1
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Antonini E, Mu G, Sansaloni-Pastor S, Varma V, Kabak R. MCMC Methods for Parameter Estimation in ODE Systems for CAR-T Cell Cancer Therapy. Cancers (Basel) 2024; 16:3132. [PMID: 39335104 PMCID: PMC11430073 DOI: 10.3390/cancers16183132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in treating resistant hematologic cancers. It is based on genetically modifying T cells transferred from the patient or a donor. Although its implementation has increased over the last few years, CAR-T has many challenges to be addressed, for instance, the associated severe toxicities, such as cytokine release syndrome. To model CAR-T cell dynamics, focusing on their proliferation and cytotoxic activity, we developed a mathematical framework using ordinary differential equations (ODEs) with Bayesian parameter estimation. Bayesian statistics were used to estimate model parameters through Monte Carlo integration, Bayesian inference, and Markov chain Monte Carlo (MCMC) methods. This paper explores MCMC methods, including the Metropolis-Hastings algorithm and DEMetropolis and DEMetropolisZ algorithms, which integrate differential evolution to enhance convergence rates. The theoretical findings and algorithms were validated using Python and Jupyter Notebooks. A real medical dataset of CAR-T cell therapy was analyzed, employing optimization algorithms to fit the mathematical model to the data, with the PyMC library facilitating Bayesian analysis. The results demonstrated that our model accurately captured the key dynamics of CAR-T cell therapy. This conclusion underscores the potential of parameter estimation to improve the understanding and effectiveness of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
| | - Gang Mu
- Cilag GmbH International, 6300 Zug, Switzerland
| | | | - Vishal Varma
- Johnson & Johnson World Headqtrs US, Bridgewater, NJ 08807, USA
| | - Ryme Kabak
- Johnson & Johnson World Headqtrs US, Bridgewater, NJ 08807, USA
| |
Collapse
|
3
|
Patel RP, Ghilardi G, Zhang Y, Chiang YH, Xie W, Guruprasad P, Kim KH, Chun I, Angelos MG, Pajarillo R, Hong SJ, Lee YG, Shestova O, Shaw C, Cohen I, Gupta A, Vu T, Qian D, Yang S, Nimmagadda A, Snook AE, Siciliano N, Rotolo A, Inamdar A, Harris J, Ugwuanyi O, Wang M, Carturan A, Paruzzo L, Chen L, Ballard HJ, Blanchard T, Xu C, Abdel-Mohsen M, Gabunia K, Wysocka M, Linette GP, Carreno B, Barrett DM, Teachey DT, Posey AD, Powell DJ, Sauter CT, Pileri S, Pillai V, Scholler J, Rook AH, Schuster SJ, Barta SK, Porazzi P, Ruella M. CD5 deletion enhances the antitumor activity of adoptive T cell therapies. Sci Immunol 2024; 9:eadn6509. [PMID: 39028827 DOI: 10.1126/sciimmunol.adn6509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.
Collapse
Affiliation(s)
- Ruchi P Patel
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hao Chiang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei Xie
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Inkook Chun
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew G Angelos
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Trang Vu
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Dean Qian
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Steven Yang
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | | | | | | | - Antonia Rotolo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz Carreno
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Barrett
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - C Tor Sauter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Pileri
- Division of Haematopathology, Istituto Europeo di Oncologia IRCCS, Italy
| | - Vinodh Pillai
- Division of Hemato-pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Guruprasad P, Carturan A, Zhang Y, Cho JH, Kumashie KG, Patel RP, Kim KH, Lee JS, Lee Y, Kim JH, Chung J, Joshi A, Cohen I, Shestov M, Ghilardi G, Harris J, Pajarillo R, Angelos M, Lee YG, Liu S, Rodriguez J, Wang M, Ballard HJ, Gupta A, Ugwuanyi OH, Hong SJA, Bochi-Layec AC, Sauter CT, Chen L, Paruzzo L, Kammerman S, Shestova O, Liu D, Vella LA, Schuster SJ, Svoboda J, Porazzi P, Ruella M. The BTLA-HVEM axis restricts CAR T cell efficacy in cancer. Nat Immunol 2024; 25:1020-1032. [PMID: 38831106 DOI: 10.1038/s41590-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Mice, Knockout
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Puneeth Guruprasad
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki-Hyun Kim
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Jong-Seo Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Yoon Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | | | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Akshita Joshi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Shan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Albert Hong
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey C Bochi-Layec
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher T Sauter
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Kammerman
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Laura A Vella
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lakhani A, Chen X, Chen LC, Hong M, Khericha M, Chen Y, Chen YY, Park JO. Extracellular domains of CARs reprogramme T cell metabolism without antigen stimulation. Nat Metab 2024; 6:1143-1160. [PMID: 38658805 DOI: 10.1038/s42255-024-01034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolism is an indispensable part of T cell proliferation, activation and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are composed of extracellular domains-often single-chain variable fragments (scFvs)-that determine ligand specificity and intracellular domains that trigger signalling following antigen binding. Here, we show that CARs differing only in the scFv variously reprogramme T cell metabolism. Even without exposure to antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observed basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harbouring a rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14G2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Modest overflow metabolism of CAR-T cells and metabolic compatibility between cancer cells and CAR-T cells are identified as features of efficacious CAR-T cell therapy.
Collapse
Affiliation(s)
- Aliya Lakhani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurence C Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy at UCLA, Los Angeles, CA, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
7
|
Wang L, Jin G, Zhou Q, Liu Y, Zhao X, Li Z, Yin N, Peng M. Induction of immortal-like and functional CAR T cells by defined factors. J Exp Med 2024; 221:e20232368. [PMID: 38530240 PMCID: PMC10965394 DOI: 10.1084/jem.20232368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Long-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF. The induction of CARTIF cells depends on the repression of two factors, BCOR and ZC3H12A, and requires antigen or CAR tonic signaling. Reprogrammed CARTIF cells possess almost infinite stemness, similar to induced pluripotent stem cells while retaining the functionality of mature T cells, resulting in superior antitumor effects. Following the elimination of target cells, CARTIF cells enter a metabolically dormant state, persisting in vivo with a saturable niche and providing memory protection. TIF represents a novel state of T cells with unprecedented stemness, which confers long-term functional persistence of CAR T cells in vivo and holds broad potential in T cell therapies.
Collapse
Affiliation(s)
- Lixia Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiuping Zhou
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yanyan Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Qiu Y, Xiao Q, Wang Y, Cao Y, Wang J, Wan Z, Chen X, Liu W, Ma L, Xu C. Mechanical force determines chimeric antigen receptor microclustering and signaling. Mol Ther 2024; 32:1016-1032. [PMID: 38327049 PMCID: PMC11163199 DOI: 10.1016/j.ymthe.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells are activated to trigger the lytic machinery after antigen engagement, and this has been successfully applied clinically as therapy. The mechanism by which antigen binding leads to the initiation of CAR signaling remains poorly understood. Here, we used a set of short double-stranded DNA (dsDNA) tethers with mechanical forces ranging from ∼12 to ∼51 pN to manipulate the mechanical force of antigen tether and decouple the microclustering and signaling events. Our results revealed that antigen-binding-induced CAR microclustering and signaling are mechanical force dependent. Additionally, the mechanical force delivered to the antigen tether by the CAR for microclustering is generated by autonomous cell contractility. Mechanistically, the mechanical-force-induced strong adhesion and CAR diffusion confinement led to CAR microclustering. Moreover, cytotoxicity may have a lower mechanical force threshold than cytokine generation. Collectively, these results support a model of mechanical-force-induced CAR microclustering for signaling.
