, Pen JJ, Menzel A, Piscopo S, Wirth N, Costea DO. Nutritional and surgical aspects in prostate disorders. Crit Rev Food Sci Nutr 2022:1-17. [PMID: 35021909 DOI: 10.1080/10408398.2021.2013158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prostate disorders are commonplace in medicine, especially in older men, with prostatitis, benign prostatic hyperplasia, and prostate cancer being the most abundant pathologies. The complexity of this organ, however, turns treatment into a challenge. In this review, we aim to provide insight into the efficacy of alternative treatments, which are not normally used in conventional medicine, with a particular focus on nutrients. In order to understand why and how nutrition can be beneficial in diseases of the prostate, we give an overview of the known characteristics and features of this organ. Then, we provide a summary of the most prevalent prostate illnesses. Finally, we propose nutrition-based treatment in each of these prostate problems, based on in-depth research concerning its effects in this context, with an emphasis on surgery. Overall, we plead for an upgrade of this form of alternative treatment to a fully recognized mode of therapy for the prostate.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Université Lyon 1, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Yuliya Semenova
- Department of Neurology, Ophthalmology, ENT, Semey Medical University, Semey, Kazakhstan.,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Alexandru Dosa
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | | |
Collapse
|
7
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
8
|
Zhao Y, Zhang H, Ju Q, Li X, Zheng Y. Comprehensive Analysis of Survival-Related lncRNAs, miRNAs, and mRNAs Forming a Competing Endogenous RNA Network in Gastric Cancer. Front Genet 2021; 12:610501. [PMID: 33737947 PMCID: PMC7960915 DOI: 10.3389/fgene.2021.610501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
To analyze and construct a survival-related endogenous RNA (ceRNA) network in gastric cancer (GC) with lymph node metastasis, we obtained expression profiles of long non-coding RNAs (lncRNAs), mRNAs, and microRNAs (miRNAs) in GC from The Cancer Genome Atlas database. The edgeR package was used to screen differentially expressed lncRNAs, mRNAs, and miRNAs between GC patients with lymphatic metastasis and those without lymphatic metastasis. Then, we used univariate Cox regression analysis to identify survival-related differentially expressed RNAs. In addition, we used multivariate Cox regression analysis to screen lncRNAs, miRNAs, and mRNAs for use in the prognostic prediction models. The results showed that 2,247 lncRNAs, 155 miRNAs, and 1,253 mRNAs were differentially expressed between the two patient groups. Using univariate Cox regression analysis, we found that 395 lncRNAs, eight miRNAs, and 180 mRNAs were significantly related to the survival time of GC patients. We next created a survival-related network consisting of 59 lncRNAs, seven miRNAs, and 36 mRNAs. In addition, we identified eight RNAs associated with prognosis by multivariate Cox regression analysis, comprising three lncRNAs (AC094104.2, AC010457.1, and AC091832.1), two miRNAs (miR-653-5p and miR-3923), and three mRNAs (C5orf46, EPHA8, and HPR); these were used to construct the prognostic prediction models, and their risk scores could be used to assess GC patients' prognosis. In conclusion, this study provides new insights into ceRNA networks in GC and the screening of prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Heng Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xinmei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Ahmed M, Goh C, Saunders E, Cieza-Borrella C, Kote-Jarai Z, Schumacher FR, Eeles R. Germline genetic variation in prostate susceptibility does not predict outcomes in the chemoprevention trials PCPT and SELECT. Prostate Cancer Prostatic Dis 2020; 23:333-342. [PMID: 31776447 PMCID: PMC7237354 DOI: 10.1038/s41391-019-0181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The development of prostate cancer can be influenced by genetic and environmental factors. Numerous germline SNPs influence prostate cancer susceptibility. The functional pathways in which these SNPs increase prostate cancer susceptibility are unknown. Finasteride is currently not being used routinely as a chemoprevention agent but the long term outcomes of the PCPT trial are awaited. The outcomes of the SELECT trial have not recommended the use of chemoprevention in preventing prostate cancer. This study investigated whether germline risk SNPs could be used to predict outcomes in the PCPT and SELECT trial. METHODS Genotyping was performed in European men entered into the PCPT trial (n = 2434) and SELECT (n = 4885). Next generation genotyping was performed using Affymetrix® Eureka™ Genotyping protocols. Logistic regression models were used to test the association of risk scores and the outcomes in the PCPT and SELECT trials. RESULTS Of the 100 SNPs, 98 designed successfully and genotyping was validated for samples genotyped on other platforms. A number of SNPs predicted for aggressive disease in both trials. Men with a higher polygenic score are more likely to develop prostate cancer in both trials, but the score did not predict for other outcomes in the trial. CONCLUSION Men with a higher polygenic risk score are more likely to develop prostate cancer. There were no interactions of these germline risk SNPs and the chemoprevention agents in the SELECT and PCPT trials.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK.
