1
|
Kim CY, Kannan SK, Badovinac VP, Griffith TS. Protocol for inducing monomicrobial sepsis in mice with uropathogenic E. coli. STAR Protoc 2024; 5:103206. [PMID: 39068653 PMCID: PMC11338187 DOI: 10.1016/j.xpro.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Bacterial infections are the primary cause of pathogenic sepsis. An uropathogenic E. coli (UPEC) model of monomicrobial sepsis represents a useful tool for interrogating the host immune response to this pathogen. Here, we present a protocol for inducing monomicrobial sepsis in mice using UPEC. We describe steps for preparing the bacteria, delivering UPEC into mice, and monitoring the mice post-infection. We then detail procedures for measuring cytokine response and detecting immune cell subsets using flow cytometry. For complete details on the use and execution of this protocol, please refer to Martin et al.1.
Collapse
Affiliation(s)
- Caleb Y Kim
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Shravan Kumar Kannan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, MN, USA; Department of Urology, University of Minnesota, Minneapolis, MN, USA; Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
3
|
Liu Q, Pickett T, Hodge D, Rios C, Arnold M, Dong G, Hamilton SE, Rehermann B. Leveraging dirty mice that have microbial exposure to improve preclinical models of human immune status and disease. Nat Immunol 2024; 25:947-950. [PMID: 38750319 DOI: 10.1038/s41590-024-01842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Qian Liu
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA.
| | - Thames Pickett
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Deborah Hodge
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Carmen Rios
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Michelle Arnold
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Gang Dong
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Rockville, MD, USA
| | - Sara E Hamilton
- Department of Laboratory Medicine & Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
4
|
Kannan SK, Kim CY, Heidarian M, Berton RR, Jensen IJ, Griffith TS, Badovinac VP. Mouse Models of Sepsis. Curr Protoc 2024; 4:e997. [PMID: 38439603 PMCID: PMC10917121 DOI: 10.1002/cpz1.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Human sepsis is a complex disease that manifests with a diverse range of phenotypes and inherent variability among individuals, making it hard to develop a comprehensive animal model. Despite this difficulty, numerous models have been developed that capture many key aspects of human sepsis. The robustness of these models is vital for conducting pre-clinical studies to test and develop potential therapeutics. In this article, we describe four different models of murine sepsis that can be used to address different scientific questions relevant to the pathology and immune response during and after a septic event. Basic Protocol 1 details a non-synchronous cecal ligation and puncture (CLP) model of sepsis, where mice are subjected to polymicrobial exposure through surgery at different time points within 2 weeks. This variation in sepsis onset establishes each mouse at a different state of inflammation and cytokine levels that mimics the variability observed in humans when they present in the clinic. This model is ideal for studying the long-term impact of sepsis on the host. Basic Protocol 2 is also a type of polymicrobial sepsis, where injection of a specific amount of cecal slurry from a donor mouse into the peritoneum of recipient mice establishes immediate inflammation and sepsis without any need for surgery. Basic Protocol 3 describes infecting mice with a defined gram-positive or -negative bacterial strain to model a subset of sepsis observed in humans infected with a single pathogen. Basic Protocol 4 describes administering LPS to induce sterile endotoxemia. This form of sepsis is observed in humans exposed to bacterial toxins from the environment. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Non-synchronous cecal ligation and puncture Basic Protocol 2: Cecal slurry model of murine sepsis Basic Protocol 3: Monomicrobial model of murine sepsis Basic Protocol 4: LPS model of murine sepsis.
Collapse
Affiliation(s)
- Shravan-Kumar Kannan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
| | - Caleb Y. Kim
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Roger R. Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, Badovinac VP. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:563-575. [PMID: 38149923 PMCID: PMC10872354 DOI: 10.4049/jimmunol.2300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Matthew G Smith
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
Martin MD, Skon-Hegg C, Kim CY, Xu J, Kucaba TA, Swanson W, Pierson MJ, Williams JW, Badovinac VP, Shen SS, Ingersoll MA, Griffith TS. CD115 + monocytes protect microbially experienced mice against E. coli-induced sepsis. Cell Rep 2023; 42:113345. [PMID: 38111515 PMCID: PMC10727454 DOI: 10.1016/j.celrep.2023.113345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Uropathogenic E. coli (UPEC) is a primary organism responsible for urinary tract infections and a common cause of sepsis. Microbially experienced laboratory mice, generated by cohousing with pet store mice, exhibit increased morbidity and mortality to polymicrobial sepsis or lipopolysaccharide challenge. By contrast, cohoused mice display significant resistance, compared with specific pathogen-free mice, to a monomicrobial sepsis model using UPEC. CD115+ monocytes mediate protection in the cohoused mice, as depletion of these cells leads to increased mortality and UPEC pathogen burden. Further study of the cohoused mice reveals increased TNF-α production by monocytes, a skewing toward Ly6ChiCD115+ "classical" monocytes, and enhanced egress of Ly6ChiCD115+ monocytes from the bone marrow. Analysis of cohoused bone marrow also finds increased frequency and number of myeloid multipotent progenitor cells. These results show that a history of microbial exposure impacts innate immunity in mice, which can have important implications for the preclinical study of sepsis.