Collapse
Affiliation(s)
- Yue Qiu
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qingyue Xiao
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yucai Wang
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yichen Cao
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiangjun Chen
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Li Ma
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Chenguang Xu
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Nagy L, Mezősi-Csaplár M, Rebenku I, Vereb G, Szöőr Á. Universal CAR T cells targeted to HER2 with a biotin-trastuzumab soluble linker penetrate spheroids and large tumor xenografts that are inherently resistant to trastuzumab mediated ADCC. Front Immunol 2024; 15:1365172. [PMID: 38562932 PMCID: PMC10982377 DOI: 10.3389/fimmu.2024.1365172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.
Collapse
Affiliation(s)
- Lőrinc Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marianna Mezősi-Csaplár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Rebenku
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
11
|
Chen Z, Han S, Kim S, Lee C, Sanny A, Tan AHM, Park S. A 3D hanging spheroid-filter plate for high-throughput drug testing and CAR T cell cytotoxicity assay. Analyst 2024; 149:475-481. [PMID: 38050728 DOI: 10.1039/d3an01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Tumour spheroids are widely used in immune cell cytotoxicity assays and anticancer drug testing, providing a physiologically relevant model replicating the tumour microenvironment. However, co-culture of immune and tumour cells complicates quantification of immune cell killing efficiency. We present a novel 3D hanging spheroid-filter plate that efficiently facilitates spheroid formation and separates unbound/dead cells during cytotoxicity assays. Optical imaging directly measures the cytotoxic effects of anti-cancer drugs on tumour spheroids, eliminating the need for live/dead fluorescent staining. This approach enables cost-effective evaluation of T-cell cytotoxicity with specific chimeric antigen receptors (CARs), enhancing immune cell-based assays and drug testing in three-dimensional tumour models.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sein Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Chanyang Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
12
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
13
|
Chohan KL, Siegler EL, Kenderian SS. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malig Rep 2023; 18:9-18. [PMID: 36763238 PMCID: PMC10505056 DOI: 10.1007/s11899-023-00687-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, the remarkable efficacy of therapy is not without significant safety concerns. Herein, we will review the unique and potentially life-threatening toxicities associated with CAR-T cell therapy and their association with treatment efficacy. RECENT FINDINGS Currently, CAR-T cell therapy is approved for the treatment of B cell relapsed or refractory leukemia and lymphoma, and most recently, multiple myeloma (MM). In these different diseases, it has led to excellent complete and overall response rates depending on the patient population and therapy. Despite promising efficacy, CAR-T cell therapy is associated with significant side effects; the two most notable toxicities are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The treatment of CAR-T-induced toxicity is supportive; however, as higher-grade adverse events occur, toxicity-directed therapy with tocilizumab, an IL-6 receptor antibody, and steroids is standard practice. Overall, a careful risk-benefit balance exists between the efficacy and toxicities of therapies. The challenge lies in the underlying pathophysiology of CAR-T-related toxicity which relies upon the activation of CAR-T cells. Some degree of toxicity is expected to achieve an effective response to therapy, and certain aspects of treatment are also associated with toxicity. As progress is made in the investigation and approval of new CARs, novel toxicity-directed therapies and toxicity-limited constructs will be the focus of attention.
Collapse
Affiliation(s)
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 1st ST SW, Rochester, MN, 55902, USA.
| |
Collapse
|
14
|
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, Yin Y, Klysz D, Xu P, de la Serna EL, Dunn AR, Satpathy AT, Mackall CL, Majzner RG. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023; 615:507-516. [PMID: 36890224 PMCID: PMC10564584 DOI: 10.1038/s41586-023-05778-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
Collapse
Affiliation(s)
- Aidan M Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lea Wenting Rysavy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Lareau
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan W Weber
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Skyler P Rietberg
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yajie Yin
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ansuman T Satpathy
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Wu L, Brzostek J, Sakthi Vale PD, Wei Q, Koh CKT, Ong JXH, Wu LZ, Tan JC, Chua YL, Yap J, Song Y, Tan VJY, Tan TYY, Lai J, MacAry PA, Gascoigne NRJ. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep Med 2023; 4:100917. [PMID: 36696897 PMCID: PMC9975250 DOI: 10.1016/j.xcrm.2023.100917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Signal transduction induced by chimeric antigen receptors (CARs) is generally believed to rely on the activity of the SRC family kinase (SFK) LCK, as is the case with T cell receptor (TCR) signaling. Here, we show that CAR signaling occurs in the absence of LCK. This LCK-independent signaling requires the related SFK FYN and a CD28 intracellular domain within the CAR. LCK-deficient CAR-T cells are strongly signaled through CAR and have better in vivo efficacy with reduced exhaustion phenotype and enhanced induction of memory and proliferation. These distinctions can be attributed to the fact that FYN signaling tends to promote proliferation and survival, whereas LCK signaling promotes strong signaling that tends to lead to exhaustion. This non-canonical signaling of CAR-T cells provides insight into the initiation of both TCR and CAR signaling and has important clinical implications for improvement of CAR function.
Collapse
Affiliation(s)
- Ling Wu
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Joanna Brzostek
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Previtha Dawn Sakthi Vale
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Clara K T Koh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - June Xu Hui Ong
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Liang-Zhe Wu
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jia Chi Tan
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Yen Leong Chua
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jiawei Yap
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Yuan Song
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vivian Jia Yi Tan
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Triscilla Y Y Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Junyun Lai
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paul A MacAry
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Maher J, Davies DM. CAR Based Immunotherapy of Solid Tumours-A Clinically Based Review of Target Antigens. BIOLOGY 2023; 12:287. [PMID: 36829563 PMCID: PMC9953298 DOI: 10.3390/biology12020287] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Immunotherapy with CAR-engineered immune cells has transformed the management of selected haematological cancers. However, solid tumours have proven much more difficult to control using this emerging therapeutic modality. In this review, we survey the clinical impact of solid tumour CAR-based immunotherapy, focusing on specific targets across a range of disease indications Among the many candidates which have been the subject of non-clinical CAR T-cell research, clinical data are available for studies involving 30 of these targets. Here, we map out this clinical experience, highlighting challenges such as immunogenicity and on-target off-tumour toxicity, an issue that has been both unexpected and devastating in some cases. We also summarise how regional delivery and repeated dosing have been used in an effort to enhance impact and safety. Finally, we consider how emerging armouring systems and multi-targeted CAR approaches might be used to enhance tumour access and better enable discrimination between healthy and transformed cell types.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
17
|
An Inhibitory Role for Human CD96 Endodomain in T Cell Anti-Tumor Responses. Cells 2023; 12:cells12020309. [PMID: 36672244 PMCID: PMC9856660 DOI: 10.3390/cells12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy involves the inhibition of immune checkpoint regulators which reverses their limitation of T cell anti-tumor responses and results in long-lasting tumor regression. However, poor clinical response or tumor relapse was observed in some patients receiving such therapy administered via antibodies blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway alone or in combination, suggesting the involvement of additional immune checkpoints. CD96, a possible immune checkpoint, was previously shown to suppress natural killer (NK) cell anti-tumor activity but its role in human T cells remains controversial. Here, we demonstrate that CRISPR/Cas9-based deletion of CD96 in human T cells enhanced their killing of leukemia cells in vitro. T cells engineered with a chimeric antigen receptor (CAR) comprising human epidermal growth factor receptor 2 (EGFR2/HER2)-binding extracellular region and intracellular regions of CD96 and CD3ζ (4D5-96z CAR-T cells) were less effective in suppressing the growth of HER2-expressing tumor cells in vitro and in vivo compared with counterparts bearing CAR that lacked CD96 endodomain (4D5-z CAR-T cells). Together, our findings implicate a role for CD96 endodomain in attenuating T cell cytotoxicity and support combination tumor immunotherapy targeting multiple rather than single immune checkpoints.
