1
|
Plantone D, Primiano G, Righi D, Romano A, Luigetti M, De Stefano N. Current Evidence Supporting the Role of Immune Response in ATTRv Amyloidosis. Cells 2023; 12:2383. [PMID: 37830598 PMCID: PMC10572348 DOI: 10.3390/cells12192383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Hereditary transthyretin (ATTRv) amyloidosis with polyneuropathy, also known as familial amyloid polyneuropathy (FAP), represents a progressive, heterogeneous, severe, and multisystemic disease caused by pathogenic variants in the TTR gene. This autosomal-dominant neurogenetic disorder has an adult onset with variable penetrance and an inconstant phenotype, even among subjects carrying the same mutation. Historically, ATTRv amyloidosis has been viewed as a non-inflammatory disease, mainly due to the absence of any mononuclear cell infiltration in ex vivo tissues; nevertheless, a role of inflammation in its pathogenesis has been recently highlighted. The immune response may be involved in the development and progression of the disease. Fibrillary TTR species bind to the receptor for advanced glycation end products (RAGE), probably activating the nuclear factor κB (NF-κB) pathway. Moreover, peripheral blood levels of several cytokines, including interferon (IFN)-gamma, IFN-alpha, IL-6, IL-7, and IL-33, are altered in the course of the disease. This review summarizes the current evidence supporting the role of the immune response in ATTRv amyloidosis, from the pathological mechanisms to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| | - Angela Romano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Luigetti
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.R.); (M.L.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (D.R.); (N.D.S.)
| |
Collapse
|
2
|
Xu S, Qin Z, Yuan R, Cui X, Zhang L, Bai J, Liu G, Wang Z, Yu F, Lv Y, Zhang J, Tang J. The hemoglobin glycation index predicts the risk of adverse cardiovascular events in coronary heart disease patients with type 2 diabetes mellitus. Front Cardiovasc Med 2022; 9:992252. [PMID: 36407464 PMCID: PMC9668857 DOI: 10.3389/fcvm.2022.992252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background Previous studies have shown that the hemoglobin glycation index (HGI) can be used as a predictor of diabetic complications. However, limited information is currently available to indicate the correlation between HGI and comorbidity of coronary heart disease (CHD) and diabetes. This study aimed to evaluate the potential of HGI to predict major adverse cardiovascular events (MACEs) in CHD patients with type 2 diabetes mellitus (T2DM) undergoing percutaneous coronary intervention (PCI). Materials and methods A total of 918 CHD patients with T2DM were enrolled in a 3-year retrospective cohort study, from December 2017 to December 2020 at the First Affiliated Hospital of Zhengzhou University. Data including fasting blood glucose (FPG/FBG) and glycated hemoglobin A1c (HbA1c) were collected. HGI was calculated as actual measured HbA1c minus predicted HbA1c. Three groups were further divided based on the levels of HGI, including low, medium, and high levels. Result Kaplan Meier analysis indicated that elevated HGI was strongly associated with the occurence of MACE (log-rank P < 0.001). Multivariate Cox regression analysis revealed that elevated HGI was an independent risk factor for incident MACE in CHD patients with T2DM [adjusted hazard ratio (HR): 1.473; 95% confidence interval (CI): 1.365-1.589, P < 0.001]. Conclusions Hemoglobin glycation index is an independent predictor of MACE events in CHD patients with T2DM. High HGI indicates a higher risk of MACE occurrence.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Ruixia Yuan
- Clinical Big Data Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Bone and Joint, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Bai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Zeyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Fengyi Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yan Lv
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
- Jinying Zhang,
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
- *Correspondence: Junnan Tang,
| |
Collapse
|
3
|
Ramasamy R, Shekhtman A, Schmidt AM. The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms23094579. [PMID: 35562970 PMCID: PMC9102165 DOI: 10.3390/ijms23094579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA;
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Correspondence:
| |
Collapse
|
4
|
Tong H, Wang D, Fang M. Correlation between the Variability of Glycosylated Hemoglobin and Cardiovascular Risk in New-Onset T2DM Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5370301. [PMID: 35356363 PMCID: PMC8933119 DOI: 10.1155/2022/5370301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/26/2023]
Abstract
