1
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ziegler AC, Haider RS, Hoffmann C, Gräler MH. S1PR3 agonism and S1P lyase inhibition rescue mice in the severe state of experimental sepsis. Biomed Pharmacother 2024; 174:116575. [PMID: 38599060 DOI: 10.1016/j.biopha.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany
| | - Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, UK
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07740, Germany.
| |
Collapse
|
3
|
Canale FP, Neumann J, von Renesse J, Loggi E, Pecoraro M, Vogel I, Zoppi G, Antonini G, Wolf T, Jin W, Zheng X, La Barba G, Birgin E, Forkel M, Nilsson T, Marone R, Mueller H, Pelletier N, Jeker LT, Civenni G, Schlapbach C, Catapano CV, Seifert L, Seifert AM, Gillessen S, De Dosso S, Cristaudi A, Rahbari NN, Ercolani G, Geiger R. Proteomics of immune cells from liver tumors reveals immunotherapy targets. CELL GENOMICS 2023; 3:100331. [PMID: 37388918 PMCID: PMC10300607 DOI: 10.1016/j.xgen.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Elucidating the mechanisms by which immune cells become dysfunctional in tumors is critical to developing next-generation immunotherapies. We profiled proteomes of cancer tissue as well as monocyte/macrophages, CD4+ and CD8+ T cells, and NK cells isolated from tumors, liver, and blood of 48 patients with hepatocellular carcinoma. We found that tumor macrophages induce the sphingosine-1-phospate-degrading enzyme SGPL1, which dampened their inflammatory phenotype and anti-tumor function in vivo. We further discovered that the signaling scaffold protein AFAP1L2, typically only found in activated NK cells, is also upregulated in chronically stimulated CD8+ T cells in tumors. Ablation of AFAP1L2 in CD8+ T cells increased their viability upon repeated stimulation and enhanced their anti-tumor activity synergistically with PD-L1 blockade in mouse models. Our data reveal new targets for immunotherapy and provide a resource on immune cell proteomes in liver cancer.
Collapse
Affiliation(s)
- Fernando P. Canale
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Julia Neumann
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Janusz von Renesse
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Elisabetta Loggi
- Hepatology Unit, Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Ian Vogel
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giada Zoppi
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Gaia Antonini
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Tobias Wolf
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Wenjie Jin
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Xiaoqin Zheng
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giuliano La Barba
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Henrik Mueller
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadege Pelletier
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Lukas T. Jeker
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Gianluca Civenni
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carlo V. Catapano
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Adrian M. Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Silke Gillessen
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Sara De Dosso
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Alessandra Cristaudi
- Department of General and Visceral Surgery, Cantonal Hospital Lugano, Lugano, Switzerland
| | - Nuh N. Rahbari
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum - Univeristy of Bologna, Bologna, Italy
- Morgagni-Pierantoni Hospital, Ausl Romagna, Forlì, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|
4
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
5
|
Pournasiri Z, Madani A, Nazarpack F, Sayer JA, Chavoshzadeh Z, Nili F, Tran P, Saba JD, Jamee M. Sphingosine phosphate lyase insufficiency syndrome: a systematic review. World J Pediatr 2023; 19:425-437. [PMID: 36371483 DOI: 10.1007/s12519-022-00615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) or nephrotic syndrome type-14 is caused by biallelic mutations in SGPL1. Here, we conducted a systematic review to delineate the characteristics of SPLIS patients. METHODS A literature search was performed in PubMed, Web of Science, and Scopus databases, and eligible studies were included. For all patients, demographic, clinical, laboratory, and molecular data were collected and analyzed. RESULTS Fifty-five SPLIS patients (54.9% male, 45.1% female) were identified in 19 articles. Parental consanguinity and positive family history were reported in 70.9% and 52.7% of patients, respectively. Most patients (54.9%) primarily manifested within the first year of life, nearly half of whom survived, while all patients with a prenatal diagnosis of SPLIS (27.5%) died at a median [interquartile (IQR)] age of 2 (1.4-5.3) months (P = 0.003). The most prevalent clinical feature was endocrinopathies, including primary adrenal insufficiency (PAI) (71.2%) and hypothyroidism (32.7%). Kidney disorders (42, 80.8%) were mainly in the form of steroid-resistant nephrotic syndrome (SRNS) and progressed to end-stage kidney disease (ESKD) in 19 (36.5%) patients at a median (IQR) age of 6 (1.4-42.6) months. Among 30 different mutations in SGPL1, the most common was c.665G > A (p.Arg222Gln) in 11 (20%) patients. Twenty-six (49.1%) patients with available outcome were deceased at a median (IQR) age of 5 (1.5-30.5) months, mostly following ESKD (23%) or sepsis/septic shock (23%). CONCLUSION In patients with PAI and/or SRNS, SGPL1 should be added to diagnostic genetic panels, which can provide an earlier diagnosis of SPLIS and prevention of ESKD and other life-threatening complications.