Collapse
|
18
|
Shin J, Parker MFL, Zhu I, Alanizi A, Rodriguez CI, Liu R, Watchmaker PB, Kalita M, Blecha J, Luu J, Wright B, Lapi SE, Flavell RR, Okada H, Tlsty TD, Roybal KT, Wilson DM. Antigen-Dependent Inducible T-Cell Reporter System for PET Imaging of Breast Cancer and Glioblastoma. J Nucl Med 2023; 64:137-144. [PMID: 35981900 PMCID: PMC9841254 DOI: 10.2967/jnumed.122.264284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
For the past several decades, chimeric antigen receptor T-cell therapies have shown promise in the treatment of cancers. These treatments would greatly benefit from companion imaging biomarkers to follow the trafficking of T cells in vivo. Methods: Using synthetic biology, we engineered T cells with a chimeric receptor synthetic intramembrane proteolysis receptor (SNIPR) that induces overexpression of an exogenous reporter gene cassette on recognition of specific tumor markers. We then applied a SNIPR-based PET reporter system to 2 cancer-relevant antigens, human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor variant III (EGFRvIII), commonly expressed in breast and glial tumors, respectively. Results: Antigen-specific reporter induction of the SNIPR PET T cells was confirmed in vitro using green fluorescent protein fluorescence, luciferase luminescence, and the HSV-TK PET reporter with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG). T cells associated with their target antigens were successfully imaged using PET in dual-xenograft HER2+/HER2- and EGFRvIII+/EGFRvIII- animal models, with more than 10-fold higher [18F]FHBG signals seen in antigen-expressing tumors versus the corresponding controls. Conclusion: The main innovation found in this work was PET detection of T cells via specific antigen-induced signals, in contrast to reporter systems relying on constitutive gene expression.
Collapse
Affiliation(s)
- Jaehoon Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Aryn Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Carlos I Rodriguez
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Raymond Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Mausam Kalita
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Justin Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Brian Wright
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
- Helen Diller Cancer Center, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Helen Diller Cancer Center, University of California, San Francisco, San Francisco, California
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, San Francisco, California;
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California;
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Cancer Center, University of California, San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, California; and
- UCSF Cell Design Institute, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
19
|
Razavi AS, Loskog A, Razi S, Rezaei N. The signaling and the metabolic differences of various CAR T cell designs. Int Immunopharmacol 2023; 114:109593. [PMID: 36700773 DOI: 10.1016/j.intimp.2022.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is introduced as an effective, rapidly evolving therapeutic to treat cancer, especially cancers derived from hematological cells, such as B cells. CAR T cell gene constructs combine a tumor-targeting device coupled to the T cell receptor (TCR) zeta chain domain with different signaling domains such as domains derived from CD28 or 4-1BB (CD137). The incorporation of each specific co-stimulatory domain targets the immunometabolic pathways of CAR T cells as well as other signaling pathways. Defining the immunometabolic and signaling pathways by which CAR T cells become and remain active, survive, and eliminate their targets may represent a huge step forward in this relatively young research field as the CAR gene can be tailored to gain optimal function also for solid tumors with elaborate immunosuppression and protective stroma. There is a close relationship between different signaling domains applied in CAR T cells, and difficult to evaluate the benefit from different tested CAR gene constructs. In this review, we attempt to collect the latest findings regarding the CAR T cell signaling pathways that affect immunometabolic pathways.
Collapse
Affiliation(s)
- Azadeh Sadat Razavi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
20
|
Smole A, Benton A, Poussin MA, Eiva MA, Mezzanotte C, Camisa B, Greco B, Sharma P, Minutolo NG, Gray F, Bear AS, Baroja ML, Cummins C, Xu C, Sanvito F, Goldgewicht AL, Blanchard T, Rodriguez-Garcia A, Klichinsky M, Bonini C, June CH, Posey AD, Linette GP, Carreno BM, Casucci M, Powell DJ. Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell 2022; 40:1470-1487.e7. [PMID: 36513049 PMCID: PMC10367115 DOI: 10.1016/j.ccell.2022.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.
Collapse
Affiliation(s)
- Anže Smole
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexander Benton
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde A Poussin
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Monika A Eiva
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Mezzanotte
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Beatrice Greco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Prannda Sharma
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas G Minutolo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Falon Gray
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adham S Bear
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Cummins
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Lang Goldgewicht
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute and University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Mao R, Kong W, He Y. The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Front Immunol 2022; 13:1032403. [PMID: 36325345 PMCID: PMC9618871 DOI: 10.3389/fimmu.2022.1032403] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The overall efficacy of chimeric antigen receptor modified T cells (CARTs) remain limited in solid tumors despite intensive studies that aim at targeting multiple antigens, enhancing migration, reducing tonic signaling, and improving tumor microenvironment. On the other hand, how the affinity and engaging kinetics of antigen-binding domain (ABD) affects the CART's efficacy has not been carefully investigated. In this article, we first analyzed 38 published solid tumor CART trials and correlated the response rate to their ABD affinity. Not surprisingly, majority (25 trials) of the CARTs utilized high-affinity ABDs, but generated merely 5.7% response rate. In contrast, 35% of the patients treated with the CARTs built from moderate-affinity ABDs had clinical responses. Thus, CARTs with moderate-affinity ABDs not only have less off-target toxicity, but also are more effective. We then reviewed the effects of ABD affinity on the biology and function of CARTs, providing further evidence that moderate-affinity ABDs may be better in CART development. In the end, we propose that a fast-on/fast-off (high Kon and Koff ) kinetics of CART-target engagement in solid tumor allow CARTs to generate sufficient signaling to kill tumor cells without being driven to exhaustion. We believe that studying the ABD affinity and the kinetics of CART-tumor interaction may hold a key to designing effective CARTs for solid tumors.
Collapse
Affiliation(s)
- Rui Mao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Wanqing Kong
- South Carolina Governors School for Science and Math, Hartsville, SC, United States
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
23
|
To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. Front Immunol 2022; 13:968395. [PMID: 36059451 PMCID: PMC9433932 DOI: 10.3389/fimmu.2022.968395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary. In this review, we discuss the current obstacles to CAR-T cell therapy and highlight potential targets in treating CTCL. Looking forward, we propose strategies to develop more powerful dual CARs that are advancing towards the clinic in CTCL therapy.