Objective To investigate the relationship between glycosylated hemoglobin variant index and cardiovascular disease in patients with type 2 diabetes. Methods A total of 120 patients with type 2 diabetes who were admitted to the Department of Endocrinology in Chun'an Branch of Zhejiang Provincial People's Hospital from January 2014 to January 2017 were enrolled. The clinical data, fasting blood glucose, and glycosylated hemoglobin levels of the patients were collected, and HGI was obtained by calculating the FPG level into the formula. Follow-up for three years was performed to observe the cardiovascular disease (including coronary heart disease and ischemic stroke) in patients. The occurrence of CVD was analyzed in patients with different levels of HGI. Multivariate logistics regression analysis was used to analyze the risk factors of CVD in patients with T2DM. Results After three years of follow-up, 8 cases of 120 patients were lost to follow-up. In the end, 24 cases of CVD occurred in 112 patients, with an incidence rate of 21.43%. Comparing the clinical data of CVD patients and non-CVD patients, it was found that the proportion of age, FPG, HbA1c, HGI, and insulin control in the CVD group was higher than that of the non-CVD group, and the difference was statistically significant (P < 0.05). After grouping according to different HGI levels, it was found that with the increase of HGI level, the proportion of HbA1c, FPG, TC, CVD, and insulin use showed an upward trend (P < 0.05). Multivariate logistic regression analysis showed that high HGI level (OR = 4.660), older age (OR = 4.815), and higher FPG level (OR = 1.717) are independent risk factors that affect T2DM patients with cardiovascular disease (P < 0.05). Conclusion High HGI is independently associated with CVD events in patients with type 2 diabetes. HGI testing is helpful for clinical assessment of personalized assessment and prediction of cardiovascular risk in patients with diabetes.
Collapse
Affiliation(s)
- HuoMu Tong
- Department of Endocrinology, Chun'an Branch of Zhejiang Provincial People's Hospital, Hangzhou 311700, China
| | - DongYing Wang
- Department of Endocrinology, Chun'an Branch of Zhejiang Provincial People's Hospital, Hangzhou 311700, China
| | - MiaoZhen Fang
- Department of Endocrinology, Chun'an Branch of Zhejiang Provincial People's Hospital, Hangzhou 311700, China
| |
Collapse
|
5
|
Moysa A, Steczkiewicz K, Niedzialek D, Hammerschmid D, Zhukova L, Sobott F, Dadlez M. A model of full-length RAGE in complex with S100B. Structure 2021; 29:989-1002.e6. [PMID: 33887170 DOI: 10.1016/j.str.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling. We predict that RAGE functions as a tightly packed tetramer exposing a positively charged surface formed by V domains for S100B binding. Based on HDX results we demonstrate an allosteric coupling of the distal extracellular V domains and the transmembrane region, indicating a possible mechanism of signal transmission by RAGE across the membrane. Our model provides an insight into RAGE-ligand interactions, providing a basis for the rational design of the therapeutic modifiers of its activity.
Collapse
Affiliation(s)
- Alexander Moysa
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB London, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| |
Collapse
|
6
|
Lin Y, Shen C, Wang F, Fang Z, Shen G. Network Pharmacology and Molecular Docking Study on the Potential Mechanism of Yi-Qi-Huo-Xue-Tong-Luo Formula in Treating Diabetic Peripheral Neuropathy. J Diabetes Res 2021; 2021:9941791. [PMID: 34159207 PMCID: PMC8188603 DOI: 10.1155/2021/9941791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the potential mechanism of action of Yi-Qi-Huo-Xue-Tong-Luo formula (YQHXTLF) in the treatment of diabetic peripheral neuropathy (DPN). METHODS Network pharmacology and molecular docking techniques were used in this study. Firstly, the active ingredients and the corresponding targets of YQHXTLF were retrieved using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform; subsequently, the targets related to DPN were retrieved using GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmgkb, Therapeutic Target Database (TTD) and Drugbank databases; the common targets of YQHXTLF and DPN were obtained by Venn diagram; afterwards, the "YQHXTLF Pharmacodynamic Component-DPN Target" regulatory network was visualized using Cytoscape 3.6.1 software, and Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the potential targets using R 3.6.3 software. Finally, molecular docking of the main chemical components in the PPI network with the core targets was verified by Autodock Vina software. RESULTS A total of 86 active ingredients and 229 targets in YQHXTLF were screened, and 81 active ingredients and 110 targets were identified to be closely related to diabetic peripheral neuropathy disease. PPI network mapping identified TP53, MAPK1, JUN, and STAT3 as possible core targets. KEGG pathway analysis showed that these targets are mostly involved in AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, and MAPK signaling pathway. The molecular docking results showed that the main chemical components of YQHXTLF have a stable binding activity to the core pivotal targets. CONCLUSION YQHXTLF may act on TP53, MAPK1, JUN, and STAT3 to regulate inflammatory response, apoptosis, or proliferation as a molecular mechanism for the treatment of diabetic peripheral neuropathy, reflecting its multitarget and multipathway action, and providing new ideas to further uncover its pharmacological basis and mechanism of action.
