1
|
Sikdar S, Mitra D, Das O, Bhaumik M, Dutta S. The functional antagonist of sphingosine-1-phosphate, FTY720, impairs gut barrier function. Front Pharmacol 2024; 15:1407228. [PMID: 39224783 PMCID: PMC11366638 DOI: 10.3389/fphar.2024.1407228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
FTY720 or fingolimod is a known functional antagonist of sphingosine-1-phosphate (S1P), and it is effective in treating multiple sclerosis and preventing inflammatory bowel disease (IBD). Evidence shows that its use in mice can increase the susceptibility to mucosal infections. Despite the significant contribution of S1P to barrier function, the effect of the administration of FTY720 on the mucosal barrier has never been investigated. In this study, we looked into how FTY720 therapy affected the function of the gut barrier susceptibility. Administration of FTY720 to C57BL/6 mice enhances the claudin-2 expression and reduces the expression of claudin-4 and occludin, as studied by qPCR, Western blot, and immunofluorescence. FTY720 inhibits the Akt-mTOR pathway to decrease occludin and claudin-4 expression and increase claudin-2 expression. FTY720 treatment induced increased colonic inflammation, with notably greater immune cell infiltration, colon histopathology, and increased production of TNF-α, IFN-γ, CXCL-1, and CXCL-2 than that in control mice. Taking into account the close association of "the leaky gut" and gut dysbiosis among the major diseases, we therefore can infer that the vigilance of gut pathology should be maintained, where FTY720 is used as a treatment option.
Collapse
Affiliation(s)
- Sohini Sikdar
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Debmalya Mitra
- Center of Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Oishika Das
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Shanta Dutta
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| |
Collapse
|
2
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
3
|
Camacho-Muñoz D, Niven J, Kucuk S, Cucchi D, Certo M, Jones SW, Fischer DP, Mauro C, Nicolaou A. Omega-3 polyunsaturated fatty acids reverse the impact of western diets on regulatory T cell responses through averting ceramide-mediated pathways. Biochem Pharmacol 2022; 204:115211. [PMID: 35985403 DOI: 10.1016/j.bcp.2022.115211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
Western diet (WD), high in sugar and fat, promotes obesity and associated chronic low-grade pro-inflammatory environment, leading to impaired immune function, reprogramming of innate and adaptive immune cells, and development of chronic degenerative diseases, including cardiovascular disease. Increased concentrations of circulating and tissue ceramides contribute to inflammation and cellular dysfunction common in immune metabolic and cardiometabolic disease. Therefore, ceramide-lowering interventions have been considered as strategies to improve adipose tissue health. Here, we report the ability of omega-3 polyunsaturated fatty acids (n-3PUFA) to attenuate inflammatory phenotypes promoted by WD, through ceramide-dependent pathways. Using an animal model, we show that enrichment of WD diet with n-3PUFA, reduced the expression of ceramide synthase 2 (CerS2), and lowered the concentration of long-chain ceramides (C23-C26) in plasma and adipose tissues. N-3PUFA also increased prevalence of the anti-inflammatory CD4+Foxp3+ and CD4+Foxp3+CD25+ Treg subtypes in lymphoid organs. The CerS inhibitor FTY720 mirrored the effect of n-3PUFA. Treatment of animal and human T cells with ceramide C24 in vitro, reduced CD4+Foxp3+ Treg polarisation and IL-10 production, and increased IL-17, while it decreased Erk and Akt phosphorylation downstream of T cell antigen receptors (TCR). These findings suggest that molecular mechanisms mediating the adverse effect of ceramides on regulatory T lymphocytes, progress through reduced TCR signalling. Our findings suggest that nutritional enrichment of WD with fish oil n-3PUFA can partially mitigate its detrimental effects, potentially improving the low-grade inflammation associated with immune metabolic disease. Compared to pharmacological interventions, n-3PUFA offer a simpler approach that can be accommodated as lifestyle choice.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jennifer Niven
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Salih Kucuk
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Deborah P Fischer
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| |
Collapse
|
4
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Rahimi RA, Nepal K, Cetinbas M, Sadreyev RI, Luster AD. Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease. J Exp Med 2020; 217:e20190865. [PMID: 32579670 PMCID: PMC7478729 DOI: 10.1084/jem.20190865] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/25/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023] Open
Abstract
Memory CD4+ T helper type 2 (Th2) cells drive allergic asthma, yet the mechanisms whereby tissue-resident memory Th2 (Th2 Trm) cells and circulating memory Th2 cells collaborate in vivo remain unclear. Using a house dust mite (HDM) model of allergic asthma and parabiosis, we demonstrate that Th2 Trm cells and circulating memory Th2 cells perform nonredundant functions. Upon HDM rechallenge, circulating memory Th2 cells trafficked into the lung parenchyma and ignited perivascular inflammation to promote eosinophil and CD4+ T cell recruitment. In contrast, Th2 Trm cells proliferated near airways and induced mucus metaplasia, airway hyperresponsiveness, and airway eosinophil activation. Transcriptional analysis revealed that Th2 Trm cells and circulating memory Th2 cells share a core Th2 gene signature but also exhibit distinct transcriptional profiles. Th2 Trm cells express a tissue-adaptation signature, including genes involved in regulating and interacting with extracellular matrix. Our findings demonstrate that Th2 Trm cells and circulating memory Th2 cells are functionally and transcriptionally distinct subsets with unique roles in promoting allergic airway disease.