Collapse
Affiliation(s)
- Van To
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham Jenkin
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- *Correspondence: Richard L. Boyd,
| |
Collapse
|
24
|
Greenshpan Y, Sharabi O, Yegodayev KM, Novoplansky O, Elkabets M, Gazit R, Porgador A. The Contribution of the Minimal Promoter Element to the Activity of Synthetic Promoters Mediating CAR Expression in the Tumor Microenvironment. Int J Mol Sci 2022; 23:7431. [PMID: 35806439 PMCID: PMC9266962 DOI: 10.3390/ijms23137431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Harnessing immune effector cells to benefit cancer patients is becoming more and more prevalent in recent years. However, the increasing number of different therapeutic approaches, such as chimeric antigen receptors and armored chimeric antigen receptors, requires constant adjustments of the transgene expression levels. We have previously demonstrated it is possible to achieve spatial and temporal control of transgene expression as well as tailoring the inducing agents using the Chimeric Antigen Receptor Tumor Induced Vector (CARTIV) platform. Here we describe the next level of customization in our promoter platform. We have tested the functionality of three different minimal promoters, representing three different promoters' strengths, leading to varying levels of CAR expression and primary T cell function. This strategy shows yet another level of CARTIV gene regulation that can be easily integrated into existing CAR T systems.
Collapse
Affiliation(s)
- Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omri Sharabi
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
| | - Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Faculty of Health Sciences, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.G.); (O.S.); (K.M.Y.); (O.N.); (M.E.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
25
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
26
|
Chen L, Chen F, Li J, Pu Y, Yang C, Wang Y, Lei Y, Huang Y. CAR-T cell therapy for lung cancer: Potential and perspective. Thorac Cancer 2022; 13:889-899. [PMID: 35289077 PMCID: PMC8977151 DOI: 10.1111/1759-7714.14375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the highest incidence and mortality of all cancers around the world. In the present immunotherapy era, an increasing number of immunotherapeutic agents including monoclonal antibody‐targeted drugs have been used in the clinical treatment of malignancy, but it still has many limitations. Chimeric antigen receptor‐modified T (CAR‐T) cells, a novel adoptive immunotherapy strategy, have not only been used successfully against hematological tumors, but have also opened up new avenues for immunotherapy of solid tumors, including lung cancer. However, targeting lung cancer‐specific antigens using engineered CAR‐T cells is complicated by the lack of proper tumor‐specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR‐T cell infiltration into tumor tissues, along with off‐target effect, etc. Simultaneously, the clinical application of CAR‐T cells remains limited because of many challenges such as tumor lysis syndrome, neurotoxicity syndrome, and cytokine release syndrome. In this review, we outline the basic structure and generation characteristic of CAR‐T cells and summarize the common tumor‐associated antigens in clinical trials of CAR‐T cell therapy for lung cancer, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for the pre‐clinical experiments and clinical trials of CAR‐T cell therapy in lung cancer.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
27
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
28
|
Radic M, Neeli I, Marion T. Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from Lupus. Expert Opin Biol Ther 2022; 22:499-507. [PMID: 35089116 DOI: 10.1080/14712598.2022.2026921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Medicine stands at the threshold of a new era heralded by the vast potential of cell engineering. Like advances made possible by genetic engineering, current prospects for purposeful control of cell functions through cell engineering may bring breakthroughs in the treatment of previously intractable diseases. AREAS COVERED Engineering of cytotoxic T cells for expression of chimeric antigen receptors (CARs) instructs them to attack and destroy malignant cells and thus provides an exciting new approach in oncology. A decade of practical experience and first-in-human trials encourage the search for new and broader uses of CAR technology, including in autoimmune diseases. EXPERT OPINION Systemic lupus erythematosus is an example of a broader category of autoimmune diseases, for which cell engineering will provide a powerful new therapeutic approach. This article describes different types of CAR T cell strategies that will provide new treatment options for patients with autoimmune diseases and replace conventional therapies.
Collapse
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| | - Tony Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| |
Collapse
|
29
|
Chen Z, Han S, Sanny A, Chan DLK, van Noort D, Lim W, Tan AHM, Park S. 3D hanging spheroid plate for high-throughput CAR T cell cytotoxicity assay. J Nanobiotechnology 2022; 20:30. [PMID: 35012567 PMCID: PMC8744335 DOI: 10.1186/s12951-021-01213-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. Results The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300–350 μm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. Conclusions The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01213-8.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Dorothy Leung-Kwan Chan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Danny van Noort
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia - UTEC, Lima 04, Peru.,Biotechnology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea. .,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
30
|
Dai K, Wu Y, She S, Zhang Q. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:2029-2037. [PMID: 35070039 PMCID: PMC8713322 DOI: 10.4251/wjgo.v13.i12.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
With the advance of genome engineering technology, chimeric antigen receptors (CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors. Although initially designed for T cells in tumor immunotherapy, CARs have been exploited to modify the function of natural killer (NK) cells against a variety of tumors, including hepatocellular carcinoma (HCC). CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells, independent of major histocompatibility complex matching or prior priming. In this review, we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yin Wu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
31
|
Bou-Dargham MJ, Draughon S, Cantrell V, Khamis ZI, Sang QXA. Advancements in Human Breast Cancer Targeted Therapy and Immunotherapy. J Cancer 2021; 12:6949-6963. [PMID: 34729098 PMCID: PMC8558657 DOI: 10.7150/jca.64205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human breast cancer treatment regimens have evolved greatly due to the significant advances in understanding the molecular mechanisms and pathways of the common subtypes of breast cancer. In this review, we discuss recent progress in breast cancer targeted therapy and immunotherapy as well as ongoing clinical trials. We also highlight the potential of combination therapies and personalized approaches to improve clinical outcomes. Targeted therapies have surpassed the hormone receptors and the human epidermal growth factor receptor 2 (HER2) to include many other molecules in targetable pathways such as the epidermal growth factor receptor (EGFR), poly (adenosine diphosphate-ribose) polymerase (PARP), and cyclin-dependent kinase 4/6 (CDK4/6). However, resistance to targeted therapy persists, underpinning the need for more efficacious therapies. Immunotherapy is considered a milestone in breast cancer treatments, including the engineered immune cells (CAR-T cell therapy) to better target the tumor cells, vaccines to stimulate the patient's immune system against tumor antigens, and checkpoint inhibitors (PD-1, PD-L1, and CTLA4) to block molecules that mediate immune inhibition. Targeted therapies and immunotherapy tested in breast cancer clinical trials are discussed here, with special emphasis on combinatorial approaches which are believed to maximize treatment efficacy and enhance patient survival.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Sophia Draughon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Vance Cantrell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Department of Chemistry and Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
32
|
Muller YD, Ferreira LMR, Ronin E, Ho P, Nguyen V, Faleo G, Zhou Y, Lee K, Leung KK, Skartsis N, Kaul AM, Mulder A, Claas FHJ, Wells JA, Bluestone JA, Tang Q. Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Front Immunol 2021; 12:686439. [PMID: 34616392 PMCID: PMC8488356 DOI: 10.3389/fimmu.2021.686439] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.
