1
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
4
|
Lajiness JD, Cook-Mills JM. Catching Our Breath: Updates on the Role of Dendritic Cell Subsets in Asthma. Adv Biol (Weinh) 2023; 7:e2200296. [PMID: 36755197 PMCID: PMC10293089 DOI: 10.1002/adbi.202200296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Dendritic cells (DCs), as potent antigen presenting cells, are known to play a central role in the pathophysiology of asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Furthermore, asthma is increasingly recognized as a heterogeneous disease with potentially diverse underlying mechanisms. The goal of this review is to summarize the role of DCs and the various subsets therein in the pathophysiology of asthma and highlight some of the crucial animal models shaping the field today. Potential future avenues of investigation to address existing gaps in knowledge are discussed.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, 1030 West Michigan Street, Suite C 4600, Indianapolis, IN, 46202-5201, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Department of Microbiology and Immunology, Pediatric Pulmonary, Asthma, and Allergy Basic Research Program, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-202A, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
6
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Kawakami N, Saito H, Takahashi S, Kajie S, Kato R, Shimaya K, Wakai Y, Saito K, Sakashita M. Airway disorders associated with immune checkpoint inhibitor therapy: Two case reports and a systematic review. Semin Oncol 2022; 49:439-455. [PMID: 36759235 DOI: 10.1053/j.seminoncol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoint inhibitors (ICI) are widely used for the treatment of various malignant neoplasms. Interstitial lung disease is a well-known immune-related adverse event, however, ICI-induced airway disease remains under-recognized. Herein, we report two similar cases of pembrolizumab-induced tracheobronchitis presenting as persistent chronic cough and dyspnea. Blood tests revealed elevated C-reactive protein levels without eosinophilia. Spirometry demonstrated mild airflow obstruction. Computed tomography revealed diffuse thickening of the tracheobronchial walls and bronchiectasis predominantly in the lower lobes. Bronchoscopy revealed edematous and erythematous tracheobronchial mucosa, and bronchial biopsy tissue exhibited marked inflammation with predominant infiltration of CD8+ lymphocytes. Subsequently, pembrolizumab-induced tracheobronchitis was diagnosed in both cases. Cessation of pembrolizumab and initiation of erythromycin, inhaled corticosteroids, and long-acting beta-agonists gradually improved the symptoms, airflow obstruction, and radiographic findings. These were completely resolved in one case. The other case initially showed a poor response to systemic corticosteroids combined with the aforementioned drugs, but improved gradually and almost completely. These cases exemplify ICI-induced airway disease that is, an under-recognized manifestation of immune-related adverse events. In addition, we have systematically searched the PubMed database for articles on ICI-induced airway disease, categorized the retrieved articles as eosinophilic and non-eosinophilic airway diseases, and reviewed the differences in treatment and prognoses between these two categories.
Collapse
Affiliation(s)
- Naoki Kawakami
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan.
| | - Hiroaki Saito
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Susumu Takahashi
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Shinpei Kajie
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Rina Kato
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Kazuhiro Shimaya
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Yoko Wakai
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Kazuhito Saito
- Department of Respiratory Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Mai Sakashita
- Department of Pathology, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| |
Collapse
|
8
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
9
|
Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells. PLoS Pathog 2022; 18:e1010608. [PMID: 35834490 PMCID: PMC9282651 DOI: 10.1371/journal.ppat.1010608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fungi are abundant in the environment, causing our lungs to be constantly exposed to a diverse range of species. While the majority of these are cleared effectively in healthy individuals, constant exposure to spores (especially Aspergillus spp.) can lead to the development of allergic inflammation that underpins and worsen diseases such as asthma. Despite this, the precise mechanisms that underpin the development of fungal allergic disease are poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells (DCs), have been shown to be critical for mediating allergic inflammation to a range of different allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifungal immunity, evaluating how these immune cells mediate allergic inflammation within the context of the lung environment. Ultimately, we aim to highlight important future research questions that will lead to novel therapeutic strategies for fungal allergic diseases.
Collapse
Affiliation(s)
- Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter Charles Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Sun S, Luo J, Du H, Liu G, Liu M, Wang J, Han S, Che H. Widely Targeted Lipidomics and Transcriptomics Analysis Revealed Changes of Lipid Metabolism in Spleen Dendritic Cells in Shrimp Allergy. Foods 2022; 11:foods11131882. [PMID: 35804699 PMCID: PMC9265612 DOI: 10.3390/foods11131882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp allergy (SA) is pathological type 2 inflammatory immune responses against harmless shrimp protein allergen, which is caused by complex interactions between dendritic cells (DCs) and other immune cells. Lipid metabolism in different DCs states are significantly changed. However, the lipid metabolism of spleen DCs in SA remain ambiguous. In this study, we established a BALB/c mouse shrimp protein extract-induced allergy model to determine the lipid profile of spleen DCs in SA, and the molecular mechanism between lipid metabolism and immune inflammation was preliminarily studied. Spleen DCs were sorted by fluorescence-activated cell sorting, and then widely targeted lipidomics and transcriptomics analysis were performed. Principal component analysis presented the lipidome alterations in SA. The transcriptomic data showed that Prkcg was involved in lipid metabolism, immune system, and inflammatory signaling pathway. In the correlation analysis, the results suggested that Prkcg was positively correlated with triacylglycerol (Pearson correlation coefficient = 0.917, p = 0.01). The lipidomics and transcriptomics integrated pathway analysis indicated the activated metabolic conversion from triacylglycerol to 1,2-diacyl-sn-glycerol and the transmission of lipid metabolism to immune inflammation (from triacylglycerol and ceramide to Prkcg) in SA spleen DCs, and cellular experiments in vitro showed that glyceryl trioleate and C16 ceramide treatment induced immune function alteration in DCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huilian Che
- Correspondence: ; Tel.: +86-10-6273-7244; Fax: +86-10-6232-3465
| |
Collapse
|
11
|
Zurmühl N, Schmitt A, Formentini U, Weiss J, Appel H, Debatin KM, Fabricius D. Differential uptake of three clinically relevant allergens by human plasmacytoid dendritic cells. Clin Mol Allergy 2021; 19:23. [PMID: 34789269 PMCID: PMC8597288 DOI: 10.1186/s12948-021-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. Methods This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. Results We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. Conclusions To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT. Supplementary Information The online version contains supplementary material available at 10.1186/s12948-021-00163-8.
Collapse
Affiliation(s)
- Noelle Zurmühl
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Anna Schmitt
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Ulrike Formentini
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Johannes Weiss
- Department of Dermatology and Allergic Diseases, University Medical Center Ulm, Ulm, Germany
| | - Heike Appel
- Department of Otolaryngology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
12
|
Webb LM, Phythian-Adams AT, Costain AH, Brown SL, Lundie RJ, Forde-Thomas J, Cook PC, Jackson-Jones LH, Marley AK, Smits HH, Hoffmann KF, Tait Wojno ED, MacDonald AS. Plasmacytoid Dendritic Cells Facilitate Th Cell Cytokine Responses throughout Schistosoma mansoni Infection. Immunohorizons 2021; 5:721-732. [PMID: 34462311 PMCID: PMC8881908 DOI: 10.4049/immunohorizons.2100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.
Collapse
Affiliation(s)
- Lauren M Webb
- Department of Immunology, University of Washington, Seattle, WA;
| | | | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Lucy H Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom; and
| | - Angela K Marley
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
13
|
Huang YA, Chen JC, Wu CC, Hsu CW, Ko AMS, Chen LC, Kuo ML. Reducing Lung ATP Levels and Alleviating Asthmatic Airway Inflammation through Adeno-Associated Viral Vector-Mediated CD39 Expression. Biomedicines 2021; 9:biomedicines9060656. [PMID: 34201190 PMCID: PMC8228057 DOI: 10.3390/biomedicines9060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Memorial Hospital-Linkou, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Wei Hsu
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11574, Taiwan
| | - Albert Min-Shan Ko
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
| | - Li-Chen Chen
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 3319)
| |
Collapse
|
14
|
Özkan M, Eskiocak YC, Wingender G. Macrophage and dendritic cell subset composition can distinguish endotypes in adjuvant-induced asthma mouse models. PLoS One 2021; 16:e0250533. [PMID: 34061861 PMCID: PMC8168852 DOI: 10.1371/journal.pone.0250533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7+ activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.