Collapse
Affiliation(s)
- Rod A. Rahimi
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Keshav Nepal
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Andrew D. Luster
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Melamed E, Lee MW. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front Immunol 2020; 10:2954. [PMID: 31998289 PMCID: PMC6965059 DOI: 10.3389/fimmu.2019.02954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades, the field of multiple sclerosis (MS) has been transformed by the rapidly expanding arsenal of new disease modifying therapies (DMTs). Current DMTs for MS aim to modulate innate and adaptive immune responses toward a less inflammatory phenotype. Since the immune system is also critical for identifying and eliminating malignant cells, immunosuppression from DMTs may predictably increase the risk of cancer development in MS patients. Compared with healthy controls, patients with autoimmune conditions, such as MS, may already have a higher risk of developing certain malignancies and this risk may further be magnified by DMT treatments. For those patients who develop both MS and cancer, these comorbid presentations create a challenge for clinicians on how to therapeutically address management of cancer in the context of MS autoimmunity. As there are currently no accepted guidelines for managing MS patients with prior history of or newly developed malignancy, we undertook this review to evaluate the molecular mechanisms of current DMTs and their potential for instigating and treating cancer in patients living with MS.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, Austin, TX, United States
| | - Michael William Lee
- Department of Oncology, Department of Medical Education, Dell Medical School, Austin, TX, United States
| |
Collapse
|
7
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
Saxena N, Won J, Choi S, Singh AK, Singh I. S-nitrosoglutathione reductase (GSNOR) inhibitor as an immune modulator in experimental autoimmune encephalomyelitis. Free Radic Biol Med 2018; 121:57-68. [PMID: 29694854 PMCID: PMC6083447 DOI: 10.1016/j.freeradbiomed.2018.04.558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
We previously reported that S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, attenuated TH17-mediated immune responses in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Cellular GSNO homeostasis is regulated via its synthesis by reaction between nitric oxide and glutathione and its enzymatic catabolism by GSNO reductase (GSNOR). In this study, we evaluated potential of reversible inhibitor of GSNOR (N6022) in comparison with exogenous GSNO in immunopathogenesis of EAE. Daily treatment of EAE mice with N6022 or exogenous GSNO significantly attenuated the clinical disease of EAE, but N6022 treatment showed greater efficacy than GSNO. Both N6022 and exogenous GSNO treatments increased the spleen levels of GSNO, as documented by increased protein-associated S-nitrosothiols, and inhibited polarization and CNS effector function of proinflammatory TH17 cells while inducing the polarization and CNS effector function of anti-inflammatory CD4+ CD25+ FOXP3- regulatory T (Treg) cells. Moreover, N6022 further attenuated TH1 while inducing TH2 and CD4+ CD25+ FOXP3+ Treg in their polarization and CNS effector functions. Similar to GSNO, the N6022 treatment protected against the EAE disease induced demyelination. However, neither exogenous GSNO nor N6022 treatment did not cause significant systemic lymphopenic effect as compared to FTY720. Taken together, these data document that optimization of cellular GSNO homeostasis by GSNOR inhibitor (N6022) in NO metabolizing cells attenuates EAE disease via selective inhibition of pro-inflammatory subsets of CD4+ cells (TH1/TH17) while upregulating anti-inflammatory subsets of CD4+ cells (TH2/Treg) without causing lymphopenic effects and thus offers a potential treatment option for MS/EAE.
Collapse
MESH Headings
- Alcohol Dehydrogenase/antagonists & inhibitors
- Animals
- Benzamides/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Mice
- Mice, Inbred C57BL
- Protein S/metabolism
- Pyrroles/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
9
|
Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol Ther 2018; 185:34-49. [DOI: 10.1016/j.pharmthera.2017.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Molino S, Tate E, McKillop WM, Medin JA. Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy 2017; 9:1185-1198. [DOI: 10.2217/imt-2017-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids (SLs) are a class of essential, bioactive lipids. The SL family includes over 4000 distinct molecules, characterized by their sphingoid base (long-chain aliphatic amine) backbone. SLs are key components of cell membranes, yet their roles go well beyond structure. SLs are involved in many cellular processes including cell differentiation, apoptosis, growth arrest and senescence. As cancer cells routinely display increased growth properties and escape from cell death, it has been suggested that enzymes involved in SL synthesis or catabolism may be altered in cancer cells. In this review, we discuss the role of SL pathway enzymes in cancer, and in acquired resistance to therapy. The use of inhibitors and gene silencing approaches targeting these SL pathways is also explored. Finally, we elaborate on the role of SL pathway enzymes in the tumor microenvironment and their effect on immune cell function.
Collapse
Affiliation(s)
- S Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - E Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - WM McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - JA Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medical Biophysics & the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Geng S, Zhong Y, Zhou X, Zhao G, Xie X, Pei Y, Liu H, Zhang H, Shi Y, Wang B. Induced Regulatory T Cells Superimpose Their Suppressive Capacity with Effector T Cells in Lymph Nodes via Antigen-Specific S1p1-Dependent Egress Blockage. Front Immunol 2017. [PMID: 28638384 PMCID: PMC5461288 DOI: 10.3389/fimmu.2017.00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) restrict overexuberant lymphocyte activation. While close proximity between Tregs and their suppression targets is important for optimal inhibition, and literature indicates that draining lymph nodes (LNs) may serve as a prime location for the suppression, signaling details orchestrating this event are not fully characterized. Using a protocol to enable peripheral generation of inducible antigen-specific Tregs (asTregs) to control allergen-induced asthma, we have identified an antigen-specific mechanism that locks asTregs within hilar LNs which in turn suppresses airway inflammation. The suppressive asTregs, upon antigen stimulation in the LN, downregulate sphingosine-1-phosphate receptor 1 egress receptor expression. These asTregs in turn mediate the downregulation of the same receptor on incoming effector T cells. Therefore, asTregs and effector T cells are locked in these draining LNs for prolonged interactions. Disruption of individual steps of this retention sequence abolishes the inflammation controlled by asTregs. Collectively, this study identifies a new requirement of spatial congregation with their suppression targets essential for asTreg functions and suggests therapeutic programs via Treg traffic control.
Collapse
Affiliation(s)
- Shuang Geng
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaoyu Zhou
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| | - Gan Zhao
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaoping Xie
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Yechun Pei
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Hu Liu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Huiyuan Zhang
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Yan Shi
- Tsinghua-Peking Center for Life Sciences; Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
14
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Pleiotropic FTY720 Is a Specific and Potent Therapy for Hypertrophic Scars. J Invest Dermatol 2017; 137:1552-1561. [PMID: 28288846 DOI: 10.1016/j.jid.2017.02.978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/01/2023]
Abstract
Hypertrophic scarring (HS) is a fibrotic skin condition characterized by aberrant fibroblast phenotypes and excessive deposition of extracellular matrix components. 2-Amino-2-[2-(4-octylphenyl)]-1, 3-propanediol hydrochloride (FTY720), an immunomodulator approved for treating multiple sclerosis, is reported to attenuate fibrosis in multiple disease models. Here we found that FTY720 could significantly attenuate the proliferation and fibrosis in HS fibroblasts (HSFs) and in an animal HS model. Upon treating HSFs or normal dermal fibroblasts with FTY720 at different concentrations for different time periods, we found that FTY720 presented a pleiotropic effect specifically on HSFs but not NFs, including reducing cell viability, arresting cell cycle progression at the G0/G1 phase, promoting apoptosis, inhibiting migration and contraction, and suppressing the expressions of α-smooth muscle actin, collagen I, and collagen III. Mechanistic studies showed that the antifibrotic activities of FTY720 were potentially mediated through sphingosine 1-phosphate receptor 5 to inhibit the protein kinase B/mTOR/p70S6K, but not the Smad, signaling pathway. The in vitro actions of FTY720 also translated into a rabbit ear HS model, stimulating the healing of HS. These findings collectively suggest that FTY720 targets multiple phenotypes of HSFs and is a promising therapeutic agent for HS.