Collapse
Affiliation(s)
- Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Patrick Ho
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Nikolaos Skartsis
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Anupurna M Kaul
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
33
|
Li X, Liu MJ, Mou N, Yang ZX, Wang J, Mu J, Zhu HB, Deng Q. Efficacy and safety of humanized CD19 CAR-T as a salvage therapy for recurrent CNSL of B-ALL following murine CD19 CAR-T cell therapy. Oncol Lett 2021; 22:788. [PMID: 34584566 PMCID: PMC8461760 DOI: 10.3892/ol.2021.13049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to compare the differences between the humanized CD19 chimeric antigen receptor (CAR)-T cell therapy and the murine CD19 CAR-T therapy in recurrent B-acute lymphoblastic leukemia (B-ALL). A 62-year-old male patient who had B-ALL (BCR/ABL+) for 4 years was diagnosed with relapsed central nervous system leukemia (CNSL). After several courses of high dose methotrexate combined with intrathecal chemotherapy, the patient received murine CD19 CAR-T therapy and achieved complete response (CR). The patient was diagnosed with relapsed CNSL again 15 months after his murine CD19 CAR-T therapy, and was therefore enrolled in the humanized CD19 CAR-T therapy. Subsequently, the present study aimed to compare murine and humanized CD19 CAR-T cells against Nalm-6 cells in vitro and in mice. The patient initially achieved CR from his murine CD19 CAR-T therapy with Grade 1 cytokine-release syndrome (CRS) and Grade 1 CAR-T cell-related encephalopathy syndrome (CRES). The patient then achieved CR again from his humanized CD19 CAR-T therapy with Grade 1 CRS and Grade 2 CRES. Peak levels of CD19 CAR-T cells were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy 7 days after infusion in the peripheral blood, in bone marrow and in cerebrospinal fluid (CSF). The cytokine levels were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy in the peripheral blood and in CSF. The cytotoxicity to Nalm-6 cells was higher in humanized CD19 CAR-T cells than that in murine CD19 CAR-T cells in vitro. In Nalm-6 BALB/c mice, the median survival time of mice in the murine CD19 CAR-T group was 35 days, while it was 43 days in the humanized CD19 CAR-T group. In conclusion, humanized CD19 CAR-T cell therapy had a better curative effect than that of murine CD19 CAR-T therapy, and may be used as a salvage treatment for recurrent B-ALL after treatment with murine CD19 CAR-T therapy.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Mei-Jing Liu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China.,Department of Hematology, The First Central Clinical College of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Nan Mou
- Shanghai Genbase Biotechnology Co., Ltd., Tianjin 201210, P.R. China
| | - Zhen-Xing Yang
- Shanghai Genbase Biotechnology Co., Ltd., Tianjin 201210, P.R. China
| | - Jia Wang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Juan Mu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hai-Bo Zhu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
34
|
Kerns SJ, Belgur C, Petropolis D, Kanellias M, Barrile R, Sam J, Weinzierl T, Fauti T, Freimoser-Grundschober A, Eckmann J, Hage C, Geiger M, Ng PR, Tien-Street W, Manatakis DV, Micallef V, Gerard R, Bscheider M, Breous-Nystrom E, Schneider A, Giusti AM, Bertinetti-Lapatki C, Grant HS, Roth AB, Hamilton GA, Singer T, Karalis K, Moisan A, Bruenker P, Klein C, Bacac M, Gjorevski N, Cabon L. Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. eLife 2021; 10:e67106. [PMID: 34378534 PMCID: PMC8373379 DOI: 10.7554/elife.67106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.
Collapse
Affiliation(s)
| | | | | | | | - Riccardo Barrile
- Emulate IncBostonUnited States
- Department of Biomedical Engineering, University of CincinnatiCincinnatiUnited States
| | - Johannes Sam
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Tina Weinzierl
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Tanja Fauti
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | | | - Jan Eckmann
- Roche Pharma Research & Early Development, Roche Innovation Center MunichPenzbergGermany
| | - Carina Hage
- Roche Pharma Research & Early Development, Roche Innovation Center MunichPenzbergGermany
| | - Martina Geiger
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | | | | | | | - Virginie Micallef
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | - Regine Gerard
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | - Michael Bscheider
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | | | - Anneliese Schneider
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Anna Maria Giusti
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | | | | | - Adrian B Roth
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | | | - Thomas Singer
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | | | - Annie Moisan
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | - Peter Bruenker
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Marina Bacac
- Roche Pharma Research & Early Development, Roche Innovation Center ZurichSchlierenSwitzerland
| | - Nikolce Gjorevski
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| | - Lauriane Cabon
- Roche Pharma Research & Early Development, Roche Innovation Center BaselBaselSwitzerland
| |
Collapse
|
35
|
DeSelm C. The Current and Future Role of Radiation Therapy in the Era of CAR T-cell Salvage. Br J Radiol 2021; 94:20210098. [PMID: 34375124 DOI: 10.1259/bjr.20210098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Radiation therapy has the potential to modulate the immune system in a variety of ways, and given the critical role of the immune system in cancer elimination, it is becoming increasingly important to understand how radiation can be strategically implemented in conjunction with approved immunotherapies to improve the cancer patient's chance of cure and/or quality of life. Current successful, approved cancer immunotherapies fall into two broad classes: antibodies and cellular therapies. Approved cellular therapies thus far consist of Chimeric Antigen Receptor (CAR) T-cells targeting CD19 for refractory non-Hodgkin lymphoma and relapsed or refractory acute lymphoblastic leukemia. Part of the ardor surrounding CAR T-cells stems from the fact that the survival curve of treated patients has a clear plateau, meaning that a number of patients with aggressive, disseminated disease who would have otherwise died rather rapidly appear to now be cured, commonly after just one dose. Despite an encouraging number of these durable remissions, the majority do still relapse. In this review, we discuss the potential for strategically utilizing radiation to further improve CAR T-cell patient outcomes. Given that there are currently over 750 cellular therapies in development, half of which are now in clinical trial, CAR T-cell usage will inevitably expand; as the field grows in importance and effectiveness, radiation oncology has the opportunity to coevolve symbiotically and steer these novel, exciting live therapies to new depths.
Collapse
Affiliation(s)
- Carl DeSelm
- Washington University School of Medicine in St Louis, St Louis, Missouri
| |
Collapse
|
36
|
Milone MC, Xu J, Chen SJ, Collins MA, Zhou J, Powell DJ, Melenhorst JJ. Engineering enhanced CAR T-cells for improved cancer therapy. NATURE CANCER 2021; 2:780-793. [PMID: 34485921 PMCID: PMC8412433 DOI: 10.1038/s43018-021-00241-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved from a research tool to a paradigm-shifting therapy with impressive responses in B cell malignancies. This review summarizes the current state of the CAR T-cell field, focusing on CD19- and B cell maturation antigen-directed CAR T-cells, the most developed of the CAR T-cell therapies. We discuss the many challenges to CAR-T therapeutic success and innovations in CAR design and T-cell engineering aimed at extending this therapeutic platform beyond hematologic malignancies.