Collapse
Affiliation(s)
- Müge Özkan
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | | | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
15
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
16
|
Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharmacol Res 2020; 161:105293. [PMID: 33176206 DOI: 10.1016/j.phrs.2020.105293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Unmethylated CpG oligodeoxynucleotides (ODNs) activate plasmacytoid dendritic cells (pDCs) and B cells to induce humoral and cellular immunity, and are under development for the treatment of multiple cancers. However, the specific differences in antitumor effects among the three CpG ODN classes when administered as a monotherapy or in co-therapy with the anti-PD-1 antibody are unclear. We compared the immunostimulatory effects in vitro and antitumor effects in a CT26 subcutaneous mouse tumor model among the three CpG ODN classes. We found that CpG-A slightly suppressed tumor growth but possessed no synergistic antitumor effects with the anti-PD-1 antibody. CpG-B at low doses significantly inhibited tumor growth and possessed synergistic antitumor effects with the anti-PD-1 antibody. A high dose of CpG-C was required to achieve antitumor effects comparable to those of CpG-B, which was consistent with the immunostimulatory effects in B-cell proliferation and TLR9-NF-κB activation. Importantly, CpG-C in combination with anti-PD-1 antibody inhibited tumor growth more quickly and effectively than CpG-B because CpG-B significantly upregulated PD-L1 expression on multiple host immune cells to promote tumor immune escape. Moreover, co-therapy increased the infiltration of effector memory T cells. In summary, CpG-B and CpG-C with different optimal concentrations possessed strong antitumor effects, while CpG-C was more rapid and effective for co-therapy with the anti-PD-1 antibody.
Collapse
|
17
|
Morianos I, Semitekolou M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21217930. [PMID: 33114551 PMCID: PMC7663753 DOI: 10.3390/ijms21217930] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by airway hyperresponsiveness (AHR), chronic airway inflammation, and excessive T helper (Th) type 2 immune responses against harmless airborne allergens. Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system that act as a bridge between innate and adaptive immunity. Pertinent to allergic asthma, distinct DC subsets are known to play a central role in initiating and maintaining allergen driven Th2 immune responses in the airways. Nevertheless, seminal studies have demonstrated that DCs can also restrain excessive asthmatic responses and thus contribute to the resolution of allergic airway inflammation and the maintenance of pulmonary tolerance. Notably, the transfer of tolerogenic DCs in vivo suppresses Th2 allergic responses and protects or even reverses established allergic airway inflammation. Thus, the identification of novel DC subsets that possess immunoregulatory properties and can efficiently control aberrant asthmatic responses is critical for the re-establishment of tolerance and the amelioration of the asthmatic disease phenotype.
Collapse
|
18
|
Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. J Allergy Clin Immunol 2020; 147:1865-1877. [PMID: 33039478 DOI: 10.1016/j.jaci.2020.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the efficacy of allergen-specific immunotherapy (AIT), the role of trained immunity and tolerance in this process has not been elucidated. OBJECTIVE Here, we have performed a comprehensive longitudinal analysis of the systemic innate immune cell repertoire during the course of AIT. METHODS Patients with allergy received standard preseasonal subcutaneous AIT with allergoids to birch and/or grass. Healthy controls were monitored without any intervention. Flow cytometry of innate lymphoid cell (ILC), natural killer cell, monocyte cell, and dendritic cell (DC) subsets was performed at baseline, 3 months (birch season), 6 months (grass seasons), and 12 months after the therapy in patients or at similar seasonal time points in controls. Additional analyses were performed in the third-year birch and grass season. RESULTS We observed a durable decrease in group 2 ILCs and an increase of group 1 ILCs after AIT, with dynamic changes in their composition. We found that an expansion of CD127+CD25++ clusters caused observed shifts in the heterogeneity of group 1 ILCs. In addition, we observed development of CD127+CD25++c-Kit+ group 3 ILC clusters. Moreover, we found an increase in the number of intermediate monocytes in parallel with a reduction in nonclassical monocytes during the first year after AIT. Classical and intermediate monocytes presented significant heterogeneity in patients with allergy, but AIT reduced the HLA-DR++ clusters. Finally, an increase in plasmacytoid DCs and CD141+ myeloid DCs was observed in individuals with allergy, whereas the number of CD1c+ myeloid DCs was reduced during the first year of AIT. CONCLUSION AIT induces changes in the composition and heterogeneity of circulating innate immune cells and brings them to the level observed in healthy individuals. Monitoring of ILCs, monocytes, and DCs during AIT might serve as a novel biomarker strategy.
Collapse
|
19
|
Lamiable O, Mayer JU, Munoz-Erazo L, Ronchese F. Dendritic cells in Th2 immune responses and allergic sensitization. Immunol Cell Biol 2020; 98:807-818. [PMID: 32738152 DOI: 10.1111/imcb.12387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Allergic responses are characterized by the activation of a specific subset of effector CD4+ T cells, the T-helper type 2 (Th2) cells, that respond to harmless environmental antigens causing inflammation and pathology. Th2 cells are also found in the context of parasite infections, where they can mediate parasite clearance and expulsion, and support tissue repair. The process that leads to the activation of Th2 cells in vivo is incompletely understood: while it has become clear that "conventional" dendritic cells are essential antigen-presenting cells for the initiation of Th2 immune responses, the molecules that are expressed by dendritic cells exposed to allergens, and the mediators that are produced as a consequence and signal to naïve CD4+ T cells to promote their development into effector Th2, remain to be defined. Here we summarize recent developments in the identification of the dendritic cell subsets involved in Th2 responses, review potential mechanisms proposed to explain the generation of these immune responses, and discuss the direct and indirect signals that condition dendritic cells to drive the development of Th2 responses during allergen or parasite exposure.
Collapse
Affiliation(s)
| | | | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
20
|
Effect of Pingchuan Formula on Toll-Like Receptors and Dendritic Cells in an Asthmatic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7407016. [PMID: 32953887 PMCID: PMC7481997 DOI: 10.1155/2020/7407016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Pingchuan formula (PCF) was created by Professor Yu Jianer. The purpose of this study was to investigate the effect of PCF on dendritic cells (DCs) and toll-like receptors (TLRs) in initiating immunity. A bronchial asthma BALB/c mouse model was established using an OVA excitation method. PCF was immediately administered by gavage after the first excitation. After 7 d, hematoxylin and eosin (HE) staining was used to observe the pathological changes in the asthma model. Eosinophil infiltration and concentrations of IL-4, IFN-r, IL-12, and IFN-α in BALF were determined by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to determine mRNA levels of IL-12 and IFN-α. Protein expression levels of ERK, Toll-2, IDO, and Toll-9 were measured by immunoblot. HE and ELISA showed that PCF could improve lung pathological changes and significantly decrease the concentration of IL-4 in BALF. Moreover, PCF could increase IL-12, IFN-α, and IFN-r in BALF. Real-time PCR and western blot showed that PCF restored the DCs and TLRs in initiating immunity. In summary, this study found that PCF can improve the pathological changes and reduce the symptoms of asthma in a BALB/c mouse model. It can facilitate the initiation of immunity by restoring the DCs and TLRs.