Collapse
Affiliation(s)
- Matthew D. Martin
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- These authors contributed equally
| | - Cara Skon-Hegg
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- These authors contributed equally
| | - Caleb Y. Kim
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney Swanson
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J. Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven S. Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Molly A. Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, 75015 Paris, France
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Lead contact
| |
Collapse
|
7
|
Berton RR, McGonagil PW, Jensen IJ, Ybarra TK, Bishop GA, Harty JT, Griffith TS, Badovinac VP. Sepsis leads to lasting changes in phenotype and function of naïve CD8 T cells. PLoS Pathog 2023; 19:e1011720. [PMID: 37824591 PMCID: PMC10597476 DOI: 10.1371/journal.ppat.1011720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/24/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Sepsis, an amplified immune response to systemic infection, is characterized by a transient cytokine storm followed by chronic immune dysfunction. Consequently, sepsis survivors are highly susceptible to newly introduced infections, suggesting sepsis can influence the function and composition of the naïve CD8 T cell pool and resulting pathogen-induced primary CD8 T cell responses. Here, we explored the extent to which sepsis induces phenotypic and functional changes within the naïve CD8 T cell pool. To interrogate this, the cecal ligation and puncture (CLP) mouse model of polymicrobial sepsis was used. In normal, non-septic mice, we show type-I interferon (IFN I)-mediated signaling plays an important role in driving the phenotypic and functional heterogeneity in the naïve CD8 T cell compartment leading to increased representation of Ly6C+ naïve CD8 T cells. In response to viral infection after sepsis resolution, naïve Ly6C+ CD8 T cells generated more primary effector and memory CD8 T cells with slower conversion to a central memory CD8 T cell phenotype (Tcm) than Ly6C- naïve CD8 T cells. Importantly, as a potent inducer of cytokine storm and IFN I production, sepsis leads to increased representation of Ly6C+ naïve CD8 T cells that maintained their heightened ability to respond (i.e., effector and memory CD8 T cell accumulation and cytokine production) to primary LCMV infection. Lastly, longitudinal analyses of peripheral blood samples obtained from septic patients revealed profound changes in CD8 T cell subset composition and frequency compared to healthy controls. Thus, sepsis has the capacity to alter the composition of naïve CD8 T cells, directly influencing primary CD8 T cell responses to newly introduced infections.
Collapse
Affiliation(s)
- Roger R. Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick W. McGonagil
- Department of Surgery, University of Iowa, Iowa City, Iowa, United States of America
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Tiffany K. Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gail A. Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
8
|
Silva EE, Skon-Hegg C, Badovinac VP, Griffith TS. The Calm after the Storm: Implications of Sepsis Immunoparalysis on Host Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:711-719. [PMID: 37603859 PMCID: PMC10449360 DOI: 10.4049/jimmunol.2300171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 08/23/2023]
Abstract
The immunological hallmarks of sepsis include the inflammation-mediated cytokine storm, apoptosis-driven lymphopenia, and prolonged immunoparalysis. Although early clinical efforts were focused on increasing the survival of patients through the first phase, studies are now shifting attention to the long-term effects of sepsis on immune fitness in survivors. In particular, the most pertinent task is deciphering how the immune system becomes suppressed, leading to increased incidence of secondary infections. In this review, we introduce the contribution of numerical changes and functional reprogramming within innate (NK cells, dendritic cells) and adaptive (T cells, B cells) immune cells on the chronic immune dysregulation in the septic murine and human host. We briefly discuss how prior immunological experience in murine models impacts sepsis severity, immune dysfunction, and clinical relevance. Finally, we dive into how comorbidities, specifically autoimmunity and cancer, can influence host susceptibility to sepsis and the associated immune dysfunction.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Cara Skon-Hegg
- Department of Urology, University of Minnesota, Minneapolis, MN
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Minneapolis VA Health Care System, Minneapolis, MN
| |
Collapse
|
9
|
Cai L, Rodgers E, Schoenmann N, Raju RP. Advances in Rodent Experimental Models of Sepsis. Int J Mol Sci 2023; 24:9578. [PMID: 37298529 PMCID: PMC10253762 DOI: 10.3390/ijms24119578] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth Rodgers
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|