Collapse
Affiliation(s)
- Zahra Pournasiri
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Madani
- Department of Pediatric Nephrology, Children's Medical Center, Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nazarpack
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, NE45PL, Tyne and Wear, UK
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paulina Tran
- Allergy Immunology Division, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran.
| |
Collapse
|
6
|
Caratti G, Stifel U, Caratti B, Jamil AJM, Chung KJ, Kiehntopf M, Gräler MH, Blüher M, Rauch A, Tuckermann JP. Glucocorticoid activation of anti-inflammatory macrophages protects against insulin resistance. Nat Commun 2023; 14:2271. [PMID: 37080971 PMCID: PMC10119112 DOI: 10.1038/s41467-023-37831-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Insulin resistance (IR) during obesity is linked to adipose tissue macrophage (ATM)-driven inflammation of adipose tissue. Whether anti-inflammatory glucocorticoids (GCs) at physiological levels modulate IR is unclear. Here, we report that deletion of the GC receptor (GR) in myeloid cells, including macrophages in mice, aggravates obesity-related IR by enhancing adipose tissue inflammation due to decreased anti-inflammatory ATM leading to exaggerated adipose tissue lipolysis and severe hepatic steatosis. In contrast, GR deletion in Kupffer cells alone does not alter IR. Co-culture experiments show that the absence of GR in macrophages directly causes reduced phospho-AKT and glucose uptake in adipocytes, suggesting an important function of GR in ATM. GR-deficient macrophages are refractory to alternative ATM-inducing IL-4 signaling, due to reduced STAT6 chromatin loading and diminished anti-inflammatory enhancer activation. We demonstrate that GR has an important function in macrophages during obesity by limiting adipose tissue inflammation and lipolysis to promote insulin sensitivity.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK
| | - Ulrich Stifel
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Ali J M Jamil
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Michael Kiehntopf
- SG Sepsis Research Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Steno Diabetes Center Odense, Odense, Denmark.
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany.
| |
Collapse
|
7
|
De la Garza-Rodea AS, Moore SA, Zamora-Pineda J, Hoffman EP, Mistry K, Kumar A, Strober JB, Zhao P, Suh JH, Saba JD. Sphingosine Phosphate Lyase Is Upregulated in Duchenne Muscular Dystrophy, and Its Inhibition Early in Life Attenuates Inflammation and Dystrophy in Mdx Mice. Int J Mol Sci 2022; 23:7579. [PMID: 35886926 PMCID: PMC9316262 DOI: 10.3390/ijms23147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.