Collapse
|
16
|
Dun H, Song L, Ma A, Hu Y, Zeng L, Bai J, Zhang G, Zhang L, Koide K, Okada Y, Hanaoka K, Yamamoto R, Hirose J, Morokata T, Daloze P, Chen H. ASP0028 in combination with suboptimal-dose of tacrolimus in Cynomolgus monkey renal transplantation model. Transpl Immunol 2017; 40:57-65. [PMID: 28077266 DOI: 10.1016/j.trim.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
Abstract
FTY720, a S1P-receptor modulator, has shown to be effective in several transplant and autoimmune disease models, via modulating lymphocyte homing into secondary lymphoid organs (SLOs), and thereby reducing these cells in peripheral blood. ASP0028, a newly developed S1P1/S1P5-selective agonist, presented comparable efficacy to FTY720 and wider safety margins than FTY720. In this study, we assessed the efficacy and safety of ASP0028 co-administered with suboptimal-dose of tacrolimus in the Cynomolgus monkey renal transplantation model. Seven animals in group-1 or group-2 received mono-tacrolimus 1.0mg/kg once a day (QD), or ASP0028 0.6mg/kg plus tacrolimus 1.0mg/kg QD, respectively. Eight animals in group-3 received ASP0028 1.2mg/kg plus tacrolimus 1.0mg/kg QD. The allograft median survival time (MST) in group-2 and group-3 were significantly extended to 41 and 61.5days, versus that of 28days in group-1 (p=0.036 and 0.001, respectively). ASP0028 administration remarkably reduced absolute numbers of peripheral lymphocytes, particularly subsets of CD4+/ or CD8+/naive and central memory cells, CD4+/Treg cells, and to a lesser extent on B cells, but not CD4+/ or CD8+/effector memory cells and NK cells. These data show ASP0028 combined with suboptimal-dose of tacrolimus effectively prolongs renal allograft survival in nonhuman primates (NHPs) with well tolerated safety, supporting its further investigation to optimize CNI-sparing regimens.
Collapse
Affiliation(s)
- Hao Dun
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | - Lijun Song
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | - Anlun Ma
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | - Yanxin Hu
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | - Lin Zeng
- Laboratory Animals Center, the Academy of Military Medical Sciences, Beijing, China
| | - Jieying Bai
- Laboratory Animals Center, the Academy of Military Medical Sciences, Beijing, China
| | - Guangzhou Zhang
- Laboratory Animals Center, the Academy of Military Medical Sciences, Beijing, China
| | - Liangyan Zhang
- Laboratory Animals Center, the Academy of Military Medical Sciences, Beijing, China
| | - Kumi Koide
- Drug Discovery Research, Astellas Pharma Inc., Japan
| | - Yohei Okada
- Drug Discovery Research, Astellas Pharma Inc., Japan
| | - Kaori Hanaoka
- Drug Discovery Research, Astellas Pharma Inc., Japan
| | - Rie Yamamoto
- Drug Discovery Research, Astellas Pharma Inc., Japan
| | - Jun Hirose
- Drug Discovery Research, Astellas Pharma Inc., Japan
| | | | - Pierre Daloze
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | - Huifang Chen
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Canada.
| |
Collapse
|
17
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
18
|
Haas J, Schwarz A, Korporal-Kunke M, Jarius S, Wiendl H, Kieseier BC, Wildemann B. Fingolimod does not impair T-cell release from the thymus and beneficially affects Treg function in patients with multiple sclerosis. Mult Scler 2015; 21:1521-32. [DOI: 10.1177/1352458514564589] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/23/2014] [Indexed: 12/14/2022]
Abstract
Background: In multiple sclerosis (MS), disturbed T-cell homeostasis affects both conventional CD4+ T cells (Tcon) and regulatory T cells (Treg). Functionally, this is linked to a loss of Treg-suppressive properties. Concerns exist as to whether fingolimod might further aggravate Treg dysfunction by inhibiting thymic egress and, thus, promoting premature immunosenescence. Objective: The objective of this paper is to investigate whether fingolimod, by sequestration of developing cells in the thymus, might deteriorate numeric and/or functional disequilibrium of T-cell subtypes. Methods: We assessed numbers and phenotypes of blood Tcon and Treg in 74 MS patients treated with fingolimod and in 37 healthy donors. Treg and Tcon were also analyzed for immunoreactivity, suppressive function, sphingosine-1-phosphate-triggered (S1P) trafficking, and S1P-receptor expression. This was complemented by assessing surrogate markers of thymic T-cell development, including frequencies of cells expressing T-cell receptors (TCR) of dual specificity, and TCR diversity in Treg. Results: Fingolimod did not negatively affect naive T-cell phenotypes or markers of thymic T-cell development. By reducing CCR7-expressing Tcon, fingolimod increased relative proportions of Treg. As a result of this shift, fewer proliferative CCR7− Tcon became enriched and Treg-dysfunction was indirectly reversed. Conclusion: These observations argue against harmful interference of fingolimod with thymic T-cell output that, particularly in pediatric MS, might possibly counteract its beneficial effects.
Collapse
Affiliation(s)
- Jürgen Haas
- Department of Neurology, University Hospital of Heidelberg, Germany
| | | | | | - Sven Jarius
- Department of Neurology, University Hospital of Heidelberg, Germany
| | - Heinz Wiendl
- Department of Neurology – Inflammatory Disorders of the Nervous System and Neurooncology, University of Münster, Germany
| | | | | |
Collapse
|
19
|
Muls N, Dang HA, Sindic CJM, van Pesch V. Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PLoS One 2014; 9:e113025. [PMID: 25411844 PMCID: PMC4239031 DOI: 10.1371/journal.pone.0113025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs. Conclusions In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod.
Collapse
Affiliation(s)
- Nathalie Muls
- Neurochemistry Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Hong Anh Dang
- Neurochemistry Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Christian J. M. Sindic
- Neurochemistry Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
- * E-mail:
| |
Collapse
|
20
|
Prolonging survival of corneal transplantation by selective sphingosine-1-phosphate receptor 1 agonist. PLoS One 2014; 9:e105693. [PMID: 25216235 PMCID: PMC4162540 DOI: 10.1371/journal.pone.0105693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival.