Collapse
Affiliation(s)
- Michael C. Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Sai-Juan Chen
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - McKensie A. Collins
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiafeng Zhou
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, PR China
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, Albert CM, Pinto N, Gust J, Finn LS, Ojemann JG, Wright J, Orentas RJ, Baldwin M, Gardner RA, Jensen MC, Park JR. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med 2021; 27:1544-1552. [PMID: 34253928 DOI: 10.1038/s41591-021-01404-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Locoregional delivery of chimeric antigen receptor (CAR) T cells has resulted in objective responses in adults with glioblastoma, but the feasibility and tolerability of this approach is yet to be evaluated for pediatric central nervous system (CNS) tumors. Here we show that engineering of a medium-length CAR spacer enhances the therapeutic efficacy of human erb-b2 receptor tyrosine kinase 2 (HER2)-specific CAR T cells in an orthotopic xenograft medulloblastoma model. We translated these findings into BrainChild-01 ( NCT03500991 ), an ongoing phase 1 clinical trial at Seattle Children's evaluating repetitive locoregional dosing of these HER2-specific CAR T cells to children and young adults with recurrent/refractory CNS tumors, including diffuse midline glioma. Primary objectives are assessing feasibility, safety and tolerability; secondary objectives include assessing CAR T cell distribution and disease response. In the outpatient setting, patients receive infusions via CNS catheter into either the tumor cavity or the ventricular system. The initial three patients experienced no dose-limiting toxicity and exhibited clinical, as well as correlative laboratory, evidence of local CNS immune activation, including high concentrations of CXCL10 and CCL2 in the cerebrospinal fluid. This interim report supports the feasibility of generating HER2-specific CAR T cells for repeated dosing regimens and suggests that their repeated intra-CNS delivery might be well tolerated and activate a localized immune response in pediatric and young adult patients.
Collapse
Affiliation(s)
- Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Adam J Johnson
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Ashley L Wilson
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Christopher Brown
- Seattle Children's Therapeutics, Seattle, WA, USA.,Therapeutic Cell Production Core, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jason K Yokoyama
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cindy A Chang
- Office of Animal Care, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephanie Rawlings-Rhea
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Wenjun Huang
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | | | - Catherine M Albert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Navin Pinto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Juliane Gust
- Department of Neurology, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura S Finn
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Rimas J Orentas
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Baldwin
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rebecca A Gardner
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Michael C Jensen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Julie R Park
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
38
|
Ram Kumar PS, Rencilin CF, Sundar K. Emerging nanomaterials for cancer immunotherapy. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a unique approach to treat cancer that targets tumours besides triggering the immune cells. It attempts to harness the supremacy and specificity of immune cells for the regression of malignancy. The key strategy of immunotherapy is that it boosts the natural defence and manipulates the immune system at both cellular and molecular levels. Long-lasting anti-tumour response, reduced metastasis, and recurrence can be achieved with immunotherapy than conventional treatments. For example, targeting cytotoxic T-lymphocyte antigen-4 (CTLA4) by monoclonal antibody is reported as an effective strategy against cancer progression in vivo and chimeric antigen receptor (CAR) modified T-cells are known to express a stronger anti-tumour activity. CTLA4 and CAR are, therefore, beneficial in cancer immunotherapy; however, in clinical settings, both are expensive and cause adverse side effects. Nanomaterials have augmented advantages in cancer immunotherapy, besides their utility in effective delivery and diagnostics. In particular, materials based on lipids, polymers, and metals have been sought-after for delivery technologies. Moreover, the surface of nanomaterials can be engineered using ligands, antigens, and antibodies to target immune cells. In this sense, checkpoint inhibitors, cytokines, agonistic antibodies, surface receptors, and engineered T-cells are promising to regulate the immune system against tumours. Therefore, emerging nanomaterials that can be used for the treatment of cancer is the prime focus of this review. The correlation of mode of administration and biodistribution of various nanomaterials is reviewed here. Besides, the acute and chronic side effects and outcome of clinical trials in the context of cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Pandian Sureshbabu Ram Kumar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Clayton Fernando Rencilin
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| |
Collapse
|
39
|
Gharghani MS, Simonian M, Bakhtiari F, Ghaffari MH, Fazli G, Bayat AA, Negahdari B. Chimeric antigen receptor T-cell therapy for breast cancer. Future Oncol 2021; 17:2961-2979. [PMID: 34156280 DOI: 10.2217/fon-2020-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the main reasons that researchers pay enormous attention to immunotherapy is that, despite significant advances in conventional therapy approaches, breast cancer remains the leading cause of death from malignant tumors among women. Genetically modifying T cells with chimeric antigen receptors (CAR) is one of the novel methods that has exhibited encouraging activity with relative safety, further urging investigators to develop several CAR T cells to target overexpressed antigens in breast tumors. This article is aimed not only to present such CAR T cells and discuss their remarkable results but also indicates their shortcomings with the hope of achieving possible strategies for improving therapeutic response.
Collapse
Affiliation(s)
- Mighmig Simonian Gharghani
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Miganoosh Simonian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| | - Faezeh Bakhtiari
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mozhan Haji Ghaffari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| | - Ghazaleh Fazli
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| |
Collapse
|
40
|
Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A. IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Front Mol Biosci 2021; 8:675179. [PMID: 34179083 PMCID: PMC8220804 DOI: 10.3389/fmolb.2021.675179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Adoptive immunotherapy using CAR-T cells is a promising curative treatment strategy for hematological malignancies. Current manufacture of clinical-grade CAR-T cells based on lentiviral/retrovirus transfection of T cells followed by anti-CD3/CD28 activation supplemented with IL-2 has been associated with low transfection efficiency and usually based on the use of terminally differentiated effector T cells. Thus, improving the quality and the quantity of CAR-T cells are essential for optimizing the CAR-T cell preparation. In our study, we focus on the role of IL-21 in the γc cytokine conditions for CAR-T cell preparation. We found for the first time that the addition of IL-21 in the CAR-T preparation improved T cell transfection efficiency through the reduction of IFN-γ expression 24-48 h after T cell activation. We also confirmed that IL-21 enhanced the enrichment and expansion of less differentiated CAR-T cells. Finally, we validated that IL-21 improved the CAR-T cell cytotoxicity, which was related to increased secretion of effector cytokines. Together, these findings can be used to optimize the CAR-T cell preparation.
Collapse
Affiliation(s)
- Li Du
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yaru Nai
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tingting Li
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Hull CM, Maher J. Approaches for refining and furthering the development of CAR-based T cell therapies for solid malignancies. Expert Opin Drug Discov 2021; 16:1105-1117. [PMID: 34038292 DOI: 10.1080/17460441.2021.1929920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Chimeric antigen receptor-engineered T-cells typically use the binding domains of antibodies to target cytotoxicity toward tumors. This approach has produced great efficacy against selected hematological cancers, but benefit in solid tumors has been limited. Characteristically, the microenvironment in solid tumors restricts CAR T cell function, thereby limiting success. Enhancing efficacy will depend on novel target discovery to refine specificity and reduce toxicity. Additionally, overcoming immunosuppressive mechanisms may be achieved by altering the structure of the CAR itself, together with ancillary gene expression or additional therapeutic interventions.Areas covered: Herein, the authors discuss approaches for refining and further developing CAR T cell therapies specifically for use with solid malignancies. The authors survey the existing literature and provide perspectives for the future.Expert opinion: Pronounced efficacy in solid tumors will likely require combination therapies, targeting both the tumor itself and associated immunosuppressive mechanisms. Future exploration of CAR T cell therapies for solid tumors is likely to incorporate next-generation designs that couple more precise targeting of cancer-associated targets with enhanced potency and resistance to exhaustion.