Collapse
|
21
|
Xu K, Wu N, Min Z, Li Z, Zhu T, Liu C, Zeng Y, Song J, Mao R, Ji H, Jiang Z, Chen Z. Adoptive transfer of bone marrow-derived dendritic cells (BMDCs) alleviates OVA-induced allergic airway inflammation in asthmatic mice. Sci Rep 2020; 10:13915. [PMID: 32807859 PMCID: PMC7431555 DOI: 10.1038/s41598-020-70467-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Airway dendritic cells (DCs) are recognized as important factors in the mechanisms of allergic inflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) is involved in regulating the functions of T cells and macrophages, but the roles of SOCS3-expressing DCs in the pathogeneses of allergic inflammatory diseases are still controversial. We compared the effects of adoptively transferred SOCS3-/- and SOCS3+/+ bone marrow-derived DCs (BMDCs) on airway inflammation in ovalbumin (OVA)-sensitized asthmatic mice. Adoptive transfer of mature DCs (lipopolysaccharide [LPS]-induced DCs, DClps) with or without SOCS3 gene expression significantly ameliorated allergic airway inflammation. SOCS3-/- DCs slightly attenuated BMDC-induced immunogenic tolerance. DClps migrated to OVA-sensitized lungs with higher efficiency than immature DCs (DCim). DClps with or without SOCS3 greatly improved lung pathology scores and alleviated airway inflammatory cell infiltration after adoptive transfer into mice; they also increased interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production and inhibited signal transducer and activator of transcription (STAT) 4 and STAT6 signaling in the lungs after OVA sensitization. In conclusion, the BMDC adoptive transfer-induced immunogenic tolerance in OVA-sensitized mice might not be due to SOCS3 gene depletion. BMDC adoptive transfer may be developed into a new approach that alleviates asthma by modulating the balance between immune tolerance and inflammation.
Collapse
Affiliation(s)
- Kan Xu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Nan Wu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- California National Primate Research Center, Davis, CA, USA
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzhen Zeng
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Juan Song
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Ruolin Mao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA.
- California National Primate Research Center, Davis, CA, USA.
| | - Zhilong Jiang
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China.
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, No. 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
22
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Cauwels A, Tavernier J. Tolerizing Strategies for the Treatment of Autoimmune Diseases: From ex vivo to in vivo Strategies. Front Immunol 2020; 11:674. [PMID: 32477325 PMCID: PMC7241419 DOI: 10.3389/fimmu.2020.00674] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases such as multiple sclerosis (MS), type I diabetes (T1D), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic, incurable, incapacitating and at times even lethal conditions. Worldwide, millions of people are affected, predominantly women, and their number is steadily increasing. Currently, autoimmune patients require lifelong immunosuppressive therapy, often accompanied by severe adverse side effects and risks. Targeting the fundamental cause of autoimmunity, which is the loss of tolerance to self- or innocuous antigens, may be achieved via various mechanisms. Recently, tolerance-inducing cellular therapies, such as tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs), have gained considerable interest. Their safety has already been evaluated in patients with MS, arthritis, T1D, and Crohn’s disease, and clinical trials are underway to confirm their safety and therapeutic potential. Cell-based therapies are inevitably expensive and time-consuming, requiring laborious ex vivo manufacturing. Therefore, direct in vivo targeting of tolerogenic cell types offers an attractive alternative, and several strategies are being explored. Type I IFN was the first disease-modifying therapy approved for MS patients, and approaches to endogenously induce IFN in autoimmune diseases are being pursued vigorously. We here review and discuss tolerogenic cellular therapies and targeted in vivo tolerance approaches and propose a novel strategy for cell-specific delivery of type I IFN signaling to a cell type of choice.
Collapse
Affiliation(s)
- Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Orionis Biosciences, Ghent, Belgium
| |
Collapse
|
24
|
Qu SY, Ti XY, Zhang J, Wu CG. Disruption of the Notch pathway aggravates airway inflammation by inhibiting regulatory T cell differentiation via regulation of plasmacytoid dendritic cells. Scand J Immunol 2020; 91:e12865. [PMID: 32185817 DOI: 10.1111/sji.12865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) regulate immunity and promote tolerance in asthma. Notch signalling is a highly conserved pathway that regulates the immune response; however, its role in pDC-mediated asthmatic airway inflammation is unclear. This study clarified the effects of Notch signalling on pDC-mediated airway inflammation using murine models of ovalbumin-sensitized allergic asthma. RBP-J-deficient pDCs (RBP-J-/- pDCs) were co-cultured with naïve CD4+ T cells and supernatants and T cell subtypes were analysed. RBP-J-/- pDCs were intranasally transferred to the airways of ovalbumin-sensitized recipient mice. Lung samples of all mice were subjected to tests for histopathology, cytokine profile of bronchoalveolar lavage fluid, airway hyperactivity and expression of T helper type 1 (Th1)/Th2 cells, regulatory T cells and type 2 innate lymphoid cells (ILC2s). The results showed that pDCs with and without RBP-J deficiency significantly differed in expression levels of cluster of differentiation 83 (CD83), but not CD80, CD86 and major histocompatibility complex class II. Co-culturing pDCs with naïve T cells revealed a poorer immunosuppressive effect of RBP-J-/- pDCs. This may be attributed to the lower expression levels of inducible co-stimulator ligand and lower production of interleukin 10 in RBP-J-/- pDCs than in control pDCs, which impeded T cell activation and Treg suppression. RBP-J-/- pDCs were associated with high ILC2 expression and severe Th2 immune responses and airway inflammation. Therefore, Notch signalling is critical for pDC-dependent immunoregulation, and RBP-J deficiency reduces pDC-based immunosuppression via T cell activation and Th cell differentiation. Thus, this pathway may be a therapeutic target for pDC-based anti-asthma immunotherapy.
Collapse
Affiliation(s)
- Shuo-Yao Qu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Ti
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chang-Gui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Peters M, Peters K, Bufe A. Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun 2020; 25:326-336. [PMID: 31291810 PMCID: PMC7103613 DOI: 10.1177/1753425918821732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the first description of dendritic cells by Steinman and Cohn in 1973, this
important cell type has gained increasing attention. Over 4000 papers have been
published on this topic annually during the last few years. At the beginning,
dendritic cells were recognized for their immune stimulatory properties and
their importance in initiating an adaptive immune response. Later, it was found
that dendritic cells do not only initiate but also regulate immune responses.