Collapse
|
21
|
Baldi E, Guareschi A, Vitetta F, Senesi C, Curti E, Montepietra S, Simone AM, Immovilli P, Caniatti L, Tola MR, Pesci I, Montanari E, Sola P, Granella F, Motti L, Ferraro D. Previous treatment influences fingolimod efficacy in relapsing-remitting multiple sclerosis: results from an observational study. Curr Med Res Opin 2014; 30:1849-55. [PMID: 24831186 DOI: 10.1185/03007995.2014.921144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Fingolimod (FTY) is licensed as a disease-modifying treatment in highly active relapsing-remitting multiple sclerosis. The aim of the study was to evaluate the efficacy and safety of FTY in a real-life setting and to explore the possible role of clinical and MRI parameters, including previous treatment type, in predicting its efficacy. METHODS Clinical and MRI data was collected on 127 patients assigned to treatment with FTY in six multiple sclerosis centers in Emilia-Romagna, Italy, between August 2011 and June 2013. RESULTS During a mean follow-up period of 10 months (range 1-22), we observed a total of 47 relapses in 39 patients (30.7%); new T2 lesions or gadolinium-enhancing (Gd+) lesions were present at follow-up MRI in 32/71 patients (45%). Expanded disability status scale (EDSS) at the end of the follow-up period was not different when compared to the baseline EDSS. Serious adverse events occurred in three patients (2.4%). A higher proportion of patients previously treated with natalizumab showed clinical (41%) or MRI activity (54%). Previous treatment with natalizumab increased the risk of a relapse within 30 days (versus immunomodulatory drugs; OR: 4.3; p = 0.011) and at survival analysis (versus remaining patients; HR: 1.9; p = 0.046). Study limitations include a small population sample, a short observation period with variable timing of follow-up MRI and different baseline characteristics of patients previously treated with natalizumab compared to those treated with immunomodulatory drugs. CONCLUSIONS This study confirms the efficacy of FTY in reducing relapse rate in patients previously treated with immunomodulatory drugs, while it seems to be less effective in patients discontinuing natalizumab. Due to the short duration of follow-up it is not possible to evaluate disability progression; however, no difference was observed between the groups.
Collapse
Affiliation(s)
- Eleonora Baldi
- Neurology Unit, Department of Neuroscience/Rehabilitation, Azienda Ospedaliera-Universitaria S. Anna , Ferrara , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fingolimod attenuates splenocyte-induced demyelination in cerebellar slice cultures. PLoS One 2014; 9:e99444. [PMID: 24911000 PMCID: PMC4049809 DOI: 10.1371/journal.pone.0099444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/15/2014] [Indexed: 12/02/2022] Open
Abstract
The family of sphingosine-1-phosphate receptors (S1PRs) is G-protein-coupled, comprised of subtypes S1PR1-S1PR5 and activated by the endogenous ligand S1P. The phosphorylated version of Fingolimod (pFTY720), an oral therapy for multiple sclerosis (MS), induces S1PR1 internalisation in T cells, subsequent insensitivity to S1P gradients and sequestering of these cells within lymphoid organs, thus limiting immune response. S1PRs are also expressed in neuronal and glial cells where pFTY720 is suggested to directly protect against lysolecithin-induced deficits in myelination state in organotypic cerebellar slices. Of note, the effect of pFTY720 on immune cells already migrated into the CNS, prior to treatment, has not been well established. We have previously found that organotypic slice cultures do contain immune cells, which, in principle, could also be regulated by pFTY720 to maintain levels of myelin. Here, a mouse organotypic cerebellar slice and splenocyte co-culture model was thus used to investigate the effects of pFTY720 on splenocyte-induced demyelination. Spleen cells isolated from myelin oligodendrocyte glycoprotein immunised mice (MOG-splenocytes) or from 2D2 transgenic mice (2D2-splenocytes) both induced demyelination when co-cultured with mouse organotypic cerebellar slices, to a similar extent as lysolecithin. As expected, in vivo treatment of MOG-immunised mice with FTY720 inhibited demyelination induced by MOG-splenocytes. Importantly, in vitro treatment of MOG- and 2D2-splenocytes with pFTY720 also attenuated demyelination caused by these cells. In addition, while in vitro treatment of 2D2-splenocytes with pFTY720 did not alter cell phenotype, pFTY720 inhibited the release of the pro-inflammatory cytokines such as interferon gamma (IFNγ) and interleukin 6 (IL6) from these cells. This work suggests that treatment of splenocytes by pFTY720 attenuates demyelination and reduces pro-inflammatory cytokine release, which likely contributes to enhanced myelination state induced by pFTY720 in organotypic cerebellar slices.
Collapse
|
23
|
Matsui M, Shimizu Y, Doi H, Tomioka R, Nakashima I, Niino M, Kira JI. Japanese guidelines for fingolimod in multiple sclerosis: Putting into practice. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Makoto Matsui
- Department of Neurology; Kanazawa Medical University; Uchinada Town Japan
| | - Yuko Shimizu
- Department of Neurology; Tokyo Women's Medical University Hospital; Tokyo Japan
| | - Hikaru Doi
- Department of Neurology; Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital; Hiroshima Japan
| | - Ryo Tomioka
- Department of Neurology; Kanazawa Medical University; Uchinada Town Japan
| | - Ichiro Nakashima
- Department of Neurology; Tohoku University School of Medicine; Sendai Japan
| | - Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| | - Jun-ichi Kira
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences Kyushu University; Fukuoka Japan
| |
Collapse
|
24
|
Zhu J, Liu Y, Pi Y, Jia L, Wang L, Huang Y. Systemic application of sphingosine 1-phosphate receptor 1 immunomodulator inhibits corneal allograft rejection in mice. Acta Ophthalmol 2014; 92:e12-21. [PMID: 23910624 DOI: 10.1111/aos.12237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aims to investigate the effects of systemic application of sphingosine 1-phosphate receptor 1(S1P1) on allogeneic corneal transplantation in mice. METHODS A total of 112 BALB/c mice received corneal grafts from C57BL/6 donors. Recipients were randomly divided into seven groups and treated with intraperitoneal injections of S1P1 (5 mg/kg/days), cyclosporine A (5 mg/kg/days), dexamethasone (1 mg/kg/days) and rapamycin (2 mg/kg/days). S1P1was combined with rapamycin or cyclosporine A, and saline served as negative control. Serum levels of IL-2, IL-10, TGF-β1 and IFN-γ were measured by Elisa. The numbers of CD4+ T and regulatory (Treg) cell phenotype were measured by flow cytometry. Cytokine mRNA expression was analysed by real-time quantitative PCR. CD4+ T cells and cytokines were histologically identified by immunofluorescence staining. RESULTS Corneal graft survival was prolonged by intraperitoneal injections in S1P1 alone (mean survival time MST, 35.3 ± 5.6 days), S1P1 combined with rapamycin (MST, 38.7 ± 6.5 days) or S1P1 and cyclosporine A (MST, 32.7 ± 4.8 days) compared with the controls (MST, 14.6 ± 0.2 days; n = 5, p < 0.01). S1P1 alone increased CD4+ T (p < 0.01) and Treg cells (p < 0.01; n = 5) in the cervical and mesenteric lymph nodes compared with the controls and S1P1 + rapamycin (p < 0.05; n = 5). TGF-β1 and IL-10 mRNA transcriptions in corneal grafts following S1P1+ rapamycin increased (both p < 0.01; n = 3), and TGF-β1 and IL-10 in the serum level following S1P1 alone increased (both p < 0.01; n = 3). These results paralleled the findings obtained from immunofluorescence. CONCLUSION S1P1 has significant effect in corneal allograft rejection inhibition. The combined treatment of S1P1 and rapamycin results in synergistic effect.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, the First Affiliated Hospital of the Chinese PLA General Hospital, Beijing 100038, ChinaDepartment of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, ChinaDepartment of Ophthalmology, Chinese PLA Air force General Hospital, Beijing 100038, China