Collapse
Affiliation(s)
- Yixuan Lin
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Fanjing Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Anhui Academic of Traditional Chinese Medicine Diabetes Research Institute, Hefei, Anhui, China
| | - Guoming Shen
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Wan L, Qin G, Yan W, Sun T. Skin Autofluorescence Is Associated with Diabetic Peripheral Neuropathy in Chinese Patients with Type 2 Diabetes: A Cross-Sectional Study. Genet Test Mol Biomarkers 2019; 23:387-392. [PMID: 31161820 PMCID: PMC6555182 DOI: 10.1089/gtmb.2018.0328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Diabetic peripheral neuropathy (DPN) affects nearly 50% of the diabetic population. Advanced glycation end products, measured through skin autofluorescence (SAF), play an important role in the diagnosis and prevention of DPN. To date, however, no relevant study has discussed the relationship between SAF and the Chinese population. Objective: We conducted this study to evaluate the association between DPN and SAF among the Chinese population. Methods: In this cross-sectional study, we recruited a total of 820 patients with type 2 diabetes. All of the patients underwent SAF measurements and a nerve conduction study (NCS). Post-SAF characterization, the patients were divided into three groups according to the first and third quartiles of their SAF values (AU) (SAF ≤ 2.2; 2.2 < SAF ≤ 2.7; SAF > 2.7). Based on the results of the NCS, patients were divided into two groups: DPN and non-DPN. Results: When compared with the non-DPN group (n = 275) with the DNP group. The latter had higher SAF values (2.72 ± 0.55 AU vs. 2.17 ± 0.71 AU, P < 0.01). There were significant differences in age, the percentage of DPN, and NCS parameters, including motor nerve conduction velocity, sensory nerve conduction velocity, distal latency, and sensory nerve action potential among the three SAF groups (p < 0.05). The SAF value was positively associated with DPN (r = 0.11, p < 0.01). After adjusting for all potential confounders, the SAF values were still associated with an increased risk of DPN (odds ratio 5.15; 95% confidence interval [1.48-4.53]) (p < 0.01). A receiver operating characteristic analysis indicated that an SAF value >2.57 ng/mL predicts a threefold increased risk of DPN (p < 0.01). Conclusions: SAF is an independent risk factor for DPN, which might be of potential value for screening DPN in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Li Wan
- 1 Department of Comprehensive ICU, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- 2 Endocrine Department, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhao Yan
- 3 Pediatric Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- 1 Department of Comprehensive ICU, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018; 42:28-39. [PMID: 29247713 DOI: 10.1016/j.arr.2017.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
In the central nervous system, the primary immune cells, the microglia, prevent pathogenic invasion as the first line of defense. Microglial energy consumption is dependent on their degree of activity. Microglia express transporters for the three primary energy substrates (glucose, fatty acids, glutamine) and regulate diabetic encephalopathy via microglia-neuron interactions. Microglia may play a sentry role for rapid protection or even ablation of impaired neurons. Neurons exhibit hyperactivity in response to hyperglycemia, hyperlipidemia, and neurotoxic factors and release potential microglial activators. Microglial activation is also regulated by proinflammatory factors, caspase-3 activity, P2X7 receptor, interferon regulatory factor-8, and glucocorticoids. Modulation of microglia in diabetic encephalopathy may involve CX3CL1, p38 MAPK, purinergic, and CD200/CD200R signaling pathways, and pattern recognition receptors. The microglia-neuron interactions play an important role in diabetic encephalopathy, and modulation of microglial activation may be a therapeutic target for diabetic encephalopathy.