This attribute makes the so-called regulatory dendritic cells highly important
for the prevention of exaggerated immune responses. Immune cells make contact
with different Ags every day and must be tightly controlled to prevent excessive
inflammation and subsequent organ destruction, particularly in organs such as
the gut and lungs. Here, we give a brief overview of our current knowledge on
how immune responses are controlled by dendritic cells, highlighting how they
are involved in the induction of peripheral tolerance. We focus on what is known
about these processes in the lung, with a closer look at their role in the
induction and control of diseases such as bronchial asthma, chronic obstructive
pulmonary disease and lung infections. Finally, we summarize some current
approaches to modulate the behavior of dendritic cells that may hopefully lead
to future therapeutics to control exaggerated immune responses.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Karin Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| |
Collapse
|
26
|
Lin JY, Wu WH, Chen JS, Liu IL, Chiu HL, Chen HW, Tsai TL, Huang YL, Wang LF. Plasmacytoid dendritic cells suppress Th2 responses induced by epicutaneous sensitization. Immunol Cell Biol 2020; 98:215-228. [PMID: 31919905 DOI: 10.1111/imcb.12315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/01/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022]
Abstract
Epicutaneous (EC) sensitization with protein allergens is the most important sensitization route for atopic dermatitis. Plasmacytoid dendritic cells (pDCs) are characterized by massive secretion of interferon-α (IFNα). B6 mice are T helper type 1 (Th1)-prone and are representative of non-atopic humans, whereas BALB/c mice are Th2-prone and are representative of atopic humans. Here, we show that naïve BALB/c mice contain a greater number of nonactivated pDCs in peripheral lymph nodes (LNs) than do naïve B6 mice. Naïve BALB/c mice also have more of the CD8α- subset in LNs than naïve B6 mice. Moreover, in vivo depletion of pDCs during EC sensitization results in enhanced Th2 responses in BALB/c mice, but not in B6 mice. Mechanistically, when BALB/c mice undergo EC sensitization, there is an increase in pDCs entering draining LNs. These cells exhibit modest activation including comparable costimulation expression but increased cytokine expression compared with those of naïve mice. In vivo depletion of pDCs during EC sensitization significantly increases the activation of dermal dendritic cells (dDCs) suggesting a regulatory effect on these cells. To this end, a suppressive effect of pDCs on conventional dendritic cells was also demonstrated in vitro. Further, in vivo blockade of IFNα by an anti-IFNAR antibody (Ab) or in vivo reduction of IFNα production of pDCs by anti-siglec-H Ab both resulted in enhanced activation of dDCs. Collectively, our results demonstrate that pDCs suppress Th2 responses induced by EC sensitization via IFNα-mediated regulation of dDCs.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Hsin Wu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Shiuh Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Lin Liu
- Department of Dermatology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
| | - Hsueh-Ling Chiu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsi-Wen Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tung-Lin Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Huang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
27
|
Wu M, Gao L, He M, Liu H, Jiang H, Shi K, Shang R, Liu B, Gao S, Chen H, Gong F, Gelfand EW, Huang Y, Han J. Plasmacytoid dendritic cell deficiency in neonates enhances allergic airway inflammation via reduced production of IFN-α. Cell Mol Immunol 2019; 17:519-532. [PMID: 31853001 DOI: 10.1038/s41423-019-0333-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Allergic asthma, a chronic inflammatory airway disease associated with type 2 cytokines, often originates in early life. Immune responses at an early age exhibit a Th2 cell bias, but the precise mechanisms remain elusive. Plasmacytoid dendritic cells (pDCs), which play a regulatory role in allergic asthma, were shown to be deficient in neonatal mice. We report here that this pDC deficiency renders neonatal mice more susceptible to severe allergic airway inflammation than adult mice in an OVA-induced experimental asthma model. Adoptive transfer of pDCs or administration of IFN-α to neonatal mice prevented the development of allergic inflammation in wild type but not in IFNAR1-/- mice. Similarly, adult mice developed more severe allergic inflammation when pDCs were depleted. The protective effects of pDCs were mediated by the pDC-/IFN-α-mediated negative regulation of the secretion of epithelial cell-derived CCL20, GM-CSF, and IL-33, which in turn impaired the recruitment of cDC2 and ILC2 cells to the airway. In asthmatic patients, the percentage of pDCs and the level of IFN-α were lower in children than in adults. These results indicate that impairment of pDC-epithelial cell crosstalk in neonates is a susceptibility factor for the development of allergen-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuchuang Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ketai Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runshi Shang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Gao
- Department of Respiratory Diseases, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hebin Chen
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Ardain A, Marakalala MJ, Leslie A. Tissue-resident innate immunity in the lung. Immunology 2019; 159:245-256. [PMID: 31670391 DOI: 10.1111/imm.13143] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The lung is a unique organ that must protect against inhaled pathogens and toxins, without mounting a disproportionate response against harmless particulate matter and without compromising its vital function. Tissue-resident immune cells within the lung provide local immunity and protection from infection but are also responsible for causing disease when dysregulated. There is a growing appreciation of the importance of tissue-resident memory T cells to lung immunity, but non-recirculating, tissue-resident, innate immune cells also exist. These cells provide the first line of defence against pulmonary infection and are essential for co-ordinating the subsequent adaptive response. In this review, we discuss the main lung-resident innate immune subsets and their functions in common pulmonary diseases, such as influenza, bacterial pneumonia, asthma and inflammatory disorders.
Collapse
Affiliation(s)
- Amanda Ardain
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohlopheni J Marakalala
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| | - Alasdair Leslie
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| |
Collapse
|
29
|
Wang Z, Tan F. The blockade of PD-1/PD-L1 pathway promotes the apoptosis of CD19 + CD25 + Bregs and suppresses the secretion of IL-10 in patients with allergic rhinitis. Scand J Immunol 2019; 91:e12836. [PMID: 31598989 DOI: 10.1111/sji.12836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
PD-1/PD-L1 pathway is crucial to immune regulation by controlling the balance between T cell tolerance and activation. However, the association between PD-1/PD-L1 pathway and regulatory B cells has not been fully investigated in allergic rhinitis. In this study, we detected the number of peripheral CD19+ CD25+ Bregs and the expression of IL-10 on this cell subset in healthy control and patients with allergic rhinitis using flow cytometry. Then, we evaluated the level of PD-L1 in CD19+ CD25+ Bregs and investigated the correlation between PD-L1 and CD4+ follicular T helper cells. Finally, we studied the effects of anti-PD-L1 on the apoptosis of Bregs and the production of IL-10. Comparing with healthy controls, the percentage of CD19+ CD25+ Bregs and the expression of IL-10 were both significantly decreased in AR group. In addition, the expression of PD-L1 on CD19+ CD25+ Bregs was also lower in allergic rhinitis patients. Interestingly, a negative correlation was found between the expression of PD-L1+ Bregs and CD4+ CXCR5+ follicular T helper cells. In vitro assay revealed that anti-PD-L1 promoted Bregs apoptosis and inhibited the expression of IL-10 in CD19+ CD25+ Bregs. Collectively, these results suggest that PD-L1 expressed on CD19+ CD25+ Bregs may be a potential regulator in the treatment of allergic rhinitis. Blockade of PD-1/PD-L1 pathway might be a valuable pathogenic target for allergic rhinitis through inhibiting the secretion of immunosuppressive cytokine and promoting CD19+ CD25+ Bregs apoptosis.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital and School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital and School of Medicine, Tongji University, Shanghai, China.,School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin - National University of Ireland, Dublin, Ireland.,The Royal College of Surgeons of England, London, UK
| |
Collapse
|
30
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
31
|
Yanagisawa R, Koike E, Win-Shwe TT, Ichinose T, Takano H. Effects of lactational exposure to low-dose BaP on allergic and non-allergic immune responses in mice offspring. J Immunotoxicol 2018; 15:31-40. [PMID: 29482396 DOI: 10.1080/1547691x.2018.1442379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Benzo[a]pyrene (BaP) can induce developmental and reproductive toxicity; however, the full scope of its immunotoxic effects remains unknown. This study aimed to assess effects of lactational exposure to low-dose BaP (comparable to human exposure) on potential allergic\non-allergic immune responses in murine offspring. Lactating C3H/HeJ dams were orally dosed with BaP at 0, 0.25, 5.0, or 100 pmol/animal/week) at post-natal days [PND] 1, 8, and 15. Five-weeks-old pups then received intratracheally ovalbumin (OVA) every 2 weeks for 6 weeks. Following the final exposure, mice were processed to permit analyses of bronchoalveolar lavage (BAL) fluid cell profiles as well as levels of lung inflammatory cytokines and chemokines, serum OVA-specific immunoglobulin, and mediastinal lymph node (MLN) cell activation/proliferation. In OVA-sensitized male offspring, lactational low-dose BaP exposure led to enhanced (albeit not significantly) macrophage, neutrophil, and eosinophil infiltration to, and increased T-helper (TH)-2 cytokine production in, the lungs. In females, BaP exposure, regardless of dose, led to slightly enhanced lung levels of macrophages and eosinophils, and of inflammatory molecules. Protein levels of interleukin (IL)-33 in the OVA + BaP (middle dose) group, and interferon (IFN)-γ in the OVA + BaP (low dose) group, were higher than that of the OVA (no BaP) group. Ex vivo studies showed lactational exposure to BaP partially induced activation of T-cells and antigen-presenting cells (APCs) in the MLN cells of both male and female offspring, with or without OVA sensitization. Further, IL-4 and IFNγ levels in MLN culture supernatants were elevated even without OVA-re-stimulation in OVA + BaP groups. In conclusion, lactational exposure to low-dose BaP appeared to exert slight effects on later allergic and non-allergic immune responses in offspring by facilitating development of modest TH2 responses and activating MLN cells. In addition, lactational exposures to BaP might give rise to gender differences in allergic/non-allergic immune responses of offspring.