| | - Chee Goh
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Edward Saunders
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Clara Cieza-Borrella
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Fredrick R Schumacher
- Department of Epidemiology and Biostatistics, Case Western Reserve University; Seidman Cancer Center, University Hospitals, Cleveland, OH, USA
| | - Ros Eeles
- The Institute of Cancer Research, Royal Marsden Hospital, NHS Foundation Trust, 123 Old Brompton Road, London, SW7 3RP, UK
| |
Collapse
|
10
|
Yang CS, Luo P, Zeng Z, Wang H, Malafa M, Suh N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol Carcinog 2020; 59:365-389. [PMID: 32017273 DOI: 10.1002/mc.23160] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
α-Tocopherol (α-T) is the major form of vitamin E (VE) in animals and has the highest activity in carrying out the essential antioxidant functions of VE. Because of the involvement of oxidative stress in carcinogenesis, the cancer prevention activity of α-T has been studied extensively. Lower VE intake or nutritional status has been shown to be associated with increased cancer risk, and supplementation of α-T to populations with VE insufficiency has shown beneficial effects in lowering the cancer risk in some intervention studies. However, several large intervention studies with α-T conducted in North America have not demonstrated a cancer prevention effect. More recent studies have centered on the γ- and δ-forms of tocopherols and tocotrienols (T3). In comparison with α-T, these forms have much lower systemic bioavailability but have shown stronger cancer-preventive activities in many studies in animal models and cell lines. γ-T3 and δ-T3 generally have even higher activities than γ-T and δ-T. In this article, we review recent results from human and laboratory studies on the cancer-preventive activities of different forms of tocopherols and tocotrienols, at nutritional and pharmacological levels. We aim to elucidate the possible mechanisms of the preventive actions and discuss the possible application of the available information for human cancer prevention by different VE forms.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Philip Luo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
11
|
Tucker D, Anderson M, Miller F, Vaz K, Anderson-Jackson L, McGrowder D. Dietary Antioxidants in the Chemoprevention of Prostate Cancer. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Lin JH, Chen SJ, Liu H, Yan Y, Zheng JH. Vitamin E consumption and the risk of bladder cancer. INT J VITAM NUTR RES 2019; 89:168-175. [PMID: 30806606 DOI: 10.1024/0300-9831/a000553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Vitamin E has anti-cancer properties, which was demonstrated mainly due to its antioxidant effect. Several epidemiological studies have investigated the association between vitamin E consumption and the risk of bladder cancer. However, the results were inconsistent. The meta-analysis study aimed to evaluate the association of vitamin E consumption and the risk of bladder cancer. METHODS We conducted a systematic literature search in the electronic databases, which included MEDLINE, EMBASE and the Cochrane Library till 1 January 2016. The pooled relative risk ratios (RRs) with 95% confidence intervals (CIs) were calculated depending on the heterogeneity among studies. Subgroup analysis and sensitivity analysis were also performed. Publication bias was assessed using Begg's test and Egger's test. RESULTS A total of 11 prospective studies (3 randomized clinical trials and 8 cohort studies) including 575601 participants were identified to be eligible for our present meta-analysis. The pooled RRs with 95% CI for highest versus lowest vitamin E consumption was 0.89 (0.78-1.00). An inverse linear association between vitamin E consumption and bladder cancer risk was detected in the dose response analysis. The results were also stable in the subgroup analysis and sensitivity analysis. Meanwhile, no obvious publication bias was observed. CONCLUSIONS Our study indicates that vitamin E consumption was inversely associated with the risk of bladder cancer.
Collapse
Affiliation(s)
- Jian-Hai Lin
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shao-Jun Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Huan Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| |
Collapse
|
13
|
eQTL analysis from co-localization of 2739 GWAS loci detects associated genes across 14 human cancers. J Theor Biol 2019; 462:240-246. [PMID: 30391648 DOI: 10.1016/j.jtbi.2018.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Genetic variants can predict other "linked" diseases because alterations in one or more genes in vivo may affect relevant phenotype properties. Our study systematically explored the pan-cancer common gene and cancer type-specific genes based on GWAS loci and TCGA data of multiple cancers. It was found that there were 17 SNPs were significantly associated with the expression of 18 genes. Associations between the 18 cis-regulatory genes and the pathologic stage of each cancer showed that MYL2 and PTGFR in HNSC, 4 genes (F8, SATB2, G6PD and UGT1A6) in KIRP, 3 genes (CHMP4C, MAP3K1 and MECP2) in LUAD were all strongly associated with cancer stage levels. Additionally, the survival association analysis showed that SATB2 was correlated with HNSC survival, and MPP1 was strongly associated with the survival of SARC. This study will shed light on the biological pathways involved in cancer-genetic associations, and has the potential to be applied to the predictions of the risk of cancers developing in healthy individuals.
Collapse
|
14
|
Suzuki R, Warita T, Nakamura Y, Kitamura Y, Aoyama Y, Ogawa Y, Kawada H, Ando K. A case of double-refractory multiple myeloma with both the IgH-MMSET fusion protein and the congenital abnormality t(11;22). Int J Hematol 2019; 109:731-736. [PMID: 30680670 DOI: 10.1007/s12185-019-02603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
A 67-year-old female was referred to our hospital with a sternal fracture in March 2008. She received a diagnosis of multiple myeloma (MM) BJP-κ type (ISS stage III). G-banding karyotype revealed 46, XX, t(11;22)(q23.3;q11.2) (Hubacek, Gene 592:193-9, 2016), which was later confirmed to be congenital. After repeated rounds of chemotherapy with bortezomib and lenalidomide, she obtained a very good partial response in August 2014, and she was followed up with no treatment. However, she relapsed in February 2016. At that time, fluorescence in situ hybridization identified del(13q) and t(4;14)(p16;q32), which are associated with a poor prognosis. Furthermore, PCR analysis showed that the chromosome 11 breakpoint was at the APOA5/APOA4 locus at 11q23.3, which is associated with malignancy, and that the chromosome 22 breakpoint was at the SEPT5 intron 1 locus, which also plays a role in leukemogenesis through formation of a fusion gene with MLL. Although she was treated with three further lines of therapy, she died from disease progression in August 2017. Synergism between t(11;22) and t(4;14) may have induced the double-refractory phenotype to proteasome inhibitor and lenalidomide, at least during the chemorefractory phase. We present a biological analysis of this case and a review of the literature.
Collapse
Affiliation(s)
- Rikio Suzuki
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Takayuki Warita
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuka Kitamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yasuyuki Aoyama
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan. .,Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
15
|
Reed D, Raina K, Agarwal R. Nutraceuticals in prostate cancer therapeutic strategies and their neo-adjuvant use in diverse populations. NPJ Precis Oncol 2018; 2:15. [PMID: 30062144 PMCID: PMC6060229 DOI: 10.1038/s41698-018-0058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy and second leading cause of cancer mortality in American males. Notably, men of African descent in the United States and Caribbean have the highest PCa mortality rates compared to men with European ancestry. Although current therapeutics are quite potent and effective, disease resistance, progression to metastasis, therapy-associated toxicities and efficacy-related issues in diverse populations develop over time. Thus, non-toxic and efficacious therapeutic strategies are needed to address these major obstacles for the clinical treatment and management of PCa. In this regard, preclinical and population-based efficacy studies have shown the potential of natural non-toxic nutraceuticals as potent anti-PCa agents. Accordingly, the implementation of nutraceutical intervention and genetic testing in diverse populations might aid in the development and design of precision medicine strategies to reduce the burden of chemotherapy-associated toxicities, suppress disease resistance, and treat both localized and advanced PCa. Consequently, additional large-scale and inclusive clinical studies are required to fully assess efficacy and therapeutic limitations of these agents in PCa. This review discusses the most current clinical research on selected nutraceutical agents and their efficacy in the context of clinico-pathological outcomes and disease susceptibility in diverse PCa clinical and epidemiological studies.
Collapse
Affiliation(s)
- Dominique Reed
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
16
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
17
|
Lin PH, Aronson W, Freedland SJ. An update of research evidence on nutrition and prostate cancer. Urol Oncol 2017; 37:387-401. [PMID: 29103966 DOI: 10.1016/j.urolonc.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prostate cancer (PCa) remains a leading cause of mortality in US and other countries. Preclinical and clinical studies have examined the role of nutrition and dietary intake on the incidence and progression of PCa with mixed results. OBJECTIVE The objective of this chapter is to provide an update of recent published literature and highlight progress in the field. MAIN FINDINGS Low carbohydrate intake, soy protein, ω3 fat, green teas, tomatoes and tomato products and the herbal mixture-zyflamend showed promise in reducing PCa risk or progression. On the contrary, a higher animal fat intake and a higher β-carotene status may increase risk. A "U" shape relationship may exist between folate, vitamin C, vitamin D and calcium with PCa risk. Conclusion Despite the inconclusive findings, the potential for a role of dietary intake for the prevention and treatment of PCa remains promising. Maintaining a healthy body weight and following a healthy dietary pattern including antioxidant rich fruits and vegetables, reduced animal fat and refined carbohydrates, should be encouraged. CONCLUSION Despite the inconclusive findings, the potential for a role of dietary intake for the prevention and treatment of PCa remains promising. Maintaining a healthy body weight and following a healthy dietary pattern including antioxidant rich fruits and vegetables, reduced animal fat and refined carbohydrates, should be encouraged.
Collapse
Affiliation(s)
- Pao-Hwa Lin
- Department of Medicine, Duke University Medical Center, Durham, NC.
| | - William Aronson
- Urology Section, Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Urology, UCLA School of Medicine, Los Angeles, CA
| | - Stephen J Freedland
- Department of Surgery, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA; Section of Urology, Department of Surgery, Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
18
|
Effect of vitamin E supplementation on uterine cervical neoplasm: A meta-analysis of case-control studies. PLoS One 2017; 12:e0183395. [PMID: 28829815 PMCID: PMC5567498 DOI: 10.1371/journal.pone.0183395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/03/2017] [Indexed: 12/28/2022] Open
Abstract
Several epidemiological studies have suggested that vitamin E could reduce the risk of uterine cervical neoplasm. However, controversial data were presented by different reports. Hence, we conducted a meta-analysis to assess the relationship between vitamin E and the risk of cervical neoplasia. We performed a comprehensive search of the PubMed, Embase and Cochrane databases through December 31, 2016. Based on a fixed-effects or random-effects model, the odds ratio (OR) and 95% confidence intervals (CIs) were calculated to assess the combined risk. Subgroup analyses and meta-regression were done to assess the source of heterogeneity. Subgroup analyses were performed according to survey ways, types of cervical neoplasia, study populations. A protocol was registered with PROSPERO (No. CRD42016036672). In total, 15 case-control studies were included, involving 3741 cases and 6328 controls. Our study suggested that higher category of vitamin E could reduce the cervical neoplasia risk (OR = 0.58, 95% CIs = 0.47–0.72, I2 = 83%). In subgroup-analysis, both vitamin E intake and blood levels of vitamin E had a significant inverse association with the risk of cervical neoplasm. Additionally, we found the same relationship between vitamin E and cervical neoplasia among different populations and types of cervical neoplasia. Meta-regression showed that none of the including covariates were significantly related to the outcomes. No evidence of publication bias was observed. In conclusion, vitamin E intake and blood vitamin E levels were inversely associated with the risk of cervical neoplasia.
Collapse
|
19
|
Cervantes B, Ulatowski LM. Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? Antioxidants (Basel) 2017; 6:antiox6030045. [PMID: 28672782 PMCID: PMC5618073 DOI: 10.3390/antiox6030045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.
Collapse
|
20
|
Mondul AM, Weinstein SJ, Albanes D. Vitamins, metabolomics, and prostate cancer. World J Urol 2017; 35:883-893. [PMID: 27339624 PMCID: PMC5182198 DOI: 10.1007/s00345-016-1878-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE How micronutrients might influence risk of developing adenocarcinoma of the prostate has been the focus of a large body of research (especially regarding vitamins E, A, and D). Metabolomic profiling has the potential to discover molecular species relevant to prostate cancer etiology, early detection, and prevention, and may help elucidate the biologic mechanisms through which vitamins influence prostate cancer risk. METHODS Prostate cancer risk data related to vitamins E, A, and D and metabolomic profiling from clinical, cohort, and nested case-control studies, along with randomized controlled trials, are examined and summarized, along with recent metabolomic data of the vitamin phenotypes. RESULTS Higher vitamin E serologic status is associated with lower prostate cancer risk, and vitamin E genetic variant data support this. By contrast, controlled vitamin E supplementation trials have had mixed results based on differing designs and dosages. Beta-carotene supplementation (in smokers) and higher circulating retinol and 25-hydroxy-vitamin D concentrations appear related to elevated prostate cancer risk. Our prospective metabolomic profiling of fasting serum collected 1-20 years prior to clinical diagnoses found reduced lipid and energy/TCA cycle metabolites, including inositol-1-phosphate, lysolipids, alpha-ketoglutarate, and citrate, significantly associated with lower risk of aggressive disease. CONCLUSIONS Several active leads exist regarding the role of micronutrients and metabolites in prostate cancer carcinogenesis and risk. How vitamins D and A may adversely impact risk, and whether low-dose vitamin E supplementation remains a viable preventive approach, require further study.
Collapse
Affiliation(s)
- Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive 6e342, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive 6e342, Bethesda, MD, USA.
| |
Collapse
|
21
|
Kaakinen M, Mägi R, Fischer K, Heikkinen J, Järvelin MR, Morris AP, Prokopenko I. MARV: a tool for genome-wide multi-phenotype analysis of rare variants. BMC Bioinformatics 2017; 18:110. [PMID: 28209135 PMCID: PMC5311849 DOI: 10.1186/s12859-017-1530-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies have enabled identification of thousands of loci for hundreds of traits. Yet, for most human traits a substantial part of the estimated heritability is unexplained. This and recent advances in technology to produce high-dimensional data cost-effectively have led to method development beyond standard common variant analysis, including single-phenotype rare variant and multi-phenotype common variant analysis, with the latter increasing power for locus discovery and providing suggestions of pleiotropic effects. However, there are currently no optimal methods and tools for the combined analysis of rare variants and multiple phenotypes. RESULTS We propose a user-friendly software tool MARV for Multi-phenotype Analysis of Rare Variants. The tool is based on a method that collapses rare variants within a genomic region and models the proportion of minor alleles in the rare variants on a linear combination of multiple phenotypes. MARV provides analyses of all phenotype combinations within one run and calculates the Bayesian Information Criterion to facilitate model selection. The running time increases with the size of the genetic data while the number of phenotypes to analyse has little effect both on running time and required memory. We illustrate the use of MARV with analysis of triglycerides (TG), fasting insulin (FI) and waist-to-hip ratio (WHR) in 4,721 individuals from the Northern Finland Birth Cohort 1966. The analysis suggests novel multi-phenotype effects for these metabolic traits at APOA5 and ZNF259, and at ZNF259 provides stronger support for association (P TG+FI = 1.8 × 10-9) than observed in single phenotype rare variant analyses (P TG = 6.5 × 10-8 and P FI = 0.27). CONCLUSIONS MARV is a computationally efficient, flexible and user-friendly software tool allowing rapid identification of rare variant effects on multiple phenotypes, thus paving the way for novel discoveries and insights into biology of complex traits.
Collapse
Affiliation(s)
- Marika Kaakinen
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, 51010 Estonia
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, 51010 Estonia
| | - Jani Heikkinen
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN UK
- Neuroepidemiology and Ageing (NEA) Research Unit, Imperial College London, London, W6 8RP UK
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG UK
- Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Andrew P. Morris
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3BX UK
| | - Inga Prokopenko
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN UK
| |
Collapse
|
22
|
Chan JM, Darke AK, Penney KL, Tangen CM, Goodman PJ, Lee GSM, Sun T, Peisch S, Tinianow AM, Rae JM, Klein EA, Thompson IM, Kantoff PW, Mucci LA. Selenium- or Vitamin E-Related Gene Variants, Interaction with Supplementation, and Risk of High-Grade Prostate Cancer in SELECT. Cancer Epidemiol Biomarkers Prev 2016; 25:1050-1058. [PMID: 27197287 DOI: 10.1158/1055-9965.epi-16-0104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epidemiologic studies and secondary analyses of randomized trials supported the hypothesis that selenium and vitamin E lower prostate cancer risk. However, the Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed no benefit of either supplement. Genetic variants involved in selenium or vitamin E metabolism or transport may underlie the complex associations of selenium and vitamin E. METHODS We undertook a case-cohort study of SELECT participants randomized to placebo, selenium, or vitamin E. The subcohort included 1,434 men; our primary outcome was high-grade prostate cancer (N = 278 cases, Gleason 7 or higher cancer). We used weighted Cox regression to examine the association between SNPs and high-grade prostate cancer risk. To assess effect modification, we created interaction terms between randomization arm and genotype and calculated log likelihood statistics. RESULTS We noted statistically significant (P < 0.05) interactions between selenium assignment, SNPs in CAT, SOD2, PRDX6, SOD3, and TXNRD2, and high-grade prostate cancer risk. Statistically significant SNPs that modified the association of vitamin E assignment and high-grade prostate cancer included SEC14L2, SOD1, and TTPA In the placebo arm, several SNPs, hypothesized to interact with supplement assignment and risk of high-grade prostate cancer, were also directly associated with outcome. CONCLUSION Variants in selenium and vitamin E metabolism/transport genes may influence risk of overall and high-grade prostate cancer, and may modify an individual man's response to vitamin E or selenium supplementation with regards to these risks. IMPACT The effect of selenium or vitamin E supplementation on high-grade prostate cancer risk may vary by genotype. Cancer Epidemiol Biomarkers Prev; 25(7); 1050-8. ©2016 AACR.
Collapse
Affiliation(s)
- June M Chan
- Departments Of Epidemiology & Biostatistics and Urology, University of CA San Francisco
| | - Amy K Darke
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA
| | - Tong Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA
| | - Sam Peisch
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Alex M Tinianow
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Cancer Center, Michigan
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Ian M Thompson
- The Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Vance TM, Wang Y, Su LJ, Fontham ETH, Steck SE, Arab L, Bensen JT, Mohler JL, Chen MH, Chun OK. Dietary Total Antioxidant Capacity is Inversely Associated with Prostate Cancer Aggressiveness in a Population-Based Study. Nutr Cancer 2016; 68:214-24. [PMID: 26847416 PMCID: PMC4821782 DOI: 10.1080/01635581.2016.1134596] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to determine the relationship between total antioxidant capacity (TAC) from diet and supplements and prostate cancer aggressiveness among 855 African Americans (AA) and 945 European Americans (EA) in the North Carolina-Louisiana Prostate Cancer Project (PCaP). Cases were classified as either high aggressive, low aggressive, or intermediate aggressive. TAC was calculated from the vitamin C equivalent antioxidant capacity of 42 antioxidants measured via food frequency questionnaire. EA reported greater dietary TAC from diet and supplements combined (P < 0.0001). In both minimally and fully adjusted logistic regression models, TAC from diet and supplements combined was associated with a reduced odds of high aggressive prostate cancer in all men, AA and EA: odds ratios for highest vs. lowest level (>1500 vs. <500 mg vitamin C equivalent/day): 0.31 [95% confidence interval (CI): 0.15, 0.67; P-trend < 0.01], 0.28 (95% CI: 0.08, 0.96; P-trend < 0.001), and 0.36 (95% CI: 0.15, 0.86; P-trend = 0.58), respectively. These associations did not appear to differ between AA and EA. These data suggest that greater intake of antioxidants is associated with less aggressive prostate cancer. Additional research is needed to confirm these results and determine the underlying mechanisms.
Collapse
Affiliation(s)
- Terrence M. Vance
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Ying Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - L. Joseph Su
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD
| | | | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, University of South Carolina, Columbia, SC
| | - Lenore Arab
- David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jeannette T. Bensen
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill, NC
| | - James L. Mohler
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill, NC
- Roswell Park Cancer Institute, Buffalo, NY
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
24
|
|
25
|
Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis 2015; 84:78-83. [PMID: 25913028 DOI: 10.1016/j.nbd.2015.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is a plant-derived antioxidant that is essential for human health. Studies with humans and with animal models of vitamin E deficiency established the critical roles of the vitamin in protecting the central nervous system, and especially the cerebellum, from oxidative damage and motor coordination deficits. We review here the established roles of vitamin E in protecting cerebellar functions, as well as emerging data demonstrating the critical roles of alpha-tocopherol in preserving learning, memory and emotive responses. We also discuss the importance of vitamin E adequacy in seemingly unrelated neurological disorders.
Collapse
Affiliation(s)
- Lynn M Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
26
|
Lin PH, Aronson W, Freedland SJ. Nutrition, dietary interventions and prostate cancer: the latest evidence. BMC Med 2015; 13:3. [PMID: 25573005 PMCID: PMC4286914 DOI: 10.1186/s12916-014-0234-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality in US men and the prevalence continues to rise world-wide especially in countries where men consume a 'Western-style' diet. Epidemiologic, preclinical and clinical studies suggest a potential role for dietary intake on the incidence and progression of PCa. 'This minireview provides an overview of recent published literature with regard to nutrients, dietary factors, dietary patterns and PCa incidence and progression. Low carbohydrates intake, soy protein, omega-3 (w-3) fat, green teas, tomatoes and tomato products and zyflamend showed promise in reducing PCa risk or progression. A higher saturated fat intake and a higher β-carotene status may increase risk. A 'U' shape relationship may exist between folate, vitamin C, vitamin D and calcium with PCa risk. Despite the inconsistent and inconclusive findings, the potential for a role of dietary intake for the prevention and treatment of PCa is promising. The combination of all the beneficial factors for PCa risk reduction in a healthy dietary pattern may be the best dietary advice. This pattern includes rich fruits and vegetables, reduced refined carbohydrates, total and saturated fats, and reduced cooked meats. Further carefully designed prospective trials are warranted.
Collapse
Affiliation(s)
- Pao-Hwa Lin
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Box 3487, Durham, NC 27710 USA
| | - William Aronson
- Urology Section, Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA USA
- Department of Urology, UCLA School of Medicine, Los Angeles, CA USA
| | - Stephen J Freedland
- Urology Section, Department of Surgery, Durham Veterans Affairs Medical Center, Division of Urology, Durham, NC USA
- Duke Prostate Center, Departments of Surgery and Pathology, Duke University Medical Center, Durham, NC USA
| |
Collapse
|