| | | | | | | | | | | |
Collapse
|
25
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Griffith JW, Luster AD. Targeting cells in motion: migrating toward improved therapies. Eur J Immunol 2013; 43:1430-5. [PMID: 23580465 PMCID: PMC3772080 DOI: 10.1002/eji.201243183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/31/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
The development of clinical therapeutics that interfere with the migration of leukocytes has revolutionized the treatment of multiple sclerosis and holds great promise for the treatment of a wide range of inflammatory diseases. As the molecules essential for the multi-step adhesion cascade that mediates cellular migration have been elucidated, the number of potential targets available to modulate leukocyte trafficking has increased exponentially. In this Viewpoint, we briefly review our current understanding of these mole-cular targets and how these targets vary by tissue and leukocyte subset with emphasis on T cells. We then describe the two currently approved therapeutics that target cell migration, natalizumab and fingolimod, and discuss how an improved understanding of their function could pave the way for the development of safer and more efficacious therapies for inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jason W. Griffith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Ferraro D, Federzoni L, Vitetta F, Simone AM, Cossarizza A, Nichelli PF, Sola P. Frequent early multiple sclerosis relapses during treatment with fingolimod: a paradoxical effect? Mult Scler 2013; 19:1550. [DOI: 10.1177/1352458513490549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- D Ferraro
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| | - L Federzoni
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| | - F Vitetta
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| | - AM Simone
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| | - A Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| | - PF Nichelli
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| | - P Sola
- Department of Neurosciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
28
|
Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm 2013; 2013:963748. [PMID: 23766567 PMCID: PMC3666288 DOI: 10.1155/2013/963748] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 04/12/2013] [Indexed: 01/28/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms. It is caused by an autoimmune response to self-antigens in a genetically susceptible individual induced by unknown environmental factors. Principal cells of the immune system that drive the immunopathological processes are T cells, especially of TH1 and TH17 subsets. However, in recent years, it was disclosed that regulatory T cells took part in, too. Subsequently, there was endeavour to develop ways how to re-establish their physiological functions. In this review, we describe known mechanisms of action, efficacy, and side-effects of contemporary and emerging MS immunotherapeutical agents on Treg cells and other cells of the immune system involved in the immunopathogenesis of the disease. Furthermore, we discuss how laboratory immunology can offer physicians its help in the diagnosis process and decisions what kind of biological therapy should be used.
Collapse
|
29
|
Regulatory T cells in allogeneic stem cell transplantation. Clin Dev Immunol 2013; 2013:608951. [PMID: 23737813 PMCID: PMC3662184 DOI: 10.1155/2013/608951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Growing evidence suggests that cellular adoptive immunotherapy is becoming an attractive though challenging approach in regulating tumor immunity and alloresponses in clinical transplantation. Naturally arising CD4+CD25+Foxp3+ regulatory T cells (Treg) have emerged as a key component in this regard. Over the last decade, a large body of evidence from preclinical models has demonstrated their crucial role in auto- and tumor immunity and has opened the door to their “first-in-man” clinical application. Initial studies in clinical allogeneic stem cell transplantation are very encouraging and may pave the way for other applications. Further improvements in Treg ex vivo or in vivo expansion technologies will simplify their global clinical application. In this review, we discuss the current knowledge of Treg biology and their potential for cell-based immunotherapy in allogeneic stem cell transplantation.
Collapse
|
30
|
Commodaro AG, Pedregosa JF, Peron JP, Brandão W, Rizzo LV, Bueno V. The imbalance between Treg and Th17 cells caused by FTY720 treatment in skin allograft rejection. Clinics (Sao Paulo) 2012; 67:805-13. [PMID: 22892927 PMCID: PMC3400173 DOI: 10.6061/clinics/2012(07)17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/14/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES FTY720 modulates CD4+T cells by the augmentation of regulatory T cell activity, secretion of suppressive cytokines and suppression of IL-17 secretion by Th17 cells. To further understand the process of graft rejection/acceptance, we evaluated skin allograft survival and associated events after FTY720 treatment. METHODS F1 mice (C57BL/6xBALB/c) and C57BL/6 mice were used as donors for and recipients of skin transplantation, respectively. The recipients were transplanted and either not treated or treated with FTY720 by gavage for 21 days to evaluate the allograft survival. In another set of experiments, the immunological evaluation was performed five days post-transplantation. The spleens, axillary lymph nodes and skin allografts of the recipient mice were harvested for phenotyping (flow cytometry), gene expression (real-time PCR) and cytokine (Bio-Plex) analysis. RESULTS The FTY720 treatment significantly increased skin allograft survival, reduced the number of cells in the lymph nodes and decreased the percentage of Tregs at this site in the C57BL/6 recipients. Moreover, the treatment reduced the number of graft-infiltrating cells and the percentage of CD4+ graft-infiltrating cells. The cytokine analysis (splenocytes) showed decreased levels of IL-10, IL-6 and IL-17 in the FTY720-treated mice. We also observed a decrease in the IL-10, IL-6 and IL-23 mRNA levels, as well as an increase in the IL-27 mRNA levels, in the splenocytes of the treated group. The FTY720-treated mice exhibited increased mRNA levels of IL-10, IL-27 and IL-23 in the skin graft. CONCLUSIONS Our results demonstrated prolonged but not indefinite skin allograft survival by FTY720 treatment. This finding indicates that the drug did not prevent the imbalance between Tr1 and Th17 cells in the graft that led to rejection.