Collapse
Affiliation(s)
- Rie Yanagisawa
- a Center for Health and Environmental Risk Research , National Institute for Environmental Studies , Tsukuba , Japan
| | - Eiko Koike
- a Center for Health and Environmental Risk Research , National Institute for Environmental Studies , Tsukuba , Japan
| | - Tin-Tin Win-Shwe
- a Center for Health and Environmental Risk Research , National Institute for Environmental Studies , Tsukuba , Japan
| | - Takamichi Ichinose
- b Department of Health Sciences , Oita University of Nursing and Health Sciences , Oita , Japan
| | - Hirohisa Takano
- c Graduate School of Engineering , Kyoto University , Kyoto , Japan
| |
Collapse
|
32
|
Sousa L, Martín-Sierra C, Pereira C, Loureiro G, Tavares B, Pedreiro S, Martinho A, Paiva A. Subcutaneous immunotherapy induces alterations in monocytes and dendritic cells homeostasis in allergic rhinitis patients. Allergy Asthma Clin Immunol 2018; 14:45. [PMID: 30459816 PMCID: PMC6236941 DOI: 10.1186/s13223-018-0271-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Specific subcutaneous immunotherapy (SCIT) can achieve long-term remission in patients with allergic rhinitis (AR) through complex and still unknown mechanisms. The aim of this study is to evaluate the effect of SCIT over CD16+ and CD16− monocytes, myeloid (mDCs) and plasmacytoid dendritic cells (pDCs) in patients with AR, comparatively to pharmacological standard treatment (non-SIT). Methods The relative frequency and absolute number of monocytes and DC subsets, the frequency of these cells producing TNFα after in vitro stimulation with Dermatophagoides pteronyssinus (Dpt) extract, and the expression levels of receptor-bound IgE or IgG were assessed by flow cytometry, in peripheral blood samples from 23 healthy individuals (HG) and 43 participants with AR mono-sensitized to Dpt; 10 with non-SIT treatment and 33 under SCIT, just before (SCIT-T0) and 4 h after administration (SCIT-T4). Moreover, IFNα mRNA expression was evaluated in purified pDCs, by qRT-PCR. Results After SCIT administration we observed a strong decrease of circulating pDCs, although accompanied by higher levels of IFNα mRNA expression, and an increase of circulating CD16+ monocytes. AR participants under SCIT exhibited a higher expression of receptor-bound IgE in all cell populations that expressed the high affinity receptor for IgE (FcεRI) and a higher frequency of CD16+ monocytes producing TNFα. Conversely, we observed a decrease in the frequency of mDCs producing TNFα in AR under SCIT, similar to the observed in the control group. Conclusions SCIT seems to induce numeric, phenotypic, and functional changes in circulating monocytes and dendritic cells, contributing at least in part to the well described immunological alterations induced by this type of immunotherapy.
Collapse
Affiliation(s)
- Letícia Sousa
- 1Stemlab, S.A, Biocant Park, Núcleo 4, Lote 2, Cantanhede, Portugal
| | - Carmen Martín-Sierra
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal
| | - Celso Pereira
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Graça Loureiro
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Beatriz Tavares
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Susana Pedreiro
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal
| | - António Martinho
- Portuguese Institute of Blood and Transplantation, Coimbra, Portugal
| | - Artur Paiva
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal.,5CIMAGO-Center of Investigation on Environment Genetics and Oncobiology, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Darisipudi MN, Nordengrün M, Bröker BM, Péton V. Messing with the Sentinels-The Interaction of Staphylococcus aureus with Dendritic Cells. Microorganisms 2018; 6:microorganisms6030087. [PMID: 30111706 PMCID: PMC6163568 DOI: 10.3390/microorganisms6030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen as well as a frequent colonizer, threatening human health worldwide. Protection against S. aureus infection is challenging, as the bacteria have sophisticated strategies to escape the host immune response. To maintain equilibrium with S. aureus, both innate and adaptive immune effector mechanisms are required. Dendritic cells (DCs) are critical players at the interface between the two arms of the immune system, indispensable for inducing specific T cell responses. In this review, we highlight the importance of DCs in mounting innate as well as adaptive immune responses against S. aureus with emphasis on their role in S. aureus-induced respiratory diseases. We also review what is known about mechanisms that S. aureus has adopted to evade DCs or manipulate these cells to its advantage.
Collapse
Affiliation(s)
- Murthy N Darisipudi
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| |
Collapse
|
35
|
Hoffmann FM, Berger JL, Lingel I, Laumonnier Y, Lewkowich IP, Schmudde I, König P. Distribution and Interaction of Murine Pulmonary Phagocytes in the Naive and Allergic Lung. Front Immunol 2018; 9:1046. [PMID: 29868009 PMCID: PMC5964136 DOI: 10.3389/fimmu.2018.01046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/26/2018] [Indexed: 12/19/2022] Open
Abstract
The division of labor between pulmonary phagocytic subsets [macrophage/monocyte and dendritic cell (DC) subpopulations] has been described at the functional level. However, whether these lung phagocytes also display unique spatial distribution remains unclear. Here, to analyze cellular distribution in lung compartments and contacts between phagocyte subpopulations, we established an immunohistochemistry (IHC)-based method to clearly identify murine lung phagocyte subsets in situ based on differential expression of CD11c, CD11b, MHC-II, Langerin and mPDCA-1. Furthermore, we investigated subset-specific functional differences in antigen uptake and spatial changes upon allergic sensitization. Our staining allowed the distinction between alveolar macrophages (AMs), interstitial macrophage (IM) subpopulations, CD11b+ DC subpopulations, CD103+ DCs, and plasmacytoid DCs (pDCs). We identified interstitial regions between airways and around airways as regions of IM/CD11b+ DC/CD103+ DC clusters, where a subset of IMs (IM2) and CD103+ DCs formed intense contacts that decreased upon allergic sensitization. These data indicate functional interactions between both cell types either in steady state or after antigen encounter affecting the development of allergies or tolerance. Furthermore, we observed major antigen uptake in AMs and IMs rather than DC subpopulations that was not restricted to airways and adjacent areas. This will enable to focus future studies to immunologically relevant cellular interactions and to unravel which cells are tipping the balance between pro-inflammatory immune responses or tolerance.
Collapse
Affiliation(s)
- Franziska M Hoffmann
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Johann L Berger
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Imke Lingel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
36
|
Fear VS, Poh WP, Gorman S, Waithman JC, Fear MW. IFNβ inhibits the development of allergen tolerance and is conducive to the development of asthma on subsequent allergen exposure. Immunol Cell Biol 2018; 96:841-851. [PMID: 29611236 DOI: 10.1111/imcb.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
Asthma is a chronic disease affecting up to 10% of the Australian population for which medical treatment is solely aimed at relief of symptoms rather than prevention of disease. Evidence from animal and human studies demonstrates a strong link between viral respiratory infections, atopy and the development of asthma. Type I IFNs include IFNα and IFNβ, with subtype expression tailored toward the specific viral infection. We hypothesized that exposure to type I IFNs and allergen may interfere with the healthy response to innocuous airway antigen exposure. In this study, we use an ovalbumin (OVA)-induced BALB/c model of experimental allergic airways disease, where pre-exposure of the airways to OVA is protective against allergen sensitization, leading to allergen tolerance. We investigated airways pre-exposure with OVA and type I IFNs on development of allergic airways disease. We demonstrate restoration of allergic airways disease on pre-exposure with allergen and IFNβ, and not IFNα. Dysfunction in tolerance led to changes in dendritic cell antigen capture/traffic, T-cell and B-cell responses. Furthermore, exposure to IFNβ with ongoing allergen exposure led to the development of hallmark asthma features, including OVA-specific IgE and airways eosinophilia. Data indicate a role for IFNβ in linking viral infection and allergy.
Collapse
Affiliation(s)
- Vanessa S Fear
- Tumour Immunology Group, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Wee Peng Poh
- Inflammation Group, Telethon Kids Institute, School of Paediatrics and Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Inflammation Group, Telethon Kids Institute, School of Paediatrics and Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Jason C Waithman
- Inflammation Group, Telethon Kids Institute, School of Paediatrics and Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
37
|
Liu MC, Xiao HQ, Breslin LM, Bochner BS, Schroeder JT. Enhanced antigen presenting and T cell functions during late-phase allergic responses in the lung. Clin Exp Allergy 2017; 48:334-342. [PMID: 29105205 DOI: 10.1111/cea.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Allergic inflammation is a common feature of asthma and may contribute to both development and perpetuation of disease. The interaction of antigen-presenting cells (APC) with sensitized helper T lymphocytes (TC) producing Th2 cytokines may determine the inflammatory response. Recruitment of APC and TC to the lung during allergic responses has been demonstrated, but functional studies in humans have been limited. OBJECTIVE This study examined the function of APC and TC accumulating at sites of inflammation after segmental allergen challenge (SAC). METHODS Fifteen allergic patients underwent SAC, and cells from bronchoalveolar lavage (BAL) were collected after 24 hours. APC and TC from the blood and BAL were purified based on expression of the monocyte marker, CD14; the plasmacytoid dendritic cell (pDC) marker, BDCA4, identifying neuropilin-1 (NRP1); and the helper T cell marker, CD4. Functional activity was assessed using allergen-induced T cell proliferation. Flow cytometry identified cells expressing CD14 and NRP1. RESULTS SAC resulted in a 12-fold increase in mononuclear cells having the morphologic appearance of blood monocytes. Most of these cells co-expressed CD14 and NRP1. After saline challenge, BAL mononuclear cells demonstrated little APC function. Following SAC, BAL mononuclear cells showed function equal to pDC from blood and greater than blood monocytes. Purified NRP1+ cells from BAL had even greater function than pDC cells from blood (P = .008). Using consistent sources of APC, enhanced proliferation of TC from lung compared to blood was also demonstrated (P = .002). CONCLUSIONS The marked increase in APC function for allergen-specific TC proliferation during allergic inflammation is largely due to the recruitment of monocytes and dendritic cells. There is also an enhanced response in the lung TC population, consistent with recruitment of allergen-specific T cells. Interactions between recruited APC and TC may occur as an early event promoting allergic airway inflammation.
Collapse
Affiliation(s)
- M C Liu
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - H Q Xiao
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - L M Breslin
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - B S Bochner
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J T Schroeder
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Kitoko JZ, de Castro LL, Nascimento AP, Abreu SC, Cruz FF, Arantes AC, Xisto DG, Martins MA, Morales MM, Rocco PRM, Olsen PC. Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clin Exp Allergy 2017; 48:205-216. [PMID: 29068567 DOI: 10.1111/cea.13048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prophylactic administration of mesenchymal stromal cells (MSCs) derived from adipose (AD-MSC) and bone marrow tissue (BM-MSC) in ovalbumin-induced asthma hinders inflammation in a Treg-dependent manner. It is uncertain whether MSCs act through Tregs when inflammation is already established in asthma induced by a clinically relevant allergen. OBJECTIVE Evaluate the effect of therapeutic administration of MSCs on inflammation and Treg cells in house dust mite (HDM)-induced asthma. METHODS BM-MSCs and AD-MSCs were administered intratracheally to C57BL/6 mice 1 day after the last HDM challenge. Lung function, remodelling and parenchymal inflammation were assayed 3 or 7 days after MSCs treatment, through invasive plethysmography and histology, respectively. Bronchoalveolar lavage fluid (BALF) and mediastinal lymph nodes (mLNs) were assessed regarding the inflammatory profile by flow cytometry, ELISA and qRT-PCR. MSCs were studied regarding their potential to induce Treg cells from primed and unprimed lymphocytes in vitro. RESULTS BM-MSCs, but not AD-MSCs, reduced lung influx of eosinophils and B cells and increased IL-10 levels in HDM-challenged mice. Neither BM-MSCs nor AD-MSCs reduced lung parenchymal inflammation, airway hyperresponsiveness or mucus hypersecretion. BM-MSCs and AD-MSCs did not up-regulate Treg cell counts within the airways and mLNs, but BM-MSCs decreased the pro-inflammatory profile of alveolar macrophages. Co-culture of BM-MSCs and AD-MSCs with allergen-stimulated lymphocytes reduced Treg cell counts in a cell-to-cell contact-independent manner, although co-culture of both MSCs with unprimed lymphocytes up-regulated Treg cell counts. CONCLUSIONS MSCs therapeutically administered exert anti-inflammatory effects in the airway of HDM-challenged mice, but do not ameliorate lung function or remodelling. Although MSC pre-treatment can increase Treg cell numbers, it is highly unlikely that the MSCs will induce Treg cell expansion when lymphocytes are allergenically primed in an established lung inflammation.
Collapse
Affiliation(s)
- J Z Kitoko
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L L de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P Nascimento
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Arantes
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - D G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Martins
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - M M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. J Immunol Res 2017; 2017:5134760. [PMID: 29387732 PMCID: PMC5745769 DOI: 10.1155/2017/5134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized in antigen presentation and play a pivotal role in the initiation, progression, and perpetuation of adaptive immune responses. Emerging immune pathways are being recognized increasingly for DCs and their subsets that differentially regulate T lymphocyte function based on the type and interactions with the antigen. However, these interactions not only alter the signaling process and DC function but also render metabolic plasticity. The current review focuses on the metabolic cues of DCs that coordinate DC activation and differentiation and discuss whether targeting these fundamental cellular processes have implications to control airway inflammation and adaptive immunity. Therefore, strategies using metabolism-based therapeutic manipulation of DC functions could be developed into novel treatments for airway inflammation and asthma.
Collapse
|
40
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, Bartlett NW, Stavropoulos A, Boon L, Rovina N, Papadopoulos NG, Johnston SL, Andreakos E. Plasmacytoid dendritic cells drive acute asthma exacerbations. J Allergy Clin Immunol 2017; 142:542-556.e12. [PMID: 29054692 DOI: 10.1016/j.jaci.2017.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although acute exacerbations, mostly triggered by viruses, account for the majority of hospitalizations in asthmatic patients, there is still very little known about the pathophysiologic mechanisms involved. Plasmacytoid dendritic cells (pDCs), prominent cells of antiviral immunity, exhibit proinflammatory or tolerogenic functions depending on the context, yet their involvement in asthma exacerbations remains unexplored. OBJECTIVES We sought to investigate the role of pDCs in allergic airway inflammation and acute asthma exacerbations. METHODS Animal models of allergic airway disease (AAD) and virus-induced AAD exacerbations were used to dissect pDC function in vivo and unwind the potential mechanisms involved. Sputum from asthmatic patients with stable disease or acute exacerbations was further studied to determine the presence of pDCs and correlation with inflammation. RESULTS pDCs were key mediators of the immunoinflammatory cascade that drives asthma exacerbations. In animal models of AAD and rhinovirus-induced AAD exacerbations, pDCs were recruited to the lung during inflammation and migrated to the draining lymph nodes to boost TH2-mediated effector responses. Accordingly, pDC depletion after allergen challenge or during rhinovirus infection abrogated exacerbation of inflammation and disease. Central to this process was IL-25, which was induced by allergen challenge or rhinovirus infection and conditioned pDCs for proinflammatory function. Consistently, in asthmatic patients pDC numbers were markedly increased during exacerbations and correlated with the severity of inflammation and the risk for asthma attacks. CONCLUSIONS Our studies uncover a previously unsuspected role of pDCs in asthma exacerbations with potential diagnostic and prognostic implications. They also propose the therapeutic targeting of pDCs and IL-25 for the treatment of acute asthma.