Collapse
Affiliation(s)
- Anabel S. De la Garza-Rodea
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Steven A. Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Jesus Zamora-Pineda
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Eric P. Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY 13902, USA;
| | - Karishma Mistry
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Ashok Kumar
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jonathan B. Strober
- Department of Neurology, UCSF Benioff Children’s Hospital San Francisco, 550 16th Street, San Francisco, CA 94158, USA;
| | - Piming Zhao
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jung H. Suh
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Julie D. Saba
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| |
Collapse
|
8
|
Yang W, Zhou B, Liu Q, Liu T, Wang H, Zhang P, Lu L, Zhang L, Zhang F, Huang R, Zhou J, Chao T, Gu Y, Lee S, Wang H, Liang Y, He L. A Murine Point Mutation of Sgpl1 Skin Is Enriched With Vγ6 IL17-Producing Cell and Revealed With Hyperpigmentation After Imiquimod Treatment. Front Immunol 2022; 13:728455. [PMID: 35769463 PMCID: PMC9234551 DOI: 10.3389/fimmu.2022.728455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate lyase is encoded by the Sgpl1 gene, degrades S1P, and is crucial for S1P homeostasis in animal models and humans. S1P lyase deficient patients suffer from adrenal insufficiency, severe lymphopenia, and skin disorders. In this study, we used random mutagenesis screening to identify a mouse line carrying a missense mutation of Sgpl1 (M467K). This mutation caused similar pathologies as Sgpl1 knock-out mice in multiple organs, but greatly preserved its lifespan, which M467K mutation mice look normal under SPF conditions for over 40 weeks, in contrast, the knock-out mice live no more than 6 weeks. When treated with Imiquimod, Sgpl1M467K mice experienced exacerbated skin inflammation, as revealed by aggravated acanthosis and orthokeratotic hyperkeratosis. We also demonstrated that the IL17a producing Vγ6+ cell was enriched in Sgpl1M467K skin and caused severe pathology after imiquimod treatment. Interestingly, hyperchromic plaque occurred in the mutant mice one month after Imiquimod treatment but not in the controls, which resembled the skin disorder found in Sgpl1 deficient patients. Therefore, our results demonstrate that Sgpl1M467K point mutation mice successfully modeled a human disease after being treated with Imiquimod. We also revealed a major subset of γδT cells in the skin, IL17 secreting Vγ6 T cells were augmented by Sgpl1 deficiency and led to skin pathology. Therefore, we have, for the first time, linked the IL17a and γδT cells to SPL insufficiency.
Collapse
Affiliation(s)
- Wenyi Yang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qi Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Taozhen Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Huijie Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pei Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Fanghui Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- CeleScreen SAS, Paris, France
| | - Rong Huang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jitong Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | | - Hui Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Yinming Liang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Le He
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| |
Collapse
|
9
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Wolf JJ, Saba JD, Hahm B. Analyzing Opposing Interactions Between Sphingosine 1-Phosphate Lyase and Influenza A Virus. DNA Cell Biol 2022; 41:331-335. [PMID: 35325556 PMCID: PMC9063141 DOI: 10.1089/dna.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sphingosine 1-phosphate lyase (SPL) is a critical component of sphingosine 1-phosphate (S1P) metabolism. SPL has been associated with several crucial cellular functions due to its role in S1P metabolism, but its role in viral infections is poorly understood. Studies show that SPL has an antiviral function against influenza A virus (IAV) by interacting with IKKɛ, promoting the type I interferon (IFN) innate immune response to IAV infection. However, a more recent study has revealed that IAV NS1 protein hampers this by triggering ubiquitination and subsequent degradation of SPL, which reduces the type I IFN innate immune response. In this study, we describe SPL, the type I IFN response, and known interactions between SPL and IAV.
Collapse
Affiliation(s)
- Jennifer J. Wolf
- Department of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Julie D. Saba
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Bumsuk Hahm
- Department of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Address correspondence to: Bumsuk Hahm, PhD, Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
11
|
Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021; 10:cells10102507. [PMID: 34685487 PMCID: PMC8534120 DOI: 10.3390/cells10102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids, associated enzymes, and the sphingolipid pathway are implicated in complex, multifaceted roles impacting several cell functions, such as cellular homeostasis, apoptosis, cell differentiation, and more through intrinsic and autocrine/paracrine mechanisms. Given this broad range of functions, it comes as no surprise that a large body of evidence points to important functions of sphingolipids in hematopoiesis. As the understanding of the processes that regulate hematopoiesis and of the specific characteristics that define each type of hematopoietic cells is being continuously refined, the understanding of the roles of sphingolipid metabolism in hematopoietic lineage commitment is also evolving. Recent findings indicate that sphingolipid alterations can modulate lineage commitment from stem cells all the way to megakaryocytic, erythroid, myeloid, and lymphoid cells. For instance, recent evidence points to the ability of de novo sphingolipids to regulate the stemness of hematopoietic stem cells while a substantial body of literature implicates various sphingolipids in specialized terminal differentiation, such as thrombopoiesis. This review provides a comprehensive discussion focused on the mechanisms that link sphingolipids to the commitment of hematopoietic cells to the different lineages, also highlighting yet to be resolved questions.