Collapse
Affiliation(s)
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
42
|
Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 2021; 14:73. [PMID: 33933160 PMCID: PMC8088725 DOI: 10.1186/s13045-021-01083-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.
Collapse
Affiliation(s)
- Ying Gong
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Roel G J Klein Wolterink
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Gerard M J Bos
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,CiMaas BV, Maastricht, The Netherlands
| | - Wilfred T V Germeraad
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands. .,CiMaas BV, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Rana J, Perry DJ, Kumar SRP, Muñoz-Melero M, Saboungi R, Brusko TM, Biswas M. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther 2021; 29:2660-2676. [PMID: 33940160 PMCID: PMC8417451 DOI: 10.1016/j.ymthe.2021.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) control immune responses in autoimmune disease, transplantation, and enable antigen-specific tolerance induction in protein-replacement therapies. Tregs can exert a broad array of suppressive functions through their T cell receptor (TCR) in a tissue-directed and antigen-specific manner. This capacity can now be harnessed for tolerance induction by "redirecting" polyclonal Tregs to overcome low inherent precursor frequencies and simultaneously augment suppressive functions. With the use of hemophilia A as a model, we sought to engineer antigen-specific Tregs to suppress antibody formation against the soluble therapeutic protein factor (F)VIII in a major histocompatibility complex (MHC)-independent fashion. Surprisingly, high-affinity chimeric antigen receptor (CAR)-Treg engagement induced a robust effector phenotype that was distinct from the activation signature observed for endogenous thymic Tregs, which resulted in the loss of suppressive activity. Targeted mutations in the CD3ζ or CD28 signaling motifs or interleukin (IL)-10 overexpression were not sufficient to restore tolerance. In contrast, complexing TCR-based signaling with single-chain variable fragment (scFv) recognition to generate TCR fusion construct (TRuC)-Tregs delivered controlled antigen-specific signaling via engagement of the entire TCR complex, thereby directing functional suppression of the FVIII-specific antibody response. These data suggest that cellular therapies employing engineered receptor Tregs will require regulation of activation thresholds to maintain optimal suppressive function.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Rania Saboungi
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Lukjanov V, Koutná I, Šimara P. CAR T-Cell Production Using Nonviral Approaches. J Immunol Res 2021; 2021:6644685. [PMID: 33855089 PMCID: PMC8019376 DOI: 10.1155/2021/6644685] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/30/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor T-cells (CAR T-cells) represent a novel and promising approach in cancer immunotherapy. According to the World Health Organization (WHO), the number of oncological patients is steadily growing in developed countries despite immense progress in oncological treatments, and the prognosis of individual patients is still relatively poor. Exceptional results have been recorded for CAR T-cell therapy in patients suffering from B-cell malignancies. This success opens up the possibility of using the same approach for other types of cancers. To date, the most common method for CAR T-cell generation is the use of viral vectors. However, dealing with virus-derived vectors brings possible obstacles in the CAR T-cell manufacturing process owing to strict regulations and high cost demands. Alternative approaches may facilitate further development and the transfer of the method to clinical practice. The most promising substitutes for virus-derived vectors are transposon-derived vectors, most commonly sleeping beauty, which offer great coding capability and a safe integration profile while maintaining a relatively low production cost. This review is aimed at summarizing the state of the art of nonviral approaches in CAR T-cell generation, with a unique perspective on the conditions in clinical applications and current Good Manufacturing Practice. If CAR T-cell therapy is to be routinely used in medical practice, the manufacturing cost and complexity need to be as low as possible, and transposon-based vectors seem to meet these criteria better than viral-based vectors.
Collapse
Affiliation(s)
- Viktor Lukjanov
- Masaryk University Brno, Faculty of Medicine, Department of Histology and Embryology, Kamenice 5, Brno 62500, Czech Republic
- St. Anne's University Hospital Brno, International Clinical Research Center, Pekarska 53, Brno 656 91, Czech Republic
| | - Irena Koutná
- Masaryk University Brno, Faculty of Medicine, Department of Histology and Embryology, Kamenice 5, Brno 62500, Czech Republic
- St. Anne's University Hospital Brno, International Clinical Research Center, Pekarska 53, Brno 656 91, Czech Republic
| | - Pavel Šimara
- Masaryk University Brno, Faculty of Medicine, Department of Histology and Embryology, Kamenice 5, Brno 62500, Czech Republic
- St. Anne's University Hospital Brno, International Clinical Research Center, Pekarska 53, Brno 656 91, Czech Republic
| |
Collapse
|
45
|
Cheng J, Chen G, Lv H, XU L, LIU H, Chen T, Qu L, Wang J, Cheng L, Hu S, Wang Y. CD4-Targeted T Cells Rapidly Induce Remissions in Mice with T Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6614784. [PMID: 33855074 PMCID: PMC8019637 DOI: 10.1155/2021/6614784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the immune cell therapy for T cell lymphoma, we developed CD4-specific chimeric antigen receptor- (CAR-) engineered T cells (CD4CART), and the cytotoxic effects of CD4CART cells were determined in vitro and in vivo. METHODS CD4CART cells were obtained by transduction of lentiviral vector encoding a single-chain antibody fragment (scFv) specific for CD4 antigen, costimulatory factor CD28 fragment, and intracellular signal transduction domain of CD3 fragments. Control T cells were obtained by transduction of reporter lentiviral vector. The cytotoxicity, tumor growth, and survival rate of mice with T cell lymphoma were analyzed after adoptive T cell transfer in vivo. RESULTS CD4CART cells had potent cytotoxic activity against CD4+ T1301 tumor T cells in a concentration-dependent manner. In addition, adoptive CD4CART cell transfer significantly suppressed tumor growth and improved animal survival with T cell lymphoma, compared to the mice who received control T cells and PBS. CONCLUSION CD4CART cells have potent cytotoxic effects on T cell lymphoma. The study provided an experimental basis for CD4CART-mediated therapy of T cell lymphoma.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Hui Lv
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Liangjing XU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Huiwen LIU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Tianping Chen
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lijun Qu
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Jian Wang
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lemei Cheng
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
46
|
Stone JD, Aggen DH, Schietinger A, Schreiber H, Kranz DM. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell Engagers (BiTEs). Oncoimmunology 2021; 1:863-873. [PMID: 23162754 PMCID: PMC3489742 DOI: 10.4161/onci.20592] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although T cells can mediate potent antitumor responses, immune tolerance mechanisms often result in the deletion or inactivation of T cells that express T-cell receptors (TCRs) against potentially effective target epitopes. Various approaches have been devised to circumvent this problem. In one approach, the gene encoding an antibody against a cancer-associated antigen is linked, in the form of a single-chain variable fragment (scFv), to genes that encode transmembrane and signaling domains. This chimeric antigen receptor (CAR) is then introduced into T cells for adoptive T-cell therapy. In another approach, the anti-cancer scFv is fused to a scFv that binds to the CD3ε subunit of the TCR/CD3 complex. This fusion protein serves as a soluble, injectable product that has recently been termed bispecific T-cell engager (BiTE). Both strategies have now been tested in clinical trials with promising results, but the comparative efficacies are not known. Here, we performed a direct comparison of the in vitro sensitivity of each strategy, using the same anti-cancer scFv fragments, directed against a tumor-specific glycopeptide epitope on the sialomucin-like transmembrane glycoprotein OTS8, which results form a cancer-specific mutation of Cosmc. While both approaches showed specific responses to the epitope as revealed by T cell-mediated cytokine release and target cell lysis, CAR-targeted T cells were more sensitive than BiTE-targeted T cells to low numbers of antigens per cell. The sensitivity scale described here provides a guide to the potential use of these two different approaches.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | | | | | | | | |
Collapse
|
47
|
Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M. How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 2021; 1:1577-1583. [PMID: 23264903 PMCID: PMC3525612 DOI: 10.4161/onci.22524] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Second-generation chimeric antigen receptors (CARs) are powerful tools to redirect antigen-specific T cells independently of HLA-restriction. Recent clinical studies evaluating CD19-targeted T cells in patients with B-cell malignancies demonstrate the potency of CAR-engineered T cells. With results from 28 subjects enrolled by five centers conducting studies in patients with chronic lymphocytic leukemia (CLL) or lymphoma, some insights into the parameters that determine T-cell function and clinical outcome of CAR-based approaches are emerging. These parameters involve CAR design, T-cell production methods, conditioning chemotherapy as well as patient selection. Here, we discuss the potential relevance of these findings and in particular the interplay between the adoptive transfer of T cells and pre-transfer patient conditioning.