Collapse
Affiliation(s)
- Aikaterini-Dimitra Chairakaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Saridaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Pyrillou
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Marios-Angelos Mouratis
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ourania Koltsida
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Ross P Walton
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Athanasios Stavropoulos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Nikoletta Rovina
- 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Nikolaos G Papadopoulos
- Institute of Human Development, University of Manchester, Manchester, United Kingdom; A. Kyriakou Children's Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Evangelos Andreakos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
42
|
Bratke K, Fritz L, Nokodian F, Geißler K, Garbe K, Lommatzsch M, Virchow JC. Differential regulation of PD-1 and its ligands in allergic asthma. Clin Exp Allergy 2017; 47:1417-1425. [PMID: 28865147 DOI: 10.1111/cea.13017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Targeting PD-1/PD-1 ligand signalling is an established treatment option for cancer. The role of these molecules in allergic asthma has been investigated in several mouse studies yielding conflicting results. However, human studies investigating the expression and regulation of PD-1 and its ligands in allergic inflammation are lacking. OBJECTIVE To analyse the expression and regulation of PD-1 and its ligands in human allergic asthma. METHODS The well-established human asthma model of segmental allergen challenge (SAC) was used to analyse the regulation of PD-1 and its ligands PD-L1 and PD-L2 on T lymphocytes and dendritic cells by flow cytometry. The impact of immunoglobulin E (IgE)-mediated signalling on PD-L1 expression was analysed on isolated plasmacytoid dendritic cells (pDCs). RESULTS PD-1 expression by blood CD4+ T cells was negatively associated with total and specific (against the allergen used for provocation) IgE serum concentrations. Twenty-four hours after SAC, a small decrease in endobronchial PD-1+ CD4+ T cells was accompanied by an increase in PD-L1 expression on endobronchial myeloid dendritic cells (mDCs) and pDCs. The PD-L1 up-regulation on pDCs was not induced by IgE-mediated mechanisms. In contrast, PD-L2 was only detected on endobronchial mDCs and was significantly down-regulated 24 hours after SAC. CONCLUSION AND CLINICAL RELEVANCE This study shows, for the first time, an association of a low PD-1 expression by circulating CD4+ T cells with high total and specific (against the allergen used for provocation) IgE concentrations in allergic asthma. In addition, we demonstrate a differential regulation of PD-1 ligands on endobronchial DCs after allergen challenge which may favour Th2 inflammation. Therefore, modulating PD-1 ligand-mediated pathways might be a promising target in allergic asthma.
Collapse
Affiliation(s)
- K Bratke
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - L Fritz
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - F Nokodian
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - K Geißler
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - K Garbe
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - M Lommatzsch
- Department of Pneumology, University of Rostock, Rostock, Germany
| | - J C Virchow
- Department of Pneumology, University of Rostock, Rostock, Germany
| |
Collapse
|
43
|
Dendritic cell subset expression in severe chronic rhinosinusitis with nasal polyps. Curr Opin Allergy Clin Immunol 2017; 17:1-4. [PMID: 27870663 DOI: 10.1097/aci.0000000000000328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Two main pillars are implicated in nasal polyposis development: a severe imbalance in immunomodulation and a mechanical dysfunction because of an abnormal remodeling process. Dendritic cells play a crucial role in the link between innate and adaptive immune response and orchestrating the T-cell response and are implicated in the severe inflammatory process found in nasal polypoid tissue. This review summarizes the existent knowledge about dendritic cells in nasal polyposis. RECENT FINDINGS Dendritic cells are found increased in nasal polyposis, regardless of subset. Of interest, plasmacytoid dendritic cells are decreased in patients with a more severe Th2 profile, suggesting an important role of the cytokines milieu in their functional response or that plasmacytoid dendritic cell could act mitigating the inflamed process found in polypoid tissue. SUMMARY Understanding the dendritic cell subset expression in different environments, as well as the effect of these subsets on T-cell differentiation will greatly improve the development of new therapies in nasal polyposis.
Collapse
|
44
|
Enhanced expression of PD-L1 and IFN-γ on dendritic cells is associated with BCG-induced Th2 inhibition. Cytokine 2017; 99:163-172. [PMID: 28917991 DOI: 10.1016/j.cyto.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the exposure to Mycobacterium bovis bacillus Calmette-Guérin (BCG) prevents the development of allergy and the airway dendritic cells (DCs) may be involved in this protective effect. However, studies to better characterize the specific interactions between BCG and DCs and their role in this mycobacteria-mediated Th2 cell suppression are still ongoing. This study aimed to evaluate the effect of the neonatal BCG vaccination in the innate immune response in a mouse model of ovalbumin (OVA)-induced airway inflammation. BCG treated neonatal BALB/c mice were sensitized and challenged with aerosolized OVA. Twenty-four hours after the last challenge, samples were collected for analysis. The intranasal BCG treatment inhibited the allergic Th2-response by decreasing the allergen-induced eosinophilic inflammation, EPO activity, CCL11, IL-25, TSLP, IL-4 and IL-5 lung levels, and serum levels of IgE. Mycobacteria treatment increased lung levels of IL-10 and TGF-β, and the TLR2 and TLR4 expressions by pulmonary CD11c+CD103+CD8α+ DCs. Additionally an enhanced expression of PD-L1 was observed besides an increased production of IFN-γ by these cells. These results indicated that neonatal BCG vaccination inhibits key features of allergic airway inflammation, probably by promoting T regulatory immune response via an enhanced expression of TLR2, TLR4 and PD-L1 on DCs.
Collapse
|
45
|
Vroman H, Hendriks RW, Kool M. Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation? Front Immunol 2017; 8:941. [PMID: 28848549 PMCID: PMC5552666 DOI: 10.3389/fimmu.2017.00941] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a prevalent chronic heterogeneous inflammatory disease of the airways, leading to reversible airway obstruction, in which various inflammatory responses can be observed. Mild to moderate asthma patients often present with a Th2-mediated eosinophilic inflammation whereas in severe asthma patients, a Th17-associated neutrophilic or combined Th2 and Th17-mediated eosinophilic/neutrophilic inflammation is observed. The differentiation of these effector Th2 and Th17-cells is induced by allergen-exposed dendritic cells (DCs) that migrate toward the lung draining lymph node. The DC lineage comprises conventional DCs (cDCs) and plasmacytoid DCs (pDCs), of which the cDC lineage consists of type 1 cDCs (cDC1s) and cDC2s. During inflammation, also monocytes can differentiate into so-called monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny, localization, and in their functional properties. New identification tools and the availability of transgenic mice targeting specific DC subsets enable the investigation of how these different DC subsets contribute to or suppress asthma pathogenesis. In this review, we will discuss mechanisms used by different DC subsets to elicit or hamper the pathogenesis of both Th2-mediated eosinophilic asthma and more severe Th17-mediated neutrophilic inflammation.
Collapse
Affiliation(s)
- Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
46
|
El-Gammal A, Oliveria JP, Howie K, Watson R, Mitchell P, Chen R, Baatjes A, Smith S, Al-Sajee D, Hawke TJ, Killian KJ, Gauvreau GM, O'Byrne PM. Allergen-induced Changes in Bone Marrow and Airway Dendritic Cells in Subjects with Asthma. Am J Respir Crit Care Med 2017; 194:169-77. [PMID: 26844926 DOI: 10.1164/rccm.201508-1623oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Dendritic cells (DCs) are antigen-presenting cells essential for the initiation of T-cell responses. Allergen inhalation increases the number of airway DCs and the release of epithelial-derived cytokines, such as IL-33 and thymic stromal lymphopoietin (TSLP), that activate DCs. OBJECTIVES To examine the effects of inhaled allergen on bone marrow production of DCs and their trafficking into the airways in subjects with allergic asthma, and to examine IL-33 and TSPL receptor expression on DCs. METHODS Bone marrow, peripheral blood, bronchoalveolar lavage (BAL), and bronchial biopsies were obtained before and after inhalation of diluent and allergen from subjects with asthma that develop allergen-induced dual responses. Classical DCs (cDCs) were cultured from bone marrow CD34(+) cells. cDC1s, cDC2s, and plasmacytoid DCs were measured in bone marrow aspirates, peripheral blood, and BAL by flow cytometry, and cDCs were quantified in bronchial biopsies by immunofluorescence staining. MEASUREMENTS AND MAIN RESULTS Inhaled allergen increased the number of cDCs grown from bone marrow progenitors, and cDCs and plasmacytoid DCs in bone marrow aspirates 24 hours after allergen. Allergen also increased the expression of the TSLP receptor, but not the IL-33 receptor, on bone marrow DCs. Finally, inhaled allergen increased the percentage of cDC1s and cDC2s in BAL but only cDC2s in bronchial tissues. CONCLUSIONS Inhaled allergen increases DCs in bone marrow and trafficking of DCs into the airway, which is associated with the development airway inflammation in subjects with allergic asthma. Inhaled allergen challenge also increases expression of TSLP, but not IL-33, receptors on bone marrow DCs.