Collapse
|
9
|
Shekhtman A, Ramasamy R, Schmidt AM. Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Rev Proteomics 2016; 14:147-156. [PMID: 27967251 DOI: 10.1080/14789450.2017.1271719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.
Collapse
Affiliation(s)
- Alexander Shekhtman
- a Department of Chemistry , University at Albany, State University of New York , Albany , NY , 12222 , USA
| | - Ravichandran Ramasamy
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| | - Ann Marie Schmidt
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| |
Collapse
|
10
|
Baek SH, Seok HY, Koo YS, Kim BJ. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis. PLoS One 2016; 11:e0149248. [PMID: 26871583 PMCID: PMC4752484 DOI: 10.1371/journal.pone.0149248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of fibromyalgia (FM) has not been clearly elucidated, but central sensitization, which plays an important role in the development of neuropathic pain, is considered to be the main mechanism. The cutaneous silent period (CSP), which is a spinal reflex mediated by A-delta cutaneous afferents, is useful for the evaluation of sensorimotor integration at the spinal and supraspinal levels. To understand the pathophysiology of FM, we compared CSP patterns between patients with FM and normal healthy subjects. Twenty-four patients with FM diagnosed in accordance with the 1990 American College of Rheumatology classification system and 24 age- and sex-matched healthy volunteers were recruited. The CSP was measured from the abductor pollicis brevis muscle. Demographic data, number of tender points, and visual analog scale and FM impact questionnaire scores were collected. The measured CSP and clinical parameters of the patient and control groups were compared. In addition, possible correlations between the CSP parameters and the other clinical characteristics were analyzed. Mean CSP latencies did not differ between patients (55.50 ± 10.97 ms) and healthy controls (60.23 ± 11.87 ms; p = 0.158), although the mean CSP duration was significantly longer in patients (73.75 ± 15.67 ms) than in controls (63.50 ± 14.05 ms; p = 0.021). CSP variables did not correlate with any clinical variables. The significantly longer CSP duration in FM patients suggests central dysregulation at the spinal and supraspinal levels, rather than peripheral small fiber dysfunction.
Collapse
Affiliation(s)
- Seol-Hee Baek
- Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Hung Youl Seok
- Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Yong Seo Koo
- Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
11
|
Guclu M, Ali A, Eroglu DU, Büyükuysal SO, Cander S, Ocak N. Serum Levels of sRAGE Are Associated with Body Measurements, but Not Glycemic Parameters in Patients with Prediabetes. Metab Syndr Relat Disord 2016; 14:33-9. [DOI: 10.1089/met.2015.0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Metin Guclu
- Department of Endocrinology and Metabolism, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| | - Asuman Ali
- Department of Neurology, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| | - Derya Ustun Eroglu
- Department of Internal Medicine, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| | - Sema Oral Büyükuysal
- Department of Biochemistry, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| | - Soner Cander
- Department of Endocrinology and Metabolism, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| | - Nihal Ocak
- Department of Biochemistry, Sevket Yilmaz Research and Training Hospital-Bursa, Bursa, Turkey
| |
Collapse
|
12
|
Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clin Pharmacol Ther 2015; 98:135-44. [PMID: 25974754 DOI: 10.1002/cpt.148] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Types 1 and 2 diabetes are on the rise worldwide. Although the treatment of hyperglycemia has benefited from recent advances, aggressive efforts to maintain euglycemia may be fraught with risk, especially in older subjects or in subjects vulnerable to hypoglycemic unawareness. Hence, strategies to prevent and treat the complications of hyperglycemia are essential. In this review we summarize recent updates on the biology of the receptor for advanced glycation endproducts (RAGE) in the pathogenesis of both micro- and macrovascular complications of diabetes, insights from the study of mouse models of obesity and diabetic complications, and from associative studies in human subjects. The study of the mechanisms and consequences of the interaction of the RAGE cytoplasmic domain with the formin, mDia1, in RAGE signal transduction, will be discussed. Lastly, we review the "state-of-the-art" on RAGE-directed therapeutics. Tackling RAGE/mDia1 may identify a novel class of therapeutics preventing diabetes and its complications.
Collapse
Affiliation(s)
- Ems Litwinoff
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - C Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - R Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - A M Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|