Collapse
|
12
|
Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis 2021; 12:574. [PMID: 34083520 PMCID: PMC8175456 DOI: 10.1038/s41419-021-03848-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Sphingosine phosphate lyase 1 (SGPL1) is a highly conserved enzyme that irreversibly degrades sphingosine-1-phosphate (S1P). Sgpl1-knockout mice fail to develop germ cells, resulting in infertility. However, the molecular mechanism remains unclear. The results of the present study showed that SGPL1 was expressed mainly in granulosa cells, Leydig cells, spermatocytes, and round spermatids. Sgpl1 deletion led to S1P accumulation in the gonads. In the ovary, S1P decreased natriuretic peptide receptor 2 (NPR2) activity in granulosa cells and inhibited early follicle growth. In the testis, S1P increased the levels of cyclin-dependent kinase inhibitor 1A (p21) and apoptosis in Leydig cells, thus resulting in spermatogenesis arrest. These results indicate that Sgpl1 deletion increases intracellular S1P levels, resulting in the arrest of female and male germ cell development via different signaling pathways.
Collapse
|
13
|
Weigel C, Hüttner SS, Ludwig K, Krieg N, Hofmann S, Schröder NH, Robbe L, Kluge S, Nierhaus A, Winkler MS, Rubio I, von Maltzahn J, Spiegel S, Gräler MH. S1P lyase inhibition protects against sepsis by promoting disease tolerance via the S1P/S1PR3 axis. EBioMedicine 2020; 58:102898. [PMID: 32711251 PMCID: PMC7381498 DOI: 10.1016/j.ebiom.2020.102898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. Methods Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. Findings Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. Interpretation Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. Funding This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Kristin Ludwig
- Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Susann Hofmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| | - Nathalie H Schröder
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Linda Robbe
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martin S Winkler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
14
|
Hagen-Euteneuer N, Alam S, Rindsfuesser H, Meyer Zu Heringdorf D, van Echten-Deckert G. S1P-lyase deficiency uncouples ganglioside formation - Potential contribution to tumorigenic capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158708. [PMID: 32283310 DOI: 10.1016/j.bbalip.2020.158708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022]
Abstract
Sphingosine-1-phosphate (S1P) is not only a catabolic intermediate of all sphingolipids but also an evolutionary conserved bioactive lipid with critical functions in cell survival, differentiation, and migration as well as in immunity and angiogenesis. S1P-lyase (SGPL1) irreversibly cleaves S1P in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphates are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. We actually found in a previous study that in terminally differentiated neurons SGPL1 deficiency increases sphingolipid formation via recycling at the expense of de novo synthesis. We now investigated whether and how SGPL1 deficiency affects the metabolism of (glyco)sphingolipids in mouse embryonic fibroblasts (MEFs). According to our previous experiments in neurons, we found a strong accumulation of S1P in SGPL1-deficient MEFs. Surprisingly, a completely different situation arose as we analyzed sphingolipid metabolism in this non-differentiated cell type. The production of biosynthetic precursors of complex glycosphingolipids including ceramide, glucosylceramide and also ganglioside GM3 via de novo synthesis and recycling pathway was substantially increased whereas the amount of more complex gangliosides dropped significantly.