Collapse
Affiliation(s)
- Amani El-Gammal
- 1 Firestone Institute of Respiratory Health.,2 Department of Medicine, and
| | | | | | | | | | - Ruchong Chen
- 1 Firestone Institute of Respiratory Health.,3 Guangzhou Institute of Respiratory Disease, 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Dhuha Al-Sajee
- 4 Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Thomas J Hawke
- 4 Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | | | | | - Paul M O'Byrne
- 1 Firestone Institute of Respiratory Health.,2 Department of Medicine, and
| |
Collapse
|
47
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
48
|
Tworek D, Smith SG, Salter BM, Baatjes AJ, Scime T, Watson R, Obminski C, Gauvreau GM, O'Byrne PM. IL-25 Receptor Expression on Airway Dendritic Cells after Allergen Challenge in Subjects with Asthma. Am J Respir Crit Care Med 2017; 193:957-64. [PMID: 26625138 DOI: 10.1164/rccm.201509-1751oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RATIONALE IL-25 is an epithelial-derived cytokine, whose effects are mediated by the IL-25 receptor (IL-17RB), and that has been implicated in the pathogenesis of allergic disease and airway viral responses. Airway myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) are professional antigen-presenting cells. pDCs may play a protective role in asthma and are key players in the innate immune response through recognition of microbial products via Toll-like receptors (TLRs). The effects of inhaled allergens on the expression of IL-17RB by mDCs and pDCs, and the effects of IL-25 on pDCs, are unknown. OBJECTIVES To evaluate allergen-induced changes in IL-17RB expression by mDCs and pDCs and to investigate the effects of IL-25 on pDCs. METHODS Patients with mild atopic asthma (n = 13) were challenged with inhaled allergen. Blood and sputum DCs were enumerated and IL-17RB expression was determined by flow cytometry before and 7 and 24 hours after allergen challenge. The effects of IL-25 on pDCs in vitro were also assessed. MEASUREMENTS AND MAIN RESULTS Inhaled allergen significantly increased mDC and pDC numbers in sputum but not in blood. The percentage of IL-17RB(+) mDCs and pDCs was significantly increased in blood and sputum 24 hours after challenge. IL-25 up-regulated TLR9 expression by pDCs and orchestrated the responses to TLR9 ligation. CONCLUSIONS IL-17RB is up-regulated on blood and sputum mDCs and pDCs after allergen inhalation. IL-25 modulates pDC function through an effect on TLR9 expression.
Collapse
Affiliation(s)
- Damian Tworek
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and.,2 Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Steven G Smith
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Brittany M Salter
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Adrian J Baatjes
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Tara Scime
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Rick Watson
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Caitlin Obminski
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Gail M Gauvreau
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Paul M O'Byrne
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
49
|
Malmström K, Lohi J, Sajantila A, Jahnsen FL, Kajosaari M, Sarna S, Mäkelä MJ. Immunohistology and remodeling in fatal pediatric and adolescent asthma. Respir Res 2017; 18:94. [PMID: 28511697 PMCID: PMC5434550 DOI: 10.1186/s12931-017-0575-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Thickening of reticular basement membrane, increased airway smooth muscle mass and eosinophilic inflammation are found in adult fatal asthma. At the present study the histopathology of fatal paediatric and adolescent asthma is evaluated. Methods Post-mortem lung autopsies from 12 fatal asthma cases and 8 non-asthmatic control subjects were examined. Thickness of reticular basement membrane (RBM) and percentage of airway smooth muscle (ASM%) mass area were measured and inflammatory cells were counted. Patient records were reviewed for clinical history. Results The age range of the cases was from 0.9 to 19.5 years, eight were males and five had received inhaled corticosteroids. Thickened RBM was detected in majority of the cases without any correlation to treatment delay, age at onset of symptoms or diagnosis. In the large airways ASM was clearly increased in one third of the cases whereas the median ASM% did not differ from that in healthy controls (14.0% vs. 14.0%). In small airways no increase of ASM was found, instead mucous plugs were seen in fatal asthma. The number of eosinophils, plasmacytoid dendritic cells, macrophages, and B-cells were significantly increased in fatal asthma cases compared with controls and the two latter correlated with the length of the fatal exacerbation. Conclusions The findings highlight the strong presence of eosinophils and mucous plugs even in small airways in children and adolescents with fatal asthma. Thickened RBM was obvious in majority of the patients. Contrary to our hypothesis, increased ASM% was detected in only one third of the patients.
Collapse
Affiliation(s)
- Kristiina Malmström
- Dept. of Allergy, University of Helsinki and Helsinki University Hospital, PO Box 160, FI-00029, Helsinki, Finland.
| | - Jouko Lohi
- Dept. of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Sajantila
- Dept. of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Frode L Jahnsen
- Dept. of Pathology and Centre for Immune Regulation, University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Merja Kajosaari
- Hospital for Children and Adolescents Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Sarna
- Dept. of Public Health, University of Helsinki, Helsinki, Finland
| | - Mika J Mäkelä
- Dept. of Allergy, University of Helsinki and Helsinki University Hospital, PO Box 160, FI-00029, Helsinki, Finland
| |
Collapse
|
50
|
Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, Bellier B, Togbe D, Ryffel B, Klatzmann D, Baron-Bodo V, Moingeon P. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol 2017; 10:695-704. [PMID: 27731323 DOI: 10.1038/mi.2016.87] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/30/2016] [Indexed: 02/04/2023]
Abstract
The complement subunit C1q was recently identified as a marker for monocyte-derived regulatory dendritic cells supporting the differentiation of interleukin (IL)-10-secreting CD4+ T cells with a suppressive activity. Furthermore, C1q expression is upregulated in peripheral blood mononuclear cells of allergic patients in the course of successful allergen immunotherapy. Herein, we investigated a potential direct role of C1q in downregulating allergic inflammation. In mice with ovalbumin (OVA) or birch pollen (BP)-induced allergic asthma, C1q is as efficacious as dexamethasone to reduce both airway hyperresponsiveness (AHR), eosinophil, and ILC2 infiltrates in bronchoalveolar lavages, as well as allergen-specific T helper 2 cells in the lungs. Administration of C1q does not expand IL-10+/Foxp3+ regulatory T cells in the lungs, spleen, or in the blood. Depletion of plasmacytoid dendritic cells (pDCs) abrogates the capacity of C1q to reduce AHR and eosinophilic infiltrates in OVA-sensitized mice. Also C1q treatment inhibits the activation of human and mouse pDCs by CpGs, thereby demonstrating a critical role for pDCs in the anti-inflammatory activity of C1q. We conclude that regulatory dendritic cells can mediate a potent direct anti-inflammatory activity via the expression and/or secretion of molecules such as C1q, independently of their capacity to expand the pool of regulatory T cells.
Collapse
Affiliation(s)
- L Mascarell
- Research Department, Stallergenes Greer, Antony, France
| | - S Airouche
- Research Department, Stallergenes Greer, Antony, France
| | - N Berjont
- Research Department, Stallergenes Greer, Antony, France
| | - C Gary
- Research Department, Stallergenes Greer, Antony, France.,CEA, Fontenay-aux-roses, France
| | - C Gueguen
- Research Department, Stallergenes Greer, Antony, France
| | - G Fourcade
- CNRS UMR7211 & INSERM U959, Hôpital Pitié-Salpêtrière, Paris, France
| | - B Bellier
- CNRS UMR7211 & INSERM U959, Hôpital Pitié-Salpêtrière, Paris, France
| | - D Togbe
- Artimmune SAS, Orléans, France
| | - B Ryffel
- CNRS UMR 7355-University of Orléans, Orléans, France
| | - D Klatzmann
- CNRS UMR7211 & INSERM U959, Hôpital Pitié-Salpêtrière, Paris, France
| | - V Baron-Bodo
- Research Department, Stallergenes Greer, Antony, France
| | - P Moingeon
- Research Department, Stallergenes Greer, Antony, France
| |
Collapse
|