Collapse
Affiliation(s)
- Marco L Davila
- Center for Cell Engineering; Department of Medicine; Molecular Pharmacology and Chemistry Program; Memorial Sloan-Kettering Cancer Center; New York, NY
| | | | | | | | | |
Collapse
|
48
|
Greenshpan Y, Sharabi O, Ottolenghi A, Cahana A, Kundu K, M Yegodayev K, Elkabets M, Gazit R, Porgador A. Synthetic promoters to induce immune-effectors into the tumor microenvironment. Commun Biol 2021; 4:143. [PMID: 33514819 PMCID: PMC7846768 DOI: 10.1038/s42003-021-01664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Harnessing the immune-system to eradicate cancer is becoming a reality in recent years. Engineered immune cells, such as chimeric antigen receptor (CAR) T cells, are facing the danger of an overt life-threatening immune response due to the ON-target OFF-tumor cytotoxicity and Cytokine Release Syndrome. We therefore developed synthetic promoters for regulation of gene expression under the control of inflammation and Hypoxia-induced signals that are associated with the tumor microenvironment (TME). We termed this methodology as chimeric-antigen-receptor-tumor-induced-vector (CARTIV). For proof of concept, we studied synthetic promoters based on promoter-responsive elements (PREs) of IFNγ, TNFα and hypoxia; triple PRE-based CARTIV promoter manifested a synergistic activity in cell-lines and potent activation in human primary T-cells. CARTIV platform can improve safety of CAR T-cells or other engineered immune-cells, providing TME-focused activity and opening a therapeutic window for many tumor-associated antigens that are also expressed by non-tumor healthy tissues.
Collapse
Affiliation(s)
- Yariv Greenshpan
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Sharabi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishag Cahana
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kiran Kundu
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ksenia M Yegodayev
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Elkabets
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roi Gazit
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
49
|
Kam AYF, Piryani SO, Lee CL, Rizzieri DA, Spector NL, Sarantopoulos S, Doan PL. Selective ERBB2 and BCL2 Inhibition Is Synergistic for Mitochondrial-Mediated Apoptosis in MDS and AML Cells. Mol Cancer Res 2021; 19:886-899. [PMID: 33514658 DOI: 10.1158/1541-7786.mcr-20-0973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
The ERBB2 proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because ERBB2 is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34+ myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells. This overexpression of ERBB2 is associated with aberrant, oncogenic signaling with autophosphorylation of multiple tyrosine sites. Like in breast cancers, ERBB2 can exist as truncated isoforms p95ERBB2 and p110ERBB2 in MDS and AML. Neutralization of ERBB2 signaling with ERBB2 tyrosine kinase inhibitors (i.e., lapatinib, afatinib, and neratinib) increases apoptotic cell death and reduces human engraftment of MDS cells in mice at 21 weeks posttransplantation. Inhibition of ERBB2 modulates the expression of multiple pro- and anti-apoptotic mitochondrial proteins, including B-cell lymphoma 2 (BCL2). Dual blockade with ERBB2 and BCL2 inhibitors triggers additional reductions of BCL2 phosphorylation and myeloid cell leukemia-1 (MCL1) expression compared with single drug treatment. Dual therapy was synergistic at all tested doses, with a dose reduction index of up to 29 for lapatinib + venetoclax compared with venetoclax alone. Notably, these agents operated together and shifted cancer cells to a pro-apoptotic phenotype, resulting in increased mitochondrial cytochrome c release and activated caspase-3-mediated cell death. IMPLICATIONS: These findings warrant study of ERBB2 and BCL2 combination therapy in patients with MDS and AML. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/886/F1.large.jpg.
Collapse
Affiliation(s)
- Angel Y F Kam
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| | - David A Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Neil L Spector
- Duke Cancer Institute, Duke University, Durham, North Carolina.,Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina. .,Duke Cancer Institute, Duke University, Durham, North Carolina
| |
Collapse
|
50
|
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Mol Ther 2020; 28:2564-2576. [PMID: 32827460 PMCID: PMC7704745 DOI: 10.1016/j.ymthe.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, chimeric antigen receptor (CAR) T cell cancer immunotherapies have advanced substantially in the clinic. However, challenges related to safety persist; one major concern occurs when CARs trigger a response to antigen present on healthy cells (on-target, off-tumor response). A strategy to ameliorate this relies on the complex relationship between receptor affinity and signaling, such that one can engineer a CAR that is only activated by tumor cells expressing high antigen levels. Here, we developed a CAR T cell display platform with stable genomic expression and rapid functional screening based on interleukin-2 signaling. Starting with a CAR with high affinity toward its target antigen, we combined CRISPR-Cas9 genome editing and deep mutational scanning to generate a library of antigen-binding domain variants. This library was subjected to multiple rounds of selection based on either antigen binding or cell signaling. Deep sequencing of the resulting libraries and a comparative analysis revealed the enrichment and depletion of specific variants from which we selected CARs that were selectively activated by tumor cells based on antigen expression levels. Our platform demonstrates how directed evolution based on functional screening and deep sequencing-guided selection can be combined to enhance the selectivity and safety of CARs.
Collapse
|