Collapse
|
31
|
The sphingosine-1-phosphate analogue FTY720 impairs mucosal immunity and clearance of the enteric pathogen Citrobacter rodentium. Infect Immun 2012; 80:2712-23. [PMID: 22615252 DOI: 10.1128/iai.06319-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sphingosine-1-phosphate (S1P) analogue FTY720 is therapeutically efficacious in multiple sclerosis and in the prevention of transplant rejection. It prevents the migration of lymphocytes to sites of pathology by trapping them within the peripheral lymph nodes, mesenteric lymph nodes (MLNs), and Peyer's patches. However, evidence suggests that its clinical use may increase the risk of mucosal infections. We investigated the impact of FTY720 treatment on susceptibility to gastrointestinal infection with the mouse enteric pathogen Citrobacter rodentium. This attaching and effacing bacterium induces a transient bacterial colitis in immunocompetent mice that resembles human infection with pathogenic Escherichia coli. FTY720 treatment induced peripheral blood lymphopenia, trapped lymphocytes in the MLNs, and prevented the clearance of bacteria when mice were infected with luciferase-tagged C. rodentium. FTY720-treated C. rodentium-infected mice had enhanced colonic inflammation, with significantly higher colon mass, colon histopathology, and neutrophil infiltration than vehicle-infected animals. In addition, FTY720-treated infected mice had significantly lower numbers of colonic dendritic cells, macrophages, and T cells. Gene expression analysis demonstrated that FTY720-treated infected mice had an impaired innate immune response and a blunted mucosal adaptive immune response, including Th1 cytokines. The data demonstrate that the S1P analogue FTY720 adversely affects the immune response to and clearance of C. rodentium.
Collapse
|
32
|
Wu T, Zhang L, Xu K, Sun C, Lei T, Peng J, Liu G, Wang R, Zhao Y. Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol 2012; 27:30-8. [PMID: 22613676 DOI: 10.1016/j.trim.2012.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
A variety of immunosuppressive drugs are currently used in patients with allo-grafts or autoimmune diseases. Though the effects of rapamycin (RPM) and other immunosuppressant on the CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) were studied, their impact on Ag-specific Tregs during immune response was not well defined. In our studies, we adoptively transferred TCR-transgenic CD4(+)KJ1-26(+) T cells, CD4(+)KJ1-26(+)CD25(-) naïve T cells or CD4(+)KJ1-26(+)CD25(+) Tregs into syngeneic BALB/c mice. 24h later, we treated the recipients with OVA immunization and immunosuppressant including rapamycin (RPM), fingolimod (FTY720), cyclosporin A (CsA), mycophenolate mofetil (MMF), leflunomide (LEF), cyclophosphamide (Cy) or none, respectively. The levels and function of CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs in draining lymph nodes (dLNs) and spleens were determined at different time points. Significantly higher percentage and cell number of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs were observed in OVA immunized mice treated with RPM or FTY720 compared with mice that received OVA immunization alone. Furthermore, RPM augmented the population of functional iTregs in dLNs and spleens whereas inhibited nTregs during immune response. In contrast to RPM and FTY720, MMF, LEF, CsA, and Cy markedly decreased the levels of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs during immune response. Thus, different immunosuppressive drugs have distinct effects on the Ag-specific CD4(+)CD25(+)Foxp3(+) Tregs during immune response. The stronger inhibiting effects of MMF, LEF, CsA and Cy on CD4(+)CD25(+)Foxp3(+) Tregs than on T effectors may block the host immune tolerance potentiality.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Poti F, Costa S, Bergonzini V, Galletti M, Pignatti E, Weber C, Simoni M, Nofer JR. Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-R⁻/⁻) mice. Vascul Pharmacol 2012; 57:56-64. [PMID: 22459073 DOI: 10.1016/j.vph.2012.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/12/2012] [Accepted: 03/10/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Sphingosine 1-phosphate (S1P)--a lysosphingolipid present in HDL--exerts atheroprotective effects in vitro, while FTY720, a non-selective S1P mimetic inhibits atherosclerosis in LDL receptor-deficient (LDL-R⁻/⁻) mice under conditions of severe hypercholesterolemia. We here examined the effect of FTY720 and a selective S1P receptor type 1 agonist CYM5442 on atherosclerosis in moderately hypercholesterolemic LDL-R⁻/⁻ mice. METHODS AND RESULTS LDL-R⁻/⁻ mice fed Western diet (0.25% cholesterol) were given FTY720 (0.4 mg/kg/day) or CYM5442 (2.0 mg/kg/day) for 18 weeks. FTY720 but not CYM5422 persistently lowered blood lymphocytes, depleted CD4⁺ and CD8⁺ T cells in spleen and lymph nodes, and reduced splenocyte IL-2 secretion. However, both compounds reduced the activity of splenic and peritoneal macrophages as inferred from the down-regulated CD68 and MHC-II expression in CD11b⁺ cells and the reduced IL-6 secretion in response to LPS, respectively. CYM5442 and FTY720 reduced weight gain, white adipose tissue depots and fasting glucose suggesting improvement of metabolic control, but failed to influence atherosclerosis in LDL-R⁻/⁻ mice. CONCLUSION Despite down-regulating macrophage function and--in case of FTY720--altering lymphocyte distribution CYM5442 and FTY720 fail to affect atherosclerosis in moderately hypercholesterolemic LDL-R⁻/⁻ mice. We hypothesize that S1P mimetics exert atheroprotective effects only under conditions of increased cholesterol burden exacerbating vascular inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Body Weight/immunology
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Fingolimod Hydrochloride
- Genes, MHC Class II/immunology
- Indans/pharmacology
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Oxadiazoles/pharmacology
- Proprotein Convertases/immunology
- Proprotein Convertases/metabolism
- Propylene Glycols/immunology
- Propylene Glycols/pharmacology
- Receptors, LDL/immunology
- Receptors, LDL/metabolism
- Receptors, Lysosphingolipid/agonists
- Receptors, Lysosphingolipid/immunology
- Receptors, Lysosphingolipid/metabolism
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/immunology
- Sphingosine/pharmacology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Francesco Poti
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeng X, Wang T, Zhu C, Ye Y, Song B, Lai X, Zeng Y. FTY720 mediates activation suppression and G0/G1 cell cycle arrest in a concanavalin A-induced mouse lymphocyte pan-activation model. Inflamm Res 2012; 61:623-34. [DOI: 10.1007/s00011-012-0454-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/31/2011] [Accepted: 02/15/2012] [Indexed: 12/18/2022] Open
|
35
|
Dominguez MR, Ersching J, Lemos R, Machado AV, Bruna-Romero O, Rodrigues MM, de Vasconcelos JRC. Re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 contributes to resistance against experimental infection with the protozoan parasite Trypanosoma cruzi. Vaccine 2012; 30:2882-91. [PMID: 22381075 DOI: 10.1016/j.vaccine.2012.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/26/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
T-cell mediated immune responses are critical for acquired immunity against infection by the intracellular protozoan parasite Trypanosoma cruzi. Despite its importance, it is currently unknown where protective T cells are primed and whether they need to re-circulate in order to exert their anti-parasitic effector functions. Here, we show that after subcutaneous challenge, CD11c(+)-dependent specific CD8(+) T-cell immune response to immunodominant parasite epitopes arises almost simultaneously in the draining lymph node (LN) and the spleen. However, until day 10 after infection, we observed a clear upregulation of activation markers only on the surface of CD11C(+)PDCA1(+) cells present in the LN and not in the spleen. Therefore, we hypothesized that CD8(+) T cells re-circulated rapidly from the LN to the spleen. We investigated this phenomenon by administering FTY720 to T. cruzi-infected mice to prevent egress of T cells from the LN by interfering specifically with signalling through sphingosine-1-phosphate receptor-1. In T. cruzi-infected mice receiving FTY720, CD8 T-cell immune responses were higher in the draining LN and significantly reduced in their spleen. Most importantly, FTY720 increased susceptibility to infection, as indicated by elevated parasitemia and accelerated mortality. Similarly, administration of FTY720 to mice genetically vaccinated with an immunodominant parasite antigen significantly reduced their protective immunity, as observed by the parasitemia and survival of vaccinated mice. We concluded that re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 greatly contributes to acquired and vaccine-induced protective immunity against experimental infection with a human protozoan parasite.