Collapse
Affiliation(s)
| | - Shah Alam
- LIMES Institute Membrane Biology and Lipid Biochemistry, University Bonn, Germany
| | - Hannah Rindsfuesser
- LIMES Institute Membrane Biology and Lipid Biochemistry, University Bonn, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
15
|
Saba JD. Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. J Lipid Res 2019; 60:456-463. [PMID: 30635364 PMCID: PMC6399507 DOI: 10.1194/jlr.s091181] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Sphingosine phosphate lyase (SPL) is the final enzyme in the sphingolipid degradative pathway, catalyzing the irreversible cleavage of long-chain base phosphates (LCBPs) to yield a long-chain aldehyde and ethanolamine phosphate (EP). SPL guards the sole exit point of sphingolipid metabolism. Its inactivation causes product depletion and accumulation of upstream sphingolipid intermediates. The main substrate of the reaction, sphingosine-1-phosphate (S1P), is a bioactive lipid that controls immune-cell trafficking, angiogenesis, cell transformation, and other fundamental processes. The products of the SPL reaction contribute to phospholipid biosynthesis and programmed cell-death activation. The main features of SPL enzyme activity were first described in detail by Stoffel et al. in 1969. The first SPL-encoding gene was cloned from budding yeast in 1997. Reverse and forward genetic strategies led to the rapid identification of other genes in the pathway and their homologs in other species. Genetic manipulation of SPL-encoding genes in model organisms has revealed the contribution of sphingolipid metabolism to development, physiology, and host-pathogen interactions. In 2017, recessive mutations in the human SPL gene SGPL1 were identified as the cause of a novel inborn error of metabolism associated with nephrosis, endocrine defects, immunodeficiency, acanthosis, and neurological problems. We refer to this condition as SPL insufficiency syndrome (SPLIS). Here, we share our perspective on the 50-year history of SPL from discovery to disease, focusing on insights provided by model organisms regarding the pathophysiology of SPLIS and how SPLIS raises the possibility of a hidden role for sphingolipids in other disease conditions.
Collapse
Affiliation(s)
- Julie D Saba
- Children's Hospital Oakland Research Institute, University of California, San Francisco Benioff Children's Hospital Oakland, Oakland, CA 94609
| |
Collapse
|
16
|
Abhyankar V, Kaduskar B, Kamat SS, Deobagkar D, Ratnaparkhi GS. Drosophila DNA/RNA methyltransferase contributes to robust host defense in aging animals by regulating sphingolipid metabolism. ACTA ACUST UNITED AC 2018; 221:jeb.187989. [PMID: 30254027 DOI: 10.1242/jeb.187989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Drosophila methyltransferase (Mt2) has been implicated in the methylation of both DNA and tRNA. In this study, we demonstrate that loss of Mt2 activity leads to an age-dependent decline of immune function in the adult fly. A newly eclosed adult has mild immune defects that are exacerbated in a 15 day old Mt2-/- fly. The age-dependent effects appear to be systemic, including disturbances in lipid metabolism, changes in cell shape of hemocytes and significant fold-changes in levels of transcripts related to host defense. Lipid imbalance, as measured by quantitative lipidomics, correlates with immune dysfunction, with high levels of immunomodulatory lipids, sphingosine-1-phosphate (S1P) and ceramides, along with low levels of storage lipids. Activity assays on fly lysates confirm the age-dependent increase in S1P and concomitant reduction of S1P lyase activity. We hypothesize that Mt2 functions to regulate genetic loci such as S1P lyase and this regulation is essential for robust host defense as the animal ages. Our study uncovers novel links between age--dependent Mt2 function, innate immune response and lipid homeostasis.
Collapse
Affiliation(s)
- Varada Abhyankar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Bhagyashree Kaduskar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Deepti Deobagkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India .,Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| |
Collapse
|
17
|
Choi YJ, Saba JD. Sphingosine phosphate lyase insufficiency syndrome (SPLIS): A novel inborn error of sphingolipid metabolism. Adv Biol Regul 2018; 71:128-140. [PMID: 30274713 DOI: 10.1016/j.jbior.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate lyase (SPL) is an intracellular enzyme that controls the final step in the sphingolipid degradative pathway, the only biochemical pathway for removal of sphingolipids. Specifically, SPL catalyzes the cleