1
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Sachani P, Dhande R, Parihar P, Kasat PR, Bedi GN, Pradeep U, Kothari P, Mapari SA. Enhancing the Understanding of Breast Vascularity Through Insights From Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Comprehensive Review. Cureus 2024; 16:e70226. [PMID: 39463566 PMCID: PMC11512160 DOI: 10.7759/cureus.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Breast vascularity plays a crucial role in both physiological and pathological processes, particularly in the development and progression of breast cancer. Understanding vascular changes within breast tissue is essential for accurate diagnosis, treatment planning, and monitoring therapeutic response. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has emerged as a valuable tool for evaluating breast vascularity due to its ability to provide detailed functional and morphological insights. DCE-MRI utilizes contrast agents to highlight blood flow and vessel permeability, making it especially useful in differentiating between benign and malignant lesions. This review explores the significance of DCE-MRI in breast vascularity assessment, highlighting its principles, clinical applications, and role in detecting malignancy through vascular changes. We also examine its utility in monitoring treatment response and quantitative analysis of perfusion metrics such as Ktrans and extracellular-extravascular volume (Ve). While DCE-MRI offers remarkable diagnostic accuracy, challenges remain regarding its cost, accessibility, and potential overlap of enhancement patterns between benign and malignant conditions. The review further discusses emerging technologies and future directions for DCE-MRI, including advanced imaging techniques and machine learning-based quantification. Overall, DCE-MRI stands out as a powerful tool in the comprehensive evaluation of breast vascularity, with significant potential to improve patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rajasbala Dhande
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
3
|
B S, Sam A, Gunasekaran D, Muralidharan Y, Natarajan P. Diagnostic Efficacy of Dynamic Maneuver in Contrast-Enhanced Computed Tomography Compared With Conventional Contrast-Enhanced Computed Tomography in Imaging the Neck Region. Cureus 2024; 16:e65074. [PMID: 39171018 PMCID: PMC11336514 DOI: 10.7759/cureus.65074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Dynamic contrast-enhanced computed tomography (DCE-CT) and conventional contrast-enhanced computed tomography (CE-CT) are widely used to evaluate neck lesions, including lymph node metastases, thyroid nodules, salivary gland tumors, and other soft tissue masses. DCE-CT, which captures multiple phases of contrast enhancement over time, is hypothesized to provide superior diagnostic accuracy compared to the single-phase images obtained by CE-CT due to its ability to offer dynamic information about tissue perfusion, blood volume, and vascular permeability. Methods This retrospective observational diagnostic study included 100 patients who underwent neck imaging, divided equally into DCE-CT and CE-CT groups. Patient demographics (age, gender, body mass index) and lesion characteristics (type, location, size, enhancement pattern, margins) were recorded. Diagnostic performance metrics (sensitivity, specificity, accuracy, positive predictive value, negative predictive value) were evaluated alongside inter-observer variability using the kappa statistic. Clinical impact was assessed based on changes in treatment plans and improvements in patient outcomes. The radiation dose for each modality was documented. Statistical analysis was performed using SPSS software (IBM SPSS Statistics for Windows, IBM Corp., Armonk, NY) with chi-square tests for categorical variables and t-tests for continuous variables. Results The study included 58 males and 42 females with a mean age of 55.5 years. A total of 145 lesions were detected: 75 by DCE-CT and 70 by CE-CT. DCE-CT demonstrated higher sensitivity (93.33%) and specificity (96.00%) compared to CE-CT (sensitivity 86.67%, specificity 92.00%). The accuracy of DCE-CT was 94.00% versus 88.00% for CE-CT. Inter-observer agreement was higher for DCE-CT (kappa = 0.85) compared to CE-CT (kappa = 0.80). DCE-CT led to treatment plan changes in 40% of cases and resulted in a 75% improvement in outcomes compared to 25% and 60%, respectively, for CE-CT. The mean radiation dose was slightly higher for DCE-CT (8.5 mSv) compared to CE-CT (7.0 mSv). Conclusion DCE-CT offers superior diagnostic efficacy compared to CE-CT for imaging neck lesions with enhanced sensitivity, specificity, and accuracy. Its ability to capture multiple phases of contrast enhancement allows for detailed lesion characterization and provides crucial quantitative data on tissue perfusion and blood volume. These benefits lead to more frequent improvements in patient outcomes and changes in treatment plans. Despite the slightly higher radiation dose, the diagnostic advantages of DCE-CT outweigh the disadvantages, particularly in complex cases requiring detailed lesion analysis. Further prospective studies are recommended to validate these findings and explore the broader clinical benefits of DCE-CT.
Collapse
Affiliation(s)
- Sanjaykanth B
- Department of Radiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ajina Sam
- Department of Radiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhivya Gunasekaran
- Department of Radiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Yuvaraj Muralidharan
- Department of Radiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Paarthipan Natarajan
- Department of Radiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Ang T, Juniat V, Patel S, Selva D. Evaluation of orbital lesions with DCE-MRI: a literature review. Orbit 2024; 43:408-416. [PMID: 36437715 DOI: 10.1080/01676830.2022.2149819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE To provide a major review on the applications of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in evaluating orbital lesions. This review also outlines selected scenarios where DCE-MRI may be helpful. METHODS A comprehensive retrospective literature review of all English language publications on PubMed, EMBASE, and Google Scholar between 1994 and 2022. This literature review examined the specific applications and clinical scenarios surrounding the utility of DCE-MRI in orbital lesions and various findings that have been presented in the current literature. RESULTS DCE-MRI provides information on tissue physiology and permeability, beyond the anatomical features displayed on static imaging. Various measured parameters (qualitative, semi-quantitative, and quantitative) obtained by DCE-MRI have been used to differentiate between benign and malignant lesions, specific orbital lymphoproliferative diseases (OLPD), lacrimal gland lesions, and various rare orbital tumours. DCE-MRI has a limited role as an initial diagnostic imaging modality. However, DCE-MRI may prove to have benefit in predicting and monitoring treatment response in orbital lymphoma as a critical imaging study, but literature specific to orbital malignancies remains limited. CONCLUSION The value of DCE-MRI may be in situations of diagnostic uncertainty, where it may be an additional imaging aid following conventional imaging techniques. It may also act as a critical imaging modality for monitoring of orbital tumour treatment response, but the literature remains limited. Standardisation of imaging protocol, measured parameters, and statistical analysis remain limitations of this imaging technique.
Collapse
Affiliation(s)
- Terence Ang
- Discipline of Ophthalmology and Visual Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Valerie Juniat
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide South Australia, Australia
| | - Sandy Patel
- Department of Medical Imaging, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dinesh Selva
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide South Australia, Australia
| |
Collapse
|
5
|
Martin RM, Diaz S, Poncelet M, Driesschaert B, Barth E, Kotecha M, Epel B, Eaton GR, Biller JR. Toward a Nanoencapsulated EPR Imaging Agent for Clinical Use. Mol Imaging Biol 2024; 26:525-541. [PMID: 37870648 PMCID: PMC11035482 DOI: 10.1007/s11307-023-01863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Progress toward developing a novel radiocontrast agent for determining pO2 in tumors in a clinical setting is described. The imaging agent is designed for use with electron paramagnetic resonance imaging (EPRI), in which the collision of a paramagnetic probe molecule with molecular oxygen causes a spectroscopic change which can be calibrated to give the real oxygen concentration in the tumor tissue. PROCEDURES The imaging agent is based on a nanoscaffold of aluminum hydroxide (boehmite) with sizes from 100 to 200 nm, paramagnetic probe molecule, and encapsulation with a gas permeable, thin (10-20 nm) polymer layer to separate the imaging agent and body environment while still allowing O2 to interact with the paramagnetic probe. A specially designed deuterated Finland trityl (dFT) is covalently attached on the surface of the nanoparticle through 1,3-dipolar addition of the alkyne on the dFT with an azide on the surface of the nanoscaffold. This click-chemistry reaction affords 100% efficiency of the trityl attachment as followed by the complete disappearance of the azide peak in the infrared spectrum. The fully encapsulated, dFT-functionalized nanoparticle is referred to as RADI-Sense. RESULTS Side-by-side in vivo imaging comparisons made in a mouse model made between RADI-Sense and free paramagnetic probe (OX-071) showed oxygen sensitivity is retained and RADI-Sense can create 3D pO2 maps of solid tumors CONCLUSIONS: A novel encapsulated nanoparticle EPR imaging agent has been described which could be used in the future to bring EPR imaging for guidance of radiotherapy into clinical reality.
Collapse
Affiliation(s)
| | | | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy & In-Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In-Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Eugene Barth
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
- Oxygen Measurement Core, O2M Technologies, Chicago, IL, 60612, USA
| | - Gareth R Eaton
- Department of Chemistry, University of Denver, Denver, CO, 80210, USA
| | | |
Collapse
|
6
|
Akhtar Y, Udupa JK, Tong Y, Liu T, Wu C, Kogan R, Al-Noury M, Hosseini M, Tong L, Mannikeri S, Odhner D, Mcdonough JM, Lott C, Clark A, Cahill PJ, Anari JB, Torigian DA. Auto-segmentation of thoraco-abdominal organs in pediatric dynamic MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.04.24306582. [PMID: 38766023 PMCID: PMC11100850 DOI: 10.1101/2024.05.04.24306582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Purpose Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient's deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen, and thoraco-abdominal skin in these dMRI images which have their own challenges such as poor contrast, image non-standardness, and similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces. Methods The segmentation set-up has been implemented in two steps: recognition and delineation using two deep neural network (DL) architectures (say DL-R and DL-D) for the recognition step and delineation step, respectively. The encoder-decoder framework in DL-D utilizes features at four different resolution levels to counter the challenges involved in the segmentation. We have evaluated on dMRI sagittal acquisitions of 189 (near-)normal subjects. The spatial resolution in all dMRI acquisitions is 1.46 mm in a sagittal slice and 6.00 mm between sagittal slices. We utilized images of 89 (10) subjects at end inspiration for training (validation). For testing we experimented with three scenarios: utilizing (1) the images of 90 (=189-89-10) different (remaining) subjects at end inspiration for testing, (2) the images of the aforementioned 90 subjects at end expiration for testing, and (3) the images of the aforesaid 99 (=89+10) subjects but at end expiration for testing. In some situations, we can take advantage of already available ground truth (GT) of a subject at a particular respiratory phase to automatically segment the object in the image of the same subject at a different respiratory phase and then refining the segmentation to create the final GT. We anticipate that this process of creating GT would require minimal post hoc correction. In this spirit, we conducted separate experiments where we assume to have the ground truth of the test subjects at end expiration for scenario (1), end inspiration for (2), and end inspiration for (3). Results Amongst these three scenarios of testing, for the DL-R, we achieve a best average location error (LE) of about 1 voxel for the lungs, kidneys, and spleen and 1.5 voxels for the liver and the thoraco- abdominal skin. The standard deviation (SD) of LE is about 1 or 2 voxels. For the delineation approach, we achieve an average Dice coefficient (DC) of about 0.92 to 0.94 for the lungs, 0.82 for the kidneys, 0.90 for the liver, 0.81 for the spleen, and 0.93 for the thoraco-abdominal skin. The SD of DC is lower for the lungs, liver, and the thoraco-abdominal skin, and slightly higher for the spleen and kidneys. Conclusions Motivated by applications in surgical planning for disorders such as TIS, AIS, and EOS, we have shown an auto-segmentation system for thoraco-abdominal organs in dMRI acquisitions. This proposed setup copes with the challenges posed by low resolution, motion blur, inadequate contrast, and image intensity non-standardness quite well. We are in the process of testing its effectiveness on TIS patient dMRI data.
Collapse
|
7
|
Van Den Berghe T, Verberckmoes B, Kint N, Wallaert S, De Vos N, Algoet C, Behaeghe M, Dutoit J, Van Roy N, Vlummens P, Dendooven A, Van Dorpe J, Offner F, Verstraete K. Predicting cytogenetic risk in multiple myeloma using conventional whole-body MRI, spinal dynamic contrast-enhanced MRI, and spinal diffusion-weighted imaging. Insights Imaging 2024; 15:106. [PMID: 38597979 PMCID: PMC11006637 DOI: 10.1186/s13244-024-01672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVES Cytogenetic abnormalities are predictors of poor prognosis in multiple myeloma (MM). This paper aims to build and validate a multiparametric conventional and functional whole-body MRI-based prediction model for cytogenetic risk classification in newly diagnosed MM. METHODS Patients with newly diagnosed MM who underwent multiparametric conventional whole-body MRI, spinal dynamic contrast-enhanced (DCE-)MRI, spinal diffusion-weighted MRI (DWI) and had genetic analysis were retrospectively included (2011-2020/Ghent University Hospital/Belgium). Patients were stratified into standard versus intermediate/high cytogenetic risk groups. After segmentation, 303 MRI features were extracted. Univariate and model-based methods were evaluated for feature and model selection. Testing was performed using receiver operating characteristic (ROC) and precision-recall curves. Models comparing the performance for genetic risk classification of the entire MRI protocol and of all MRI sequences separately were evaluated, including all features. Four final models, including only the top three most predictive features, were evaluated. RESULTS Thirty-one patients were enrolled (mean age 66 ± 7 years, 15 men, 13 intermediate-/high-risk genetics). None of the univariate models and none of the models with all features included achieved good performance. The best performing model with only the three most predictive features and including all MRI sequences reached a ROC-area-under-the-curve of 0.80 and precision-recall-area-under-the-curve of 0.79. The highest statistical performance was reached when all three MRI sequences were combined (conventional whole-body MRI + DCE-MRI + DWI). Conventional MRI always outperformed the other sequences. DCE-MRI always outperformed DWI, except for specificity. CONCLUSIONS A multiparametric MRI-based model has a better performance in the noninvasive prediction of high-risk cytogenetics in newly diagnosed MM than conventional MRI alone. CRITICAL RELEVANCE STATEMENT An elaborate multiparametric MRI-based model performs better than conventional MRI alone for the noninvasive prediction of high-risk cytogenetics in newly diagnosed multiple myeloma; this opens opportunities to assess genetic heterogeneity thus overcoming sampling bias. KEY POINTS • Standard genetic techniques in multiple myeloma patients suffer from sampling bias due to tumoral heterogeneity. • Multiparametric MRI noninvasively predicts genetic risk in multiple myeloma. • Combined conventional anatomical MRI, DCE-MRI, and DWI had the highest statistical performance to predict genetic risk. • Conventional MRI alone always outperformed DCE-MRI and DWI separately to predict genetic risk. DCE-MRI alone always outperformed DWI separately, except for the parameter specificity to predict genetic risk. • This multiparametric MRI-based genetic risk prediction model opens opportunities to noninvasively assess genetic heterogeneity thereby overcoming sampling bias in predicting genetic risk in multiple myeloma.
Collapse
Affiliation(s)
- Thomas Van Den Berghe
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium.
| | - Bert Verberckmoes
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Nicolas Kint
- Department of Clinical Hematology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Steven Wallaert
- Department of Biostatistics, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Nicolas De Vos
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Chloé Algoet
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Maxim Behaeghe
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Julie Dutoit
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Philip Vlummens
- Department of Clinical Hematology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| | - Koenraad Verstraete
- Department of Radiology and Medical Imaging, Ghent University Hospital, Building -1K12, Corneel Heymanslaan 10, Ghent, B-9000, Belgium
| |
Collapse
|
8
|
Joseph CR, Lim JK, Grohol BN, Zivcevska M, Lencke J, Rich ED, Arrasmith CJ, Dorman IS, Clark BW, Love K, Ferry B, Rolfs ME. Identifying delay in glymphatic clearance of labeled protons post-acute head trauma utilizing 3D ASL MRI (arterial spin labeling): a pilot study. Sci Rep 2024; 14:6188. [PMID: 38485759 PMCID: PMC10940642 DOI: 10.1038/s41598-024-56236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
This study correlated mild traumatic brain injury (mTBI) cognitive changes with ASL-MRI glymphatic clearance rates (GCRs) and recovery with GCR improvement. mTBI disrupts the blood brain barrier (BBB), reducing capillary mean transit time and GCRs. mTBI is clinically diagnosed utilizing history/examination findings with no physiologic biomarkers. 3D TGSE (turbo-gradient spin-echo) pulsed arterial spin-labeling 3T MRI with 7 long inversion times (TIs) assessed the signal clearance of labeled protons 2800-4000 ms postlabeling in bifrontal, bitemporal, and biparietal regions within 7 days of mTBI and once clinically cleared to resume activities. The Sport Concussion Assessment Tool Version 5 (SKAT5) and Brief Oculomotor/Vestibular Assessment evaluated injured athletes' cognitive function prior to MRIs. The pilot study demonstrated significant GCRs improvement (95% CI - 0.06 to - 0.03 acute phase; to CI-recovery CI 0.0772 to - 0.0497; P < 0.001 in frontal lobes; and parietal lobes (95% CI - 0.0584 to - 0.0251 acute; CI - 0.0727 to - 0.0392 recovery; P = 0.024) in 9 mTBI athletes (8 female, 1 male). Six age/activity-matched controls (4 females, 2 males) were also compared. mTBI disrupts the BBB, reducing GCR measured using the 3D ASL MRI technique. ASL MRI is a potential noninvasive biomarker of mTBI and subsequent recovery.
Collapse
Affiliation(s)
- Charles R Joseph
- Liberty University College of Osteopathic Medicine, Lynchburg, USA.
| | - Jubin Kang Lim
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Bryce N Grohol
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Joshua Lencke
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Ethan Dean Rich
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | | | | | | | - Kim Love
- K. R. Love Quantitative Consulting and Collaboration, Athens, USA
| | - Ben Ferry
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Mark E Rolfs
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| |
Collapse
|
9
|
Kalisvaart GM, Van Den Berghe T, Grootjans W, Lejoly M, Huysse WCJ, Bovée JVMG, Creytens D, Gelderblom H, Speetjens FM, Lapeire L, van de Sande MAJ, Sys G, de Geus-Oei LF, Verstraete KL, Bloem JL. Evaluation of response to neoadjuvant chemotherapy in osteosarcoma using dynamic contrast-enhanced MRI: development and external validation of a model. Skeletal Radiol 2024; 53:319-328. [PMID: 37464020 PMCID: PMC10730632 DOI: 10.1007/s00256-023-04402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE To identify which dynamic contrast-enhanced (DCE-)MRI features best predict histological response to neoadjuvant chemotherapy in patients with an osteosarcoma. METHODS Patients with osteosarcoma who underwent DCE-MRI before and after neoadjuvant chemotherapy prior to resection were retrospectively included at two different centers. Data from the center with the larger cohort (training cohort) was used to identify which method for region-of-interest selection (whole slab or focal area method) and which change in DCE-MRI features (time to enhancement, wash-in rate, maximum relative enhancement and area under the curve) gave the most accurate prediction of histological response. Models were created using logistic regression and cross-validated. The most accurate model was then externally validated using data from the other center (test cohort). RESULTS Fifty-five (27 poor response) and 30 (19 poor response) patients were included in training and test cohorts, respectively. Intraclass correlation coefficient of relative DCE-MRI features ranged 0.81-0.97 with the whole slab and 0.57-0.85 with the focal area segmentation method. Poor histological response was best predicted with the whole slab segmentation method using a single feature threshold, relative wash-in rate <2.3. Mean accuracy was 0.85 (95%CI: 0.75-0.95), and area under the receiver operating characteristic curve (AUC-index) was 0.93 (95%CI: 0.86-1.00). In external validation, accuracy and AUC-index were 0.80 and 0.80. CONCLUSION In this study, a relative wash-in rate of <2.3 determined with the whole slab segmentation method predicted histological response to neoadjuvant chemotherapy in osteosarcoma. Consistent performance was observed in an external test cohort.
Collapse
Affiliation(s)
- Gijsbert M Kalisvaart
- Department of Radiology and Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| | - Thomas Van Den Berghe
- Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Willem Grootjans
- Department of Radiology and Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Maryse Lejoly
- Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Wouter C J Huysse
- Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Frank M Speetjens
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lore Lapeire
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Michiel A J van de Sande
- Department of Orthopedics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Gwen Sys
- Department of Orthopedics, Ghent University Hospital, Ghent, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology and Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Koenraad L Verstraete
- Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Johan L Bloem
- Department of Radiology and Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| |
Collapse
|
10
|
Perera Molligoda Arachchige AS, Verma Y. State of the art in the diagnostic evaluation of osteomyelitis: exploring the role of advanced MRI sequences-a narrative review. Quant Imaging Med Surg 2024; 14:1070-1085. [PMID: 38223108 PMCID: PMC10784094 DOI: 10.21037/qims-23-1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024]
Abstract
Background and Objective Osteomyelitis, a severe bone infection caused mainly by pyogenic organisms, poses diagnostic challenges due to its non-specific magnetic resonance imaging (MRI) manifestations. Conventional MRI, though the imaging modality of choice, often exhibits signal abnormalities with overlapping differential diagnoses, potentially leading to overestimation of infection extent and duration. To address these limitations, advanced MRI sequences, including dynamic contrast-enhanced (DCE) MRI, 1H magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and Dixon techniques have emerged as promising alternatives. This narrative review explores the potential role of these sequences in aiding the differential diagnosis of osteomyelitis. Methods We used the PubMed database to search for relevant articles using the MeSH keywords: (osteomyelitis) AND (advanced MRI sequences) and we manually selected the most suitable studies to include in our review. Articles outside of original studies were also included. Only records in English or French were considered. Key Content and Findings In particular, DWI is useful for characterizing fluid collections, distinguishing bone infarcts, and bacterial skull base osteomyelitis from neoplastic lesions. Moreover, DWI assists in differentiating diabetic foot osteomyelitis (DFO) from Charcot neuro-osteoarthropathy, facilitates the diagnosis of pediatric acute osteoarticular infections, and aids in distinguishing osteomyelitis from Modic I degenerative changes. Additionally, DWI proves valuable in monitoring spinal infections and distinguishing pedal osteomyelitis from other conditions, even in patients with renal impairment. DCE-MRI enhances MRI specificity by assessing contrast uptake over time, providing valuable insights into inflammatory microenvironments. It aids in detecting DFO, differentiating it from acute Charcot arthropathy, and distinguishing osteomyelitis from neuropathic arthropathy. Moreover, DCE-MRI shows potential in assessing response to antibiotic therapy in spinal infections. Dixon acquisition improves image quality and facilitates the detection of bone marrow abnormalities, aiding in the differentiation of diabetic foot from osteomyelitis. It also assists in distinguishing osteomyelitis from neuropathic arthropathy and provides valuable information in evaluating the diabetic foot. Proton MR spectroscopy, a well-established modality, offers metabolic information that can differentiate malignant from benign lesions. Conclusions The role of advanced MRI techniques in evaluating osteomyelitis remains to be fully defined, and further research is required to explore its potential utility in this context. In conclusion, the incorporation of advanced MRI sequences has shown promise in improving the differential diagnosis of osteomyelitis. Future investigations exploring combinations of these techniques and their clinical applications hold significant potential to enhance diagnostic accuracy and patient outcomes.
Collapse
Affiliation(s)
| | - Yash Verma
- Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
11
|
Zhdanov AV, Sen R, Devoy C, Li L, Tangney M, Papkovsky DB. Analysis of tumour oxygenation in model animals on a phosphorescence lifetime based macro-imager. Sci Rep 2023; 13:18732. [PMID: 37907625 PMCID: PMC10618169 DOI: 10.1038/s41598-023-46224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Monitoring of tissue O2 is essential for cancer development and treatment, as hypoxic tumour regions develop resistance to radio- and chemotherapy. We describe a minimally invasive technique for the monitoring of tissue oxygenation in developing grafted tumours, which uses the new phosphorescence lifetime based Tpx3Cam imager. CT26 cells stained with a near-infrared emitting nanoparticulate O2 probe NanO2-IR were injected into mice to produce grafted tumours with characteristic phosphorescence. The tumours were allowed to develop for 3, 7, 10 and 17 days, with O2 imaging experiments performed on live and euthanised animals at different time points. Despite a marked trend towards decreased O2 in dead animals, their tumour areas produced phosphorescence lifetime values between 44 and 47 µs, which corresponded to hypoxic tissue with 5-20 μM O2. After the O2 imaging in animals, confocal Phosphorescence Lifetime Imaging Microscopy was conducted to examine the distribution of NanO2-IR probe in the tumours, which were excised, fixed and sliced for the purpose. The probe remained visible as bright and discrete 'islands' embedded in the tumour tissue until day 17 of tumour growth. Overall, this O2 macro-imaging method using NanO2-IR holds promise for long-term studies with grafted tumours in live animal models, providing quantitative 2D mapping of tissue O2.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Ciaran Devoy
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Mark Tangney
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland.
| |
Collapse
|
12
|
Lacharie M, Villa A, Milidonis X, Hasaneen H, Chiribiri A, Benedetti G. Role of pulmonary perfusion magnetic resonance imaging for the diagnosis of pulmonary hypertension: A review. World J Radiol 2023; 15:256-273. [PMID: 37823020 PMCID: PMC10563854 DOI: 10.4329/wjr.v15.i9.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Among five types of pulmonary hypertension, chronic thromboembolic pulmonary hypertension (CTEPH) is the only curable form, but prompt and accurate diagnosis can be challenging. Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH, however these are limited by radiation exposure, subjective qualitative bias, and lack of cardiac functional assessment. This review aims to assess the methodology, diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages, limitations and future research scope.
Collapse
Affiliation(s)
- Miriam Lacharie
- Oxford Centre of Magnetic Resonance Imaging, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Adriana Villa
- Department of Diagnostic and Interventional Radiology, German Oncology Centre, Limassol 4108, Cyprus
| | - Xenios Milidonis
- Deep Camera MRG, CYENS Centre of Excellence, Nicosia, Cyprus, Nicosia 1016, Cyprus
| | - Hadeer Hasaneen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Kings Coll London, Div Imaging Sci, St Thomas Hospital, London WC2R 2LS, United Kingdom
| | - Giulia Benedetti
- Department of Cardiovascular Imaging and Biomedical Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
13
|
Al-Hammad WE, Fujikura M, Hisatomi M, Okada S, Munhoz L, Kawazu T, Takeshita Y, Fujita M, Yanagi Y, Asaumi JI. An imaging‑based diagnostic approach to vascular anomalies of the oral and maxillofacial region. Oncol Lett 2023; 26:394. [PMID: 37600333 PMCID: PMC10433708 DOI: 10.3892/ol.2023.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
The accurate diagnosis of vascular anomalies (VAs) is considered a challenging endeavor. Misdiagnosis of VAs can lead clinicians in the wrong direction, such as the performance of an unnecessary biopsy or inappropriate surgical procedures, which can potentially lead to unforeseen consequences and increase the risk of patient injury. The purpose of the present study was to develop an approach for the diagnosis of VAs of the oral and maxillofacial region based on computed tomography (CT), magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI (DCE-MRI). In the present study, the CT and MR images of 87 VAs were examined, and the following imaging features were evaluated: Detectability of the lesion, the periphery of the lesion, the inner nature of the lesion, the density of the lesion on CT, the signal intensity of the lesion on MRI, the detectability of phleboliths and the shape of the lesion. A total of 29 lesions were further evaluated using the contrast index (CI) curves created from the DCE-MRI images. A diagnostic diagram, which is based on the imaging features of VAs and CI curve patterns, was subsequently extrapolated. The results obtained demonstrated that the VAs were detected more readily by MRI compared with CT, whereas the detectability of phleboliths was superior when using CT compared with MRI. VAs showed a propensity for homogeneous isodensity on CT, whereas, by contrast, they exhibited a propensity for heterogeneous hyperdensity on CE-CT. VAs also showed a propensity for homogeneous intermediate signal intensity when performing T1-weighted imaging (T1WI), heterogeneous high signal intensity when performing short tau inversion recovery MRI, and heterogeneous high signal intensity when performing fat-saturated CE-T1WI. The CI curves of VAs were found to exhibit a specific pattern: Of the 29 CI curves, 23 (79.3%) showed early weak enhancement, followed by a plateau leading up to 400-600 sec. An imaging-based diagnostic diagram was ultimately formulated. This diagram can act as an aid for radiologists when they are expecting to find a VA, and hopefully serve the purpose of simplifying the diagnostic process. Taken together, the findings of the present study indicated that DCE-MRI may be considered a useful tool for the diagnosis of VAs.
Collapse
Affiliation(s)
- Wlla E. Al-Hammad
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mamiko Fujikura
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Miki Hisatomi
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shunsuke Okada
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Luciana Munhoz
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Toshiyuki Kawazu
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yohei Takeshita
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Mariko Fujita
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yoshinobu Yanagi
- Department of Dental Informatics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Jun-Ichi Asaumi
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
- Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
14
|
Setiawati R, Novariyanto B, Rahardjo P, Mustokoweni S, Guglielmi G. Characteristic of Apparent Diffusion Coefficient and Time Intensity Curve Analysis of Dynamic Contrast Enhanced MRI in Osteosarcoma Histopathologic Subtypes. Int J Med Sci 2023; 20:163-171. [PMID: 36794155 PMCID: PMC9925980 DOI: 10.7150/ijms.77906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Background: According to WHO criteria, osteosarcoma (OS) consists of various histopathological subtypes. Thus, contrast-enhanced MRI is a very useful modality in the diagnosis and evaluation of osteosarcoma. Magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) studies was used to determine the apparent diffusion coefficient (ADC) value and the slope of the time-intensity curve (TIC). This study aimed to determine the correlation between ADC and TIC analysis using %Slope and maximum enhancement (ME) of histopathological osteosarcoma subtypes. Methods: This was a retrospective study with observational analysis on OS patients. The obtained data were 43 samples. Moreover, the interpretation was conducted by placing three regions of interest (ROI) in determining ADC value. It was observed by two radiologist observers with more than 10 years of experience. In this case, as many as six obtained ROIs were averaged. The inter-observer agreement was evaluated by Kappa test. TIC curve was analyzed and slope value was obtained afterward. Through SPSS 21 software, the data was analyzed. Results: The mean of ADC values of OS was (1.031x10-3±0.31mm2/s), where the highest value was found in chondroblastic subtype (1.470 x10-3±0.31mm2/s). However, the mean of TIC %slope of OS was (45.3%/s), where the highest result was found in the osteoblastic subtype (70.8%/s) followed by small cell subtype (60.8%/s) and the mean of ME of OS was 100.55% with the highest values was in osteoblastic subtype 172.72% followed by chondroblastic subtype (144.92%). This study found a significant correlation between the mean of ADC value and the OS histopathologic results as well as the correlation between the mean of ADC value and ME. Conclusion: The various types of osteosarcoma have a characteristic of radiological appearances which may similar to some bone tumor entities. The analysis of ADC values and TIC curves using % slope and ME of osteosarcoma subtypes can improve the accuracy of diagnosis as well as the monitoring of the treatment response and the disease progression.
Collapse
Affiliation(s)
- Rosy Setiawati
- Radiology Department, Faculty of Medicine, Universitas Airlangga, Surabaya - Dr Soetomo General Academic Hospital Surabaya, Indonesia
| | - Bagus Novariyanto
- Radiology Department, Faculty of Medicine, Universitas Airlangga, Surabaya - Dr Soetomo General Academic Hospital Surabaya, Indonesia
| | - Paulus Rahardjo
- Radiology Department, Faculty of Medicine, Universitas Airlangga, Surabaya - Dr Soetomo General Academic Hospital Surabaya, Indonesia
| | - Sjahjenny Mustokoweni
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya - Dr Soetomo General Academic Hospital Surabaya, Indonesia, Indonesia
| | - Giuseppe Guglielmi
- Department of Radiology, School of Medicine, Foggia University, Foggia, Italy
| |
Collapse
|
15
|
Gan W, Sun Y, Eldeniz C, Liu J, An H, Kamilov US. Deformation-Compensated Learning for Image Reconstruction Without Ground Truth. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2371-2384. [PMID: 35344490 PMCID: PMC9497435 DOI: 10.1109/tmi.2022.3163018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.
Collapse
|
16
|
Wang PN, Velikina JV, Bancroft LCH, Samsonov AA, Kelcz F, Strigel RM, Holmes JH. The Influence of Data-Driven Compressed Sensing Reconstruction on Quantitative Pharmacokinetic Analysis in Breast DCE MRI. Tomography 2022; 8:1552-1569. [PMID: 35736876 PMCID: PMC9227412 DOI: 10.3390/tomography8030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Radial acquisition with MOCCO reconstruction has been previously proposed for high spatial and temporal resolution breast DCE imaging. In this work, we characterize MOCCO across a wide range of temporal contrast enhancement in a digital reference object (DRO). Time-resolved radial data was simulated using a DRO with lesions in different PK parameters. The under sampled data were reconstructed at 5 s temporal resolution using the data-driven low-rank temporal model for MOCCO, compressed sensing with temporal total variation (CS-TV) and more conventional low-rank reconstruction (PCB). Our results demonstrated that MOCCO was able to recover curves with Ktrans values ranging from 0.01 to 0.8 min−1 and fixed Ve = 0.3, where the fitted results are within a 10% bias error range. MOCCO reconstruction showed less impact on the selection of different temporal models than conventional low-rank reconstruction and the greater error was observed with PCB. CS-TV showed overall underestimation in both Ktrans and Ve. For the Monte-Carlo simulations, MOCCO was found to provide the most accurate reconstruction results for curves with intermediate lesion kinetics in the presence of noise. Initial in vivo experiences are reported in one patient volunteer. Overall, MOCCO was able to provide reconstructed time-series data that resulted in a more accurate measurement of PK parameters than PCB and CS-TV.
Collapse
Affiliation(s)
- Ping Ni Wang
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (P.N.W.); (R.M.S.)
| | - Julia V. Velikina
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; (J.V.V.); (L.C.H.B.); (A.A.S.); (F.K.)
| | - Leah C. Henze Bancroft
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; (J.V.V.); (L.C.H.B.); (A.A.S.); (F.K.)
| | - Alexey A. Samsonov
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; (J.V.V.); (L.C.H.B.); (A.A.S.); (F.K.)
| | - Frederick Kelcz
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; (J.V.V.); (L.C.H.B.); (A.A.S.); (F.K.)
| | - Roberta M. Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (P.N.W.); (R.M.S.)
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; (J.V.V.); (L.C.H.B.); (A.A.S.); (F.K.)
- Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - James H. Holmes
- Department of Radiology, University of Iowa, 169 Newton Road, Iowa City, IA 52333, USA
- Holden Comprehensive Cancer Center, University of Iowa, 169 Newton Road, Iowa City, IA 52333, USA
- Correspondence:
| |
Collapse
|
17
|
Lin CY, Yen YT, Huang LT, Chen TY, Liu YS, Tang SY, Huang WL, Chen YY, Lai CH, Fang YHD, Chang CC, Tseng YL. An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors. Diagnostics (Basel) 2022; 12:diagnostics12040889. [PMID: 35453937 PMCID: PMC9026802 DOI: 10.3390/diagnostics12040889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to build machine learning prediction models for predicting pathological subtypes of prevascular mediastinal tumors (PMTs). The candidate predictors were clinical variables and dynamic contrast–enhanced MRI (DCE-MRI)–derived perfusion parameters. The clinical data and preoperative DCE–MRI images of 62 PMT patients, including 17 patients with lymphoma, 31 with thymoma, and 14 with thymic carcinoma, were retrospectively analyzed. Six perfusion parameters were calculated as candidate predictors. Univariate receiver-operating-characteristic curve analysis was performed to evaluate the performance of the prediction models. A predictive model was built based on multi-class classification, which detected lymphoma, thymoma, and thymic carcinoma with sensitivity of 52.9%, 74.2%, and 92.8%, respectively. In addition, two predictive models were built based on binary classification for distinguishing Hodgkin from non-Hodgkin lymphoma and for distinguishing invasive from noninvasive thymoma, with sensitivity of 75% and 71.4%, respectively. In addition to two perfusion parameters (efflux rate constant from tissue extravascular extracellular space into the blood plasma, and extravascular extracellular space volume per unit volume of tissue), age and tumor volume were also essential parameters for predicting PMT subtypes. In conclusion, our machine learning–based predictive model, constructed with clinical data and perfusion parameters, may represent a useful tool for differential diagnosis of PMT subtypes.
Collapse
Affiliation(s)
- Chia-Ying Lin
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-Y.L.); (L.-T.H.); (Y.-S.L.)
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-T.Y.); (W.-L.H.); (Y.-Y.C.); (Y.-L.T.)
- Division of Trauma and Acute Care Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Li-Ting Huang
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-Y.L.); (L.-T.H.); (Y.-S.L.)
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yi-Sheng Liu
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-Y.L.); (L.-T.H.); (Y.-S.L.)
| | - Shih-Yao Tang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wei-Li Huang
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-T.Y.); (W.-L.H.); (Y.-Y.C.); (Y.-L.T.)
| | - Ying-Yuan Chen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-T.Y.); (W.-L.H.); (Y.-Y.C.); (Y.-L.T.)
| | - Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Hua Dean Fang
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (Y.-H.D.F.); (C.-C.C.)
| | - Chao-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-T.Y.); (W.-L.H.); (Y.-Y.C.); (Y.-L.T.)
- Correspondence: (Y.-H.D.F.); (C.-C.C.)
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-T.Y.); (W.-L.H.); (Y.-Y.C.); (Y.-L.T.)
| |
Collapse
|
18
|
Guo C, Zheng K, Ye Q, Lu Z, Xie Z, Li X, Zhao Y. Intravoxel Incoherent Motion Imaging on Sacroiliitis in Patients With Axial Spondyloarthritis: Correlation With Perfusion Characteristics Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Front Med (Lausanne) 2022; 8:798845. [PMID: 35155474 PMCID: PMC8826054 DOI: 10.3389/fmed.2021.798845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To prospectively explore the relationship between intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) parameters of sacroiliitis in patients with axial spondyloarthritis (axSpA). METHODS Patients with initially diagnosed axSpA prospectively underwent on 3.0 T MRI of sacroiliac joint (SIJ). The IVIM parameters (D, f, D *) were calculated using biexponential analysis. K trans, K ep, V e, and V p from DCE-MRI were obtained in SIJ. The uni-variable and multi-variable linear regression analyses were used to evaluate the correlation between the parameters from these two imaging methods after controlling confounders, such as bone marrow edema (BME), age, agenda, scopes, and localization of lesions, and course of the disease. Then, their correlations were measured by calculating the Pearson's correlation coefficient (r). RESULTS The study eventually enrolled 234 patients (178 men, 56 women; mean age, 28.51 ± 9.50 years) with axSpA. With controlling confounders, D was independently related to K trans (regression coefficient [b] = 27.593, p < 0.001), K ep (b = -6.707, p = 0.021), and V e (b = 131.074, p = 0.003), whereas f and D * had no independent correlation with the parameters from DCE MRI. The correlations above were exhibited with Pearson's correlation coefficients (r) (r = 0.662, -0.408, and 0.396, respectively, all p < 0.001). CONCLUSION There were independent correlations between D derived from IVIM DWI and K trans, K ep, and V e derived from DCE-MRI. The factors which affect their correlations mainly included BME, gender, and scopes of lesions.
Collapse
Affiliation(s)
- Chang Guo
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zheng
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Ye
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zixiao Lu
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhuoyao Xie
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yinghua Zhao
- Department of Radiology, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol 2022; 51:101-122. [PMID: 34523007 DOI: 10.1007/s00256-021-03903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 02/02/2023]
Abstract
The last decades, increasing research has been conducted on dynamic contrast-enhanced and diffusion-weighted MRI techniques in multiple myeloma and its precursors. Apart from anatomical sequences which are prone to interpretation errors due to anatomical variants, other pathologies and subjective evaluation of signal intensities, dynamic contrast-enhanced and diffusion-weighted MRI provide additional information on microenvironmental changes in bone marrow and are helpful in the diagnosis, staging and follow-up of plasma cell dyscrasias. Diffusion-weighted imaging provides information on diffusion (restriction) of water molecules in bone marrow and in malignant infiltration. Qualitative evaluation by visually assessing images with different diffusion sensitising gradients and quantitative evaluation of the apparent diffusion coefficient are studied extensively. Dynamic contrast-enhanced imaging provides information on bone marrow vascularisation, perfusion, capillary resistance, vascular permeability and interstitial space, which are systematically altered in different disease stages and can be evaluated in a qualitative and a (semi-)quantitative manner. Both diffusion restriction and abnormal dynamic contrast-enhanced MRI parameters are early biomarkers of malignancy or disease progression in focal lesions or in regions with diffuse abnormal signal intensities. The added value for both techniques lies in better detection and/or characterisation of abnormal bone marrow otherwise missed or misdiagnosed on anatomical MRI sequences. Increased detection rates of focal lesions or diffuse bone marrow infiltration upstage patients to higher disease stages, provide earlier access to therapy and slower disease progression and allow closer monitoring of high-risk patients. Despite promising results, variations in imaging protocols, scanner types and post-processing methods are large, thus hampering universal applicability and reproducibility of quantitative imaging parameters. The myeloma response assessment and diagnosis system and the international myeloma working group provide a systematic multicentre approach on imaging and propose which parameters to use in multiple myeloma and its precursors in an attempt to overcome the pitfalls of dynamic contrast-enhanced and diffusion-weighted imaging.Single sentence summary statementDiffusion-weighted imaging and dynamic contrast-enhanced MRI provide important additional information to standard anatomical MRI techniques for diagnosis, staging and follow-up of patients with plasma cell dyscrasias, although some precautions should be taken on standardisation of imaging protocols to improve reproducibility and application in multiple centres.
Collapse
|
20
|
Lehmonen L, Putaala J, Pöyhönen P, Kuusisto J, Pirinen J, Sinisalo J, Järvinen V. MRI-derived cardiac washout is slowed in the left ventricle and associated with left ventricular non-compaction in young patients with cryptogenic ischemic stroke. Int J Cardiovasc Imaging 2022; 38:2395-2402. [PMID: 36434329 PMCID: PMC9700591 DOI: 10.1007/s10554-022-02643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
To elucidate underlying disease mechanisms, we compared transition of gadolinium-based contrast agent bolus in cardiac chambers in magnetic resonance imaging between young patents with cryptogenic ischemic stroke and stroke-free controls. We included 30 patients aged 18-50 years with cryptogenic ischemic stroke from the prospective Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Etiology, Triggers and Outcome (NCT01934725) study and 30 age- and gender-matched stroke-free controls. Dynamic contrast-enhanced T1-weighted first-pass perfusion images were acquired at 1.5 T and analyzed for transit time variables, area under curves, relative blood flow, and maximum and minimum enhancement rates in left atrial appendage, left atrium, and left ventricle. These data were compared with previously published left ventricular non-compaction data of the same study population. Arrival time of contrast agent bolus in superior vena cava was similar in patients and controls (6.7[2.0] vs. 7.1[2.5] cardiac cycles, P = 0.626). Arrival and peak times showed comparable characteristics in patients and controls (P > 0.535). The minimum enhancement rate of the left ventricle was lower in patients than in controls (- 28 ± 11 vs. - 36 ± 13 1/(cardiac cycle), P = 0.012). Area under curves, relative blood flow, and other enhancement rates showed no significant differences between patients and controls (P > 0.107). Relative blood flow of cardiac chambers correlated with non-compacted left ventricular volume ratio (P < 0.011). Our results indicate slower washout of contrast agent and blood flow stagnation in the left ventricle of young patients with cryptogenic ischemic stroke. The washout was associated with left ventricular non-compaction, suggesting conditions favoring formation of intraventricular thrombosis.
Collapse
Affiliation(s)
- Lauri Lehmonen
- grid.15485.3d0000 0000 9950 5666Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, PO Box 340, 00029 Helsinki, Finland
| | - Jukka Putaala
- grid.15485.3d0000 0000 9950 5666Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pauli Pöyhönen
- grid.15485.3d0000 0000 9950 5666Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jouni Kuusisto
- grid.15485.3d0000 0000 9950 5666Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jani Pirinen
- grid.15485.3d0000 0000 9950 5666Clinical Physiology and Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- grid.15485.3d0000 0000 9950 5666Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Vesa Järvinen
- grid.15485.3d0000 0000 9950 5666Clinical Physiology and Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:11552. [PMID: 34768982 PMCID: PMC8584017 DOI: 10.3390/ijms222111552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Andrew P. Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA;
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Robert W. Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Dane K. Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| |
Collapse
|
22
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:ijms222111552. [PMID: 34768982 DOI: 10.3390/ijms222111552.pmid:34768982;pmcid:pmc8584017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Andrew P Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Robert W Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Dane K Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| |
Collapse
|
23
|
Utilizing 3D Arterial Spin Labeling to Identify Cerebrovascular Leak and Glymphatic Obstruction in Neurodegenerative Disease. Diagnostics (Basel) 2021; 11:diagnostics11101888. [PMID: 34679586 PMCID: PMC8534509 DOI: 10.3390/diagnostics11101888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
New approaches are required to successfully intervene therapeutically in neurodegenerative diseases. Addressing the earliest phases of disease, blood brain barrier (BBB) leak before the accumulation of misfolded proteins has significant potential for success. To do so, however, a reliable, noninvasive and economical test is required. There are two potential methods of identifying the BBB fluid leak that results in the accumulation of normally excluded substances which alter neuropil metabolism, protein synthesis and degradation with buildup of misfolded toxic proteins. The pros and cons of dynamic contrast imaging (DCI or DCE) and 3D TGSE PASL are discussed as potential early identifying methods. The results of prior publications of the 3D ASL technique and an overview of the associated physiologic challenges are discussed. Either method may serve well as reliable physiologic markers as novel therapeutic interventions directed at the vasculopathy of early neurodegenerative disease are developed. They may serve well in addressing other neurologic diseases associated with either vascular leak and/or reduced glymphatic flow.
Collapse
|
24
|
Spinnato P, Filonzi G, Conficoni A, Facchini G, Ponti F, Sambri A, De Paolis M, Cavo M, Salizzoni E, Nanni C. Skeletal Survey in Multiple Myeloma: Role of Imaging. Curr Med Imaging 2021; 17:956-965. [PMID: 33573573 DOI: 10.2174/1573405617666210126155129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Bone disease is the hallmark of multiple myeloma. Skeletal lesions are evaluated to establish the diagnosis, to choose the therapies and also to assess the response to treatments. Due to this, imaging procedures play a key role in the management of multiple myeloma. For decades, conventional radiography has been the standard imaging modality. Subsequently, advances in the treatment of multiple myeloma have increased the need for an accurate evaluation of skeletal disease. The introduction of new high performant imaging tools, such as whole-body lowdose computed tomography, different types of magnetic resonance imaging studies, and 18F-fluorodeoxyglucose positron emission tomography, replaced the conventional radiography. In this review, we analyze the diagnostic potentials, indications of use, and applications of the imaging tools nowadays available. Whole-body low-dose CT should be considered as the imaging modality of choice for the initial assessment of multiple myeloma lytic bone lesions. MRI is the gold-standard for the detection of bone marrow involvement, while PET/CT is the preferred technique in the assessment of response to therapy. Both MRI and PET/CT are able to provide prognostic information.
Collapse
Affiliation(s)
- Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Alberto Conficoni
- Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federico Ponti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Sambri
- Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Michele Cavo
- "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Eugenio Salizzoni
- Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, MNM AOU S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
25
|
Xiang L, Sun LH, Liu B, Wang LS, Gong XJ, Qiu J, Ge YQ, Yao WJ, Gu KC. Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Analysis of Microvascular Permeability in Peritumor Brain Edema of Fibrous Meningiomas. Eur Neurol 2021; 84:361-367. [PMID: 34315157 DOI: 10.1159/000516921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to analyze the permeability of intra- and peri-meningiomas regions and compare the microvascular permeability between peritumoral brain edema (PTBE) and non-PTBE using DCE-MRI. METHODS This was a retrospective of patients with meningioma who underwent surgery. The patients were grouped as PTBE and non-PTBE. The DCE-MRI quantitative parameters, including volume transfer constant (Ktrans), rate constant (Kep), extracellular volume (Ve), and mean plasma volume (Vp), obtained using the extended Tofts-Kety 2-compartment model. Logistic regression analysis was conducted to explore the risk factor of PTBE. RESULTS Sixty-three patients, diagnosed as fibrous meningioma, were included in this study. They were 17 males and 46 females, aged from 32 to 88 years old. Kep and Vp were significantly lower in patients with PTBE compared with those without (Kep: 0.1852 ± 0.0369 vs. 0.5087 ± 0.1590, p = 0.010; Vp: 0.0090 ± 0.0020 vs. 0.0521 ± 0.0262, p = 0.007), while there were no differences regarding Ktrans and Ve (both p > 0.05). The multivariable analysis showed that tumor size ≥10 cm3 (OR = 4.457, 95% CI: 1.322-15.031, p = 0.016) and Vp (OR = 0.572, 95%CI: 0.333-0.981, p = 0.044) were independently associated with PTBE in patients with meningiomas. CONCLUSION DCE-magnetic resonance imaging·Meningioma·Blood vessel MRI can be used to quantify the microvascular permeability of PTBE in patients with meningioma.
Collapse
Affiliation(s)
- Li Xiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Hua Sun
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long-Sheng Wang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi-Jun Gong
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ju Qiu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Wen-Jun Yao
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang-Chen Gu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
27
|
Sprowls SA, Saralkar P, Arsiwala T, Adkins CE, Blethen KE, Pizzuti VJ, Shah N, Fladeland R, Lockman PR. A Review of Mathematics Determining Solute Uptake at the Blood-Brain Barrier in Normal and Pathological Conditions. Pharmaceutics 2021; 13:pharmaceutics13050756. [PMID: 34069733 PMCID: PMC8160855 DOI: 10.3390/pharmaceutics13050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) limits movement of solutes from the lumen of the brain microvascular capillary system into the parenchyma. The unidirectional transfer constant, Kin, is the rate at which transport across the BBB occurs for individual molecules. Single and multiple uptake experiments are available for the determination of Kin for new drug candidates using both intravenous and in situ protocols. Additionally, the single uptake method can be used to determine Kin in heterogeneous pathophysiological conditions such as stroke, brain cancers, and Alzheimer's disease. In this review, we briefly cover the anatomy and physiology of the BBB, discuss the impact of efflux transporters on solute uptake, and provide an overview of the single-timepoint method for determination of Kin values. Lastly, we compare preclinical Kin experimental results with human parallels.
Collapse
Affiliation(s)
- Samuel A. Sprowls
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Pushkar Saralkar
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Tasneem Arsiwala
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | | | - Kathryn E. Blethen
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Vincenzo J. Pizzuti
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Neal Shah
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Department of Dermatology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Ross Fladeland
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Paul R. Lockman
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
- Correspondence: ; Tel.: +1-304-293-0944
| |
Collapse
|
28
|
Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids-Efficiency Assessment with the Use of Dynamic Contrast-Enhanced Magnetic Resonance Imaging and the Potential Role of the Administration of Uterotonic Drugs. Diagnostics (Basel) 2021; 11:diagnostics11040715. [PMID: 33923667 PMCID: PMC8072686 DOI: 10.3390/diagnostics11040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The assessment of the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) when qualifying patients with uterine fibroids (UFs) for magnetic resonance-guided high-intensity ultrasound (MR-HIFU). MATERIAL AND METHODS This retrospective, single center study included 283 women who underwent DCE-MRI and were treated with MR-HIFU. The patients were divided according to non-perfused volume (NPV) as well as by the type of curve for patients with a washout curve in the DCE-MRI study and patients without a washout curve. The studied women were assessed in three groups according to the type of uterotonics administered. Group A (57 patients) received one dose of misoprostol/diclofenac transvaginally and group B (71 patients) received oxytocin intravenously prior to the MR-HIFU procedure. The remaining 155 women (group C) were treated with the traditional non-drug enhanced MR-HIFU procedure. RESULTS The average NPV value was higher in no washout group, and depended on the uterotonics used. CONCLUSIONS We demonstrated a correlation between dynamic contrast enhancement curve types and the therapeutic efficacy of MR-HIFU. Our results suggest that DCE-MRI has the potential to assess treatment outcomes among patients with UFs, and patients with UFs that present with a washout curve may benefit from the use of uterotonic drugs. More studies are required to draw final conclusions.
Collapse
|
29
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
30
|
Chatterjee K, Atay N, Abler D, Bhargava S, Sahoo P, Rockne RC, Munson JM. Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics 2021; 13:pharmaceutics13020212. [PMID: 33557069 PMCID: PMC7913790 DOI: 10.3390/pharmaceutics13020212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. Methods: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. Results: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. Conclusions: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Naciye Atay
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Daniel Abler
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Saloni Bhargava
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Prativa Sahoo
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
- Correspondence: ; Tel.: +1-(540)-532-6392
| |
Collapse
|
31
|
Bao Q, Hadas R, Markovic S, Neeman M, Frydman L. Diffusion and perfusion MRI of normal, preeclamptic and growth-restricted mice models reveal clear fetoplacental differences. Sci Rep 2020; 10:16380. [PMID: 33009455 PMCID: PMC7532452 DOI: 10.1038/s41598-020-72885-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Diffusion-weighted MRI on rodents could be valuable to evaluate pregnancy-related dysfunctions, particularly in knockout models whose biological nature is well understood. Echo Planar Imaging’s sensitivity to motions and to air/water/fat heterogeneities, complicates these studies in the challenging environs of mice abdomens. Recently developed MRI methodologies based on SPatiotemporal ENcoding (SPEN) can overcome these obstacles, and deliver diffusivity maps at ≈150 µm in-plane resolutions. The present study exploits these capabilities to compare the development in wildtype vs vascularly-altered mice. Attention focused on the various placental layers—deciduae, labyrinth, trophoblast, fetal vessels—that the diffusivity maps could resolve. Notable differences were then observed between the placental developments of wildtype vs diseased mice; these differences remained throughout the pregnancies, and were echoed by perfusion studies relying on gadolinium-based dynamic contrast-enhanced MRI. Longitudinal monitoring of diffusivity in the animals throughout the pregnancies also showed differences between the development of the fetal brains in the wildtype and vascularly-altered mice, even if these disparities became progressively smaller as the pregnancies progressed. These results are analyzed on the basis of the known physiology of normal and preeclamptic pregnancies, as well as in terms of the potential that they might open for the early detection of disorders in human pregnancies.
Collapse
Affiliation(s)
- Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel
| | - Ron Hadas
- Department of Biological Regulation, Weizmann Institute, 7610001, Rehovot, Israel
| | - Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, 7610001, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel.
| |
Collapse
|
32
|
Bernardo-Castro S, Donato H, Ferreira L, Sargento-Freitas J. Permeability of the blood-brain barrier through the phases of ischaemic stroke and relation with clinical outcome: protocol for a systematic review. BMJ Open 2020; 10:e039280. [PMID: 32948573 PMCID: PMC7511624 DOI: 10.1136/bmjopen-2020-039280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Ischaemic stroke is the most prevalent type of stroke and is characterised by a myriad of pathological events triggered by a vascular arterial occlusion. Disruption of the blood-brain barrier (BBB) is a key pathological event that may lead to fatal outcomes. However, it seems to follow a multiphasic pattern that has been associated with distinct biological substrates and possibly contrasting outcomes. Addressing the BBB permeability (BBBP) along the different phases of stroke through imaging techniques could lead to a better understanding of the disease, improved patient selection for specific treatments and development of new therapeutic modalities and delivery methods. This systematic review will aim to comprehensively summarise the existing evidence regarding the evolution of the BBBP values during the different phases of an acute ischaemic stroke and correlate this event with the clinical outcome of the patient. METHODS AND ANALYSIS We will conduct a computerised search on Medline, EMBASE, Cochrane Central Register of Controlled Trials, Scopus and Web of Science. In addition, grey literature and ClinicalTrials.gov will be scanned. We will include randomised controlled trials, cohort, cross-sectional and case-controlled studies on humans that quantitatively assess the BBBP in stroke. Retrieved studies will be independently reviewed by two authors and any discrepancies will be resolved by consensus or with a third reviewer. Reviewers will extract the data and assess the risk of bias of the selected studies. If possible, data will be combined in a quantitative meta-analysis following the guidelines provided by Cochrane Handbook for Systematic Reviews of Interventions. We will assess cumulative evidence using the Grading of Recommendations, Assessment, Development and Evaluation approach. ETHICS AND DISSEMINATION Ethical approval is not needed. All data used for this work are publicly available. The result obtained from this work will be published in a peer-reviewed journal and disseminated in relevant conferences. PROSPERO REGISTRATION NUMBER CRD42019147314.
Collapse
Affiliation(s)
- Sara Bernardo-Castro
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Helena Donato
- Documentation Service, Centro Hospitalar e Universitario de Coimbra EPE, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Ippolito D, Drago SG, Pecorelli A, Maino C, Querques G, Mariani I, Franzesi CT, Sironi S. Role of dynamic perfusion magnetic resonance imaging in patients with local advanced rectal cancer. World J Gastroenterol 2020; 26:2657-2668. [PMID: 32523318 PMCID: PMC7265146 DOI: 10.3748/wjg.v26.i20.2657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The management of rectal cancer patients is mainly based on the use of the magnetic resonance imaging (MRI) technique as a diagnostic tool for both staging and restaging. After treatment, to date, the evaluation of complete response is based on the histopathology assessment by using different tumor regression grade (TRG) features (e.g., Dworak or Mandard classifications). While from the radiological point of view, the main attention for the prediction of a complete response after chemotherapy treatment focuses on MRI and the potential role of diffusion-weighted images and perfusion imaging represented by dynamic-contrast enhanced MRI. The main aim is to find a reliable tool to predict tumor response in comparison to histopathologic findings.
AIM To investigate the value of dynamic contrast-enhanced perfusion-MRI parameters in the evaluation of the healthy rectal wall and tumor response to chemo-radiation therapy in patients with local advanced rectal cancer with histopathologic correlation.
METHODS Twenty-eight patients with biopsy-proven rectal adenocarcinoma who underwent a dynamic contrast-enhanced MR study performed on a 1.5T MRI system (Achieva, Philips), before (MR1) and after chemoradiation therapy (MR2), were enrolled in this study. The protocol included T1 gadolinium enhanced THRIVE sequences acquired on axial planes. A dedicated workstation was used to generate color permeability maps. Region of interest was manually drawn on tumor tissue and normal rectal wall, hence the following parameters were calculated and statistically analyzed: Relative arterial enhancement (RAE), relative venous enhancement (RVE), relative late enhancement (RLE), maximum enhancement (ME), time to peak and area under the curve (AUC). Perfusion parameters were related to pathologic TRG (Mandard's criteria; TRG1 = complete regression, TRG5 = no regression).
RESULTS Ten tumors (36%) showed complete or subtotal regression (TRG1-2) at histology and classified as responders; 18 tumors (64%) were classified as non-responders (TRG3-5). Perfusion MRI parameters were significantly higher in the tumor tissue than in the healthy tissue in MR1 (P < 0.05). At baseline (MR1), no significant difference in perfusion parameters was found between responders and non-responders. After chemo-radiation therapy, at MR2, responders showed significantly (P < 0.05) lower perfusion values [RAE (%) 54 ± 20; RVE (%) 73 ± 24; RLE (%): 82 ± 29; ME (%): 904 ± 429] compared to non-responders [RAE (%): 129 ± 45; RVE (%): 154 ± 39; RLE (%): 164 ± 35; ME (%): 1714 ± 427]. Moreover, in responders group perfusion values decreased significantly at MR2 [RAE (%): 54 ± 20; RVE (%): 73 ± 24; RLE (%): 82 ± 29; ME (%): 904 ± 429] compared to the corresponding perfusion values at MR1 [RAE (%): 115 ± 21; RVE (%): 119 ± 21; RLE (%): 111 ± 74; ME (%): 1060 ± 325]; (P < 0.05). Concerning the time-intensity curves, the AUC at MR2 showed significant difference (P = 0.03) between responders and non-responders [AUC (mm2 × 10-3) 121 ± 50 vs 258 ± 86], with lower AUC values of the tumor tissue in responders compared to non-responders. In non-responders, there were no significant differences between perfusion values at MR1 and MR2.
CONCLUSION Dynamic contrast perfusion-MRI analysis represents a complementary diagnostic tool for identifying vascularity characteristics of tumor tissue in local advanced rectal cancer, useful in the assessment of treatment response.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Silvia Girolama Drago
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Giulia Querques
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Ilaria Mariani
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Cammillo Talei Franzesi
- Department of Diagnostic Radiology, H. S. Gerardo Monza, San Gerardo Hospital, University of Milano-Bicocca, Monza 20900, Italy
| | - Sandro Sironi
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, University of Milano-Bicocca, Bergamo 20110, Italy
| |
Collapse
|
34
|
Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, Schäfers M, Grauer O, Jacobs AH, Zinnhardt B. Multimodal Molecular Imaging of the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:71-87. [PMID: 32030648 DOI: 10.1007/978-3-030-35727-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Philipp Backhaus
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Alexandra Winkeler
- UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas Viel
- Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris Descartes, Paris, France
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany. .,PET Imaging in Drug Design and Development (PET3D), Münster, Germany. .,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany.
| |
Collapse
|
35
|
Kim J, Moestue SA, Bathen TF, Kim E. R2* Relaxation Affects Pharmacokinetic Analysis of Dynamic Contrast-Enhanced MRI in Cancer and Underestimates Treatment Response at 7 T. ACTA ACUST UNITED AC 2019; 5:308-319. [PMID: 31572792 PMCID: PMC6752293 DOI: 10.18383/j.tom.2019.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Effective transverse relaxivity of gadolinium-based contrast agents is often neglected in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we assess time and tissue dependence of R2* enhancement and its impact on pharmacokinetic parameter quantification and treatment monitoring. Multiecho DCE-MRI was performed at 7 T on mice bearing subcutaneous TOV-21G human ovarian cancer xenografts (n = 8) and on the transgenic adenocarcinoma of the mouse prostate (TRAMP) model (n = 7). Subsequently, the TOV-21G tumor-bearing mice were treated with bevacizumab and rescanned 2 days later. Pharmacokinetic analysis (extended Tofts model) was performed using either the first echo signal only (standard single-echo DCE-MRI) or the estimated signal at TE = 0 derived from exponential fitting of R2* relaxation (R2*-corrected). Neglecting R2* enhancement causes underestimation of Gd-DOTA concentration (peak enhancement underestimated by 9.4%-16% in TOV-21G tumors and 13%-20% in TRAMP prostates). Median Ktrans and ve were underestimated in every mouse (TOV-21G Ktrans: 11%-19%, TOV-21G ve: 5.3%-8.9%; TRAMP Ktrans: 8.6%-19%, TRAMP ve: 12%-21%). Bevacizumab treatment reduced Ktrans in all TOV-21G tumors after 48 hours. Treatment effect was significantly greater in all tumors after R2* correction (median change of -0.050 min-1 in R2*-corrected Ktrans vs. -0.037 min-1 in uncorrected Ktrans). R2* enhancement in DCE-MRI is both time- and tissue-dependent and may not be negligible at 7 T in tissue with high Ktrans. This has consequences for the use of Ktrans and other DCE-MRI parameters as biomarkers, because treatment effect size can be underestimated when R2* enhancement is neglected.
Collapse
Affiliation(s)
- Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Trondheim, Norway
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Laboratory Medicine, Women's and Children's Health, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pharmacy, Faculty of Health Sciences, Nord University, Namsos, Norway; and
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Trondheim, Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England
| |
Collapse
|
36
|
Noninvasive monitoring of blood flow using a single magnetic microsphere. Sci Rep 2019; 9:5014. [PMID: 30899047 PMCID: PMC6428830 DOI: 10.1038/s41598-019-41416-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/07/2019] [Indexed: 11/30/2022] Open
Abstract
Noninvasive medical imaging of blood flow relies on mapping the transit of a contrast medium bolus injected intravenously. This has the draw-back that the front of the bolus widens until the tissue of interest is reached and quantitative flow parameters are not easy to obtain. Here, we introduce high resolution (millimeter/millisecond) 3D magnetic tracking of a single microsphere locally probing the flow while passing through a vessel. With this, we successfully localize and evaluate diameter constrictions in an arteria phantom after a single passage of a microsphere. We further demonstrate the potential for clinical application by tracking a microsphere smaller than a red blood cell.
Collapse
|
37
|
Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a comparative study of pharmacokinetic models and correlation with mRECIST criteria. Cancer Imaging 2019; 19:10. [PMID: 30813957 PMCID: PMC6391827 DOI: 10.1186/s40644-019-0189-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare and aggressive thoracic malignancy that is difficult to cure. Dynamic contrast-enhanced (DCE) MRI is a functional imaging technique used to analyze tumor microvascular properties and to monitor therapy response. Purpose of this study was to compare two tracer kinetic models, the extended Tofts (ET) and the adiabatic approximation tissue homogeneity model (AATH) for analysis of DCE-MRI and examine the value of the DCE parameters to predict response to chemotherapy in patients with MPM. Method This prospective, longitudinal, single tertiary radiology center study was conducted between October 2013 and July 2015. Patient underwent DCE-MRI studies at three time points: prior to therapy, during and after cisplatin-based chemotherapy. The images were analyzed using ET and AATH models. In short-term follow-up, the patients were classified as having disease control or progressive disease according to modified response evaluation criteria in solid tumors (mRECIST) criteria. Receiver operating characteristic curve analysis was used to examine specificity and sensitivity of DCE parameters for predicting response to therapy. Comparison tests were used to analyze whether derived parameters are interchangeable between the two models. Results Nineteen patients form the study population. The results indicate that the derived parameters are not interchangeable between the models. Significant correlation with response to therapy was found for AATH-calculated median pre-treatment efflux rate (kep) showing sensitivity of 83% and specificity of 100% (AUC 0.9). ET-calculated maximal pre-treatment kep showed 100% sensitivity and specificity for predicting treatment response during the early phase of the therapy and reached a favorable trend to significant prognostic value post-therapy. Conclusion Both models show potential in predicting response to therapy in MPM. High pre-treatment kep values suggest MPM disease control post-chemotherapy. Electronic supplementary material The online version of this article (10.1186/s40644-019-0189-5) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Napel S, Mu W, Jardim‐Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018; 124:4633-4649. [PMID: 30383900 PMCID: PMC6482447 DOI: 10.1002/cncr.31630] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.