Collapse
Affiliation(s)
- Mariana R Dominguez
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo-Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Stoy N. Innate origins of multiple sclerosis pathogenesis: Implications for computer-assisted design of disease-modifying therapies. Drug Dev Res 2011. [DOI: 10.1002/ddr.20477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Schuchardt M, Tölle M, Prüfer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 2011; 163:1140-62. [PMID: 21309759 DOI: 10.1111/j.1476-5381.2011.01260.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité- Universitätsmedizin Berlin, CharitéCentrum 10, Department of Nephrology, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
Acute and chronic graft-versus-host disease (GVHD) are potentially lethal complications after stem cell transplantation (SCT). Steroids are the appropriate first-line treatment for both. However, if patients do not adequately benefit from steroid therapy, mortality is high and standardized treatment algorithms are lacking. This is mainly because of limited data from prospective, randomized clinical trials. In addition, most of the available treatment options only induce clinical benefits in a limited proportion of patients. Thus, there is an urgent clinical need to develop more potent immunosuppressive treatment strategies for patients suffering from acute or chronic steroid-refractory GVHD while maintaining the graft versus tumor effect to avoid a potential rise in relapse-related mortality. The increasing knowledge about host- as well as donor-derived variables favoring GVHD development and the increasing armamentarium of immune-modulatory agents entering preclinical and clinical research will probably allow more effective treatment of GVHD in the future. This review describes novel developments in the treatment of steroid-refractory GVHD, with a special focus on the rationale behind promising pharmacologic compounds or up-coming cellular therapies.
Collapse
|
39
|
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.
Collapse
|
40
|
Rolin J, Maghazachi AA. Effects of lysophospholipids on tumor microenvironment. CANCER MICROENVIRONMENT 2011; 4:393-403. [PMID: 21904916 DOI: 10.1007/s12307-011-0088-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 08/26/2011] [Indexed: 12/20/2022]
Abstract
The effects of lysophospholipids (LPLs) on cancer microenvironment is a vast and growing field. These lipids are secreted physiologically by various cell types. They play highly important roles in the development, activation and regulation of the immune system. They are also secreted by cancerous cells and there is a strong association between LPLs and cancer. It is clear that these lipids and in particular sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) play major roles in regulating the growth of tumor cells, and in manipulating the immune system. These activities can be divided into two parts; the first involves the ability of S1P and LPA to either directly or through some of the enzymes that generate them such as sphingosine kinases or phospholipases, induce the motility and invasiveness of tumor cells. The second mechanism involves the recently discovered effects of these lipids on the anti-tumor effector natural killer (NK) cells. Whereas S1P and LPA induce the recruitment of these effector cells, they also inhibit their cytolysis of tumor cells. This may support the environment of cancer and the ability of cancer cells to grow, spread and metastasize. Consequently, LPLs or their receptors may be attractive targets for developing drugs in the treatment of cancer where LPLs or their receptors are up-regulated.
Collapse
Affiliation(s)
- Johannes Rolin
- Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1103 Blindern, 0317, Oslo, Norway,
| | | |
Collapse
|
41
|
Fu H, Fu W, Sun M, Shou Q, Zhai Y, Cheng H, Teng L, Mou X, Li Y, Wan S, Zhang S, Xu Q, Zhang X, Wang J, Zhu J, Wang X, Xu X, Lv G, Jin L, Guo W, Ke Y. Kinetic Cellular Phenotypic Profiling: Prediction, Identification, and Analysis of Bioactive Natural Products. Anal Chem 2011; 83:6518-26. [DOI: 10.1021/ac201670e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiying Fu
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenqing Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Mingjiao Sun
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiyang Shou
- Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
| | - Yunyan Zhai
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongqiang Cheng
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Teng
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaozhou Mou
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanwei Li
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuying Wan
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Zhang
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qinqin Xu
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xue Zhang
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jenny Zhu
- ACEA Biosciences Incorporated, San Diego, California 92126, United States
| | - Xiaobo Wang
- ACEA Biosciences Incorporated, San Diego, California 92126, United States
| | - Xiao Xu
- ACEA Biosciences Incorporated, San Diego, California 92126, United States
| | - Guiyuan Lv
- Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wensheng Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
- Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuehai Ke
- Program in Molecular Cell Biology, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
42
|
Ingwersen J, Aktas O, Kuery P, Kieseier B, Boyko A, Hartung HP. Fingolimod in multiple sclerosis: mechanisms of action and clinical efficacy. Clin Immunol 2011; 142:15-24. [PMID: 21669553 DOI: 10.1016/j.clim.2011.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
Fingolimod, also known as FTY720, has recently been approved by the regulatory authorities in the US, EU, Australia, Russia, among others, for the treatment of relapsing-remitting multiple sclerosis. Fingolimod therefore represents the first oral drug for the treatment of this autoimmune disease of the central nervous system. Fingolimod modulates sphingosine-1 phosphate receptors and has unique immunoregulatory properties. Mechanistic studies from animal models have shown that fingolimod prevents immune cells from exiting from the lymphoid tissue and reaching the inflammatory tissue. Indeed, two phase III studies that laid the basis for fingolimod's approval demonstrated that fingolimod efficiently improves the relapse rate compared to both placebo and one of the standard MS medications. In this review, we will summarize the immunological profile of fingolimod, discuss the possible direct neurobiological effects that have been suggested recently and present the clinical data regarding the efficacy and safety profiles of this promising new drug.