Collapse
Affiliation(s)
- Sandy Napel
- Department of RadiologyStanford UniversityStanfordCalifornia
| | - Wei Mu
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| | | | - Hugo J. W. L. Aerts
- Dana‐Farber Cancer Institute, Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| |
Collapse
|
39
|
Xu L, Xu L, Zhu H. Evaluation of three-dimensional arterial spin labeling perfusion imaging for the pathological investigation of musculoskeletal tumors. Exp Ther Med 2018; 15:5029-5034. [PMID: 29805527 DOI: 10.3892/etm.2018.6030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to assess the clinical utility of three-dimensional arterial spin labeling (3D-ASL) perfusion imaging in discriminating between benign, intermediate and malignant musculoskeletal tumors, as well as to analyze the correlation between tumor blood flow (TBF) and microvessel density (MVD). 3D-ASL was performed on 44 patients with musculoskeletal tumor using a 3.0-T magnetic resonance system to obtain TBF values prior to surgery. TBF was independently measured by two radiologists. The TBF values of different groups were compared by one-way analysis of variance. A receiver operating characteristic (ROC) curve was applied to assess the threshold and diagnostic reliability of TBF. Immunohistochemical staining of tumor specimens was performed using a cluster of differentiation 34 monoclonal antibody to calculate MVD counts. The correlation between TBF and MVD counts was analyzed using correlative analysis. Pathology results for a total of 44 cases were obtained by surgery. Good interobserver agreement was found for the TBF values independently determined by the two radiologists (intra-class correlation coefficient test, 0.891; P<0.05). TBF and MVD values in the malignant group were significantly higher compared with that of the benign, and intermediate groups. No significant difference was found between the TBF and MVD values of the benign, and intermediate groups. According to the ROC analysis, the area under the curve was largest (0.951) when 45.5 ml/min/100 g was considered as the TBF cut-off value in the diagnosis. The diagnostic sensitivity and specificity were 90.5 and 100%, respectively. Additionally, a significant positive correlation was found between TBF and MVD (r, 0.784; P<0.05). The results of the present study suggest that 3D-ASL is valuable in discriminating between benign, intermediate and malignant musculoskeletal tumors. 3D-ASL may be utilized to evaluate angiogenesis in musculoskeletal tumors in vivo.
Collapse
Affiliation(s)
- Lingbin Xu
- Department of Radiology, Ningbo Medical Center Lihuili Eastern Hospital Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang 315040, P.R. China
| | - Leiming Xu
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Haidong Zhu
- Department of Radiology, Ningbo Medical Center Lihuili Eastern Hospital Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
40
|
Zhao YH, Cao YY, Zhang Q, Mei YJ, Xiao JJ, Hu SY, Li W, Li SL. Role of Diffusion-weighted and Contrast-enhanced Magnetic Resonance Imaging in Differentiating Activity of Ankylosing Spondylitis. Chin Med J (Engl) 2018; 130:1303-1308. [PMID: 28524829 PMCID: PMC5455039 DOI: 10.4103/0366-6999.206359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Previous studies showed that combining apparent diffusion coefficient (ADC) value with the Spondyloarthritis Research Consortium of Canada (SPARCC) index value might provide a reliable evaluation of the activity of ankylosing spondylitis (AS), and that contrast-enhanced (CE) magnetic resonance imaging (MRI) is unnecessary. However, the results were based on confirming only a small random sample. This study aimed to assess the role of CE-MRI in differentiating the disease activity of AS by comparing ADC value with a large sample. Methods: A total of 115 patients with AS were enrolled in accordance with Bath AS Disease Activity Index and laboratory indices, and 115 patients were divided into two groups, including active group (n = 69) and inactive group (n = 46). SPARCC, ΔSI, and ADC values were obtained from the short tau inversion recovery (STIR), diffusion-weighted imaging (DWI), and CE-MRI, respectively. One-way analysis of variance and receiver operating characteristic analysis were performed for all parameters. Results: The optimal cutoff values (with sensitivity, specificity, respective area under the curve, positive likelihood ratio, and negative likelihood ratio) for the differentiation between active and inactive groups are as follows: SPARCC = 6 (72.06%, 82.61%, 0.836, 4.14, 0.34); ΔSI (%) = 153 (80.6%, 84.78%, 0.819, 5.3, 0.23); ADC value = 1.15 × 10−3 mm2/s (72.73%, 81.82%, 0.786, 4, 0.33). No statistical differences were found among the predictive values of SPARCC, ΔSI, and ADC. Multivariate analysis showed no significant difference between the combination of SPARCC and ADC values with and without ΔSI. Conclusions: Using large sample, we concluded that the combination of STIR and DWI would play significant roles in assessing the disease activity, and CE-MRI sequence is not routinely used in imaging of AS to avoid renal fibrosis and aggravation of kidney disease.
Collapse
Affiliation(s)
- Ying-Hua Zhao
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Yan-Yan Cao
- Department of Rheumatology, Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Qun Zhang
- Department of Rheumatology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Ying-Jie Mei
- Department of MR Clinical Science, Philips Healthcare, Guangzhou, Guangdong 510055, China
| | - Ji-Jie Xiao
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Shao-Yong Hu
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Wei Li
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Shao-Lin Li
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510630, China
| |
Collapse
|
41
|
Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data 2018; 5:180008. [PMID: 29437167 PMCID: PMC5810424 DOI: 10.1038/sdata.2018.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Dynamic myraidpro contrast-enhanced magnetic resonance imaging (DCE-MRI) has been correlated with prognosis in head and neck squamous cell carcinoma as well as with changes in normal tissues. These studies implement different software, either commercial or in-house, and different scan protocols. Thus, the generalizability of the results is not confirmed. To assist in the standardization of quantitative metrics to confirm the generalizability of these previous studies, this data descriptor delineates in detail the DCE-MRI digital imaging and communications in medicine (DICOM) files with DICOM radiation therapy (RT) structure sets and digital reference objects (DROs), as well as, relevant clinical data that encompass a data set that can be used by all software for comparing quantitative metrics. Variable flip angle (VFA) with six flip angles and DCE-MRI scans with a temporal resolution of 5.5 s were acquired in the axial direction on a 3T MR scanner with a field of view of 25.6 cm, slice thickness of 4 mm, and 256×256 matrix size.
Collapse
|
42
|
Lefrançois P, Zummo-Soucy M, Olivié D, Billiard JS, Gilbert G, Garel J, Visée E, Manchec P, Tang A. Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging and dynamic contrast-enhanced MRI for assessment of anal fistula activity. PLoS One 2018; 13:e0191822. [PMID: 29370278 PMCID: PMC5784995 DOI: 10.1371/journal.pone.0191822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To evaluate intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) sequences for quantitative characterization of anal fistula activity. Methods This retrospective study was approved by the institutional review board. One hundred and two patients underwent MRI for clinical suspicion of anal fistula. Forty-three patients with demonstrable anal fistulas met the inclusion criteria. Quantitative analysis included measurement of DCE and IVIM parameters. The reference standard was clinical activity based on medical records. Statistical analyses included Bayesian analysis with Markov Chain Monte Carlo, multivariable logistic regression, and receiver operating characteristic analyses. Results Brevity of enhancement, defined as the time difference between the wash-in and wash-out, was longer in active than inactive fistulas (p = 0.02). Regression coefficients of multivariable logistic regression analysis revealed that brevity of enhancement increased and normalized perfusion area under curve decreased with presence of active fistulas (p = 0.03 and p = 0.04, respectively). By cross-validation, a logistic regression model that included quantitative perfusion parameters (DCE and IVIM) performed significantly better than IVIM only (p < 0.001). Area under the curves for distinguishing patients with active from those with inactive fistulas were 0.669 (95% confidence interval [CI]: 0.500, 0.838) for a model with IVIM only, 0.860 (95% CI: 0.742, 0.977) for a model with IVIM and brevity of enhancement, and 0.921 (95% CI: 0.846, 0.997) for a model with IVIM and all DCE parameters. Conclusion The inclusion of brevity of enhancement measured by DCE-MRI improved assessment of anal fistula activity over IVIM-DWI only.
Collapse
Affiliation(s)
- Philippe Lefrançois
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Mathieu Zummo-Soucy
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Damien Olivié
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Jean-Sébastien Billiard
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Guillaume Gilbert
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada
| | - Juliette Garel
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Emmanuel Visée
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- Centre Hospitalier Départemental de Vendée, Les Oudairies, La Roche-Sur-Yon, France
| | - Perrine Manchec
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- Norimagerie, 1,3 chemin du Penthod, Caluire et Cuire, France
| | - An Tang
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
43
|
Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2017:5428914. [PMID: 29317855 PMCID: PMC5727560 DOI: 10.1155/2017/5428914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
Objective To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. Results For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper (p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p = 0.01). Conclusions 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections.
Collapse
|
44
|
Wu YL, Lo CW. Diverse application of MRI for mouse phenotyping. Birth Defects Res 2017; 109:758-770. [PMID: 28544650 DOI: 10.1002/bdr2.1051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 02/01/2023]
Abstract
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. MRI is a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. Birth Defects Research 109:758-770, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Anwander H, Cron GO, Rakhra K, Beaule PE. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot study. Bone Joint Res 2016; 5:73-9. [PMID: 26935768 PMCID: PMC4852810 DOI: 10.1302/2046-3758.53.2000572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objectives Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min−1versus 0.053 min−1; p-value < 0.05) and men with MoM bearings (0.067 min−1versus 0.034 min−1; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min−1versus 0.046 min−1; p < 0.05). Conclusion DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10.1302/2046-3758.53.2000572.
Collapse
Affiliation(s)
- H Anwander
- Universität für Orthopädische Chirurgie und Traumatologie, Freiburgstrasse 4, 3010 Bern, Switzerland
| | - G O Cron
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| | - K Rakhra
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| | - P E Beaule
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| |
Collapse
|