Collapse
Affiliation(s)
- Jens Ingwersen
- Multiple Sclerosis Center, Department of Neurology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Yeh EA, Weinstock-Guttman B. Fingolimod: an oral disease-modifying therapy for relapsing multiple sclerosis. Adv Ther 2011; 28:270-8. [PMID: 21394595 DOI: 10.1007/s12325-011-0004-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 10/18/2022]
Abstract
This paper presents a summary of the current knowledge of the mechanism of action of fingolimod (FTY720; Gilenya®; Novartis Pharma Stein AG, Stein, Switzerland) and the phase 2 and 3 studies that have been performed on the drug. This study will discuss specific safety issues that should be considered when initiating this therapy. Multiple sclerosis (MS), an inflammatory disease of the central nervous system, is considered to be a leading cause of neurologic disability in young adults, and predominantly affects young women. The past two decades have seen significant growth in therapeutic options for relapsing forms of MS, including FTY720. Fingolimod (FTY720) is a sphingosine-1-phosphate receptor modulator, and currently the approved dosage is 0.5 mg daily. Notable side effects include bradycardia in the first hours after administration and macular edema. There may be an increased risk of herpetic infections (varicella zoster virus and herpes simplex virus) associated with this medication. This oral therapy has been shown to be effective in double-blind, placebo-controlled studies, and in trials comparing it to weekly interferon beta-1a therapy. However, the long-term efficacy and safety of this oral medication in relapsing MS, including the effect on reduction of disability progression and cognitive decline, remains to be established.
Collapse
|
44
|
Heng Y, Ma Y, Yin H, Duan L, Xiong P, Xu Y, Feng W, Fang M, Tan Z, Chen Y, Zheng F, Gong F. Adoptive transfer of FTY720-treated immature BMDCs significantly prolonged cardiac allograft survival. Transpl Int 2011; 23:1259-70. [PMID: 20536794 DOI: 10.1111/j.1432-2277.2010.01119.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A sphingosine 1 phosphate receptor modulator, FTY720, has been used to alleviate symptoms in allotransplantation and autoimmune disease models with impressive efficacy, while it only achieved moderate success in clinical trials. Infusion of immature bone marrow-derived dendritic cell (BMDC) progenitors before transplantation could induce donor specific tolerance. In this study, we investigated the possibility of using FTY720-DCs (FTY720-treated immature BMDCs) to prevent severe alloimmune response. Our results indicate that FTY720-DCs could markedly prolong graft survival compared with Ctrl-DCs (nonconditioned immature BMDCs) as manifested by reduced inflammatory infiltration into the graft. IFN-γ production by CD4(+) and CD8(+) T cells were significantly reduced, while FoxP3(+) regulatory T cells among CD4(+) T cells were upregulated. Although FTY720 seldom altered the phenotype or the phagocytosis of BMDCs in vitro, it severely hampered their capability to trigger antigen-specific and allogeneic T-cell response. When splenic T cells were co-cultured with FTY720-DCs, the proportion of regulatory T cells increased, accompanied by elevated IL-10 production. Consistently, infusion of FTY720-DCs could preferentially promote Treg proliferation and upregulate PD-1 expression on conventional T cells in allogeneic mature BMDC priming experiment. These results suggest that infusion of FTY720-DCs before cardiac transplantation could significantly prolong functional graft survival by acting as a balancer of alloimmune response.
Collapse
Affiliation(s)
- Yang Heng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aarthi JJ, Darendeliler MA, Pushparaj PN. Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 2011; 90:841-54. [PMID: 21248363 DOI: 10.1177/0022034510389178] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
Collapse
Affiliation(s)
- J J Aarthi
- Department of Orthodontics, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, NSW 2010, Australia
| | | | | |
Collapse
|
46
|
Abstract
Advances have been made in defining the mechanisms for the control of allergic airway inflammation in response to inhaled antigens. Several genes, including ADAM33, DPP10, PHF11, GPRA, TIM-1, PDE4D, OPN3, and ORMDL3, have been implicated in the pathogenesis and susceptibility to atopy and asthma. Growing evidence associates asthma with a systemic propensity for allergic T-helper type 2 cytokines. Disordered coagulation and fibrinolysis also exacerbate asthma symptoms. Balance among functionally distinct dendritic cell subsets contributes to the outcome of T-cell-mediated immunity. Allergen-specific T-regulatory cells play a pivotal role in the development of tolerance to allergens and immune suppression. The major emphasis on immunotherapy for asthma during the past decade has been to direct the immune response to a type 1 response, or immune tolerance. In this review, we discuss the current information on the pathogenesis of allergic airway inflammation and potential immunotherapy, which could be beneficial in the treatment of airway inflammation, allergy, and asthma.
Collapse
Affiliation(s)
- Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, Omaha, NE 68178, USA.
| | | |
Collapse
|
47
|
Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Collapse
|
48
|
Teng MWL, Ritchie DS, Neeson P, Smyth MJ. Biology and clinical observations of regulatory T cells in cancer immunology. Curr Top Microbiol Immunol 2010; 344:61-95. [PMID: 20512555 DOI: 10.1007/82_2010_50] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review specifically examines the role of regulatory T cells (Tregs) in cancer in both mice and the clinic. Due to the rapid refinement of the definition of Tregs and their heterogeneity, emphasis is given to research findings over the past three years. For clarity, this review is broadly divided into three short sections that outline the basic biology of Tregs - (1) Treg lineage and development, (2) Treg subsets, and (3) mechanisms of Treg-mediated immune suppression; followed by two more comprehensive sections that cover; (4) clinical observations of Tregs and cancer, and (5) modifications of Treg biology as cancer immunotherapies. The latter two sections discuss the measurement of function and frequency of Treg in model systems and clinical trials and possible ways to interfere with Treg-mediated immune suppression with the focus on recent pre-clinical and clinical findings.
Collapse
Affiliation(s)
- Michele W L Teng
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, 3002, VIC, Australia
| | | | | | | |
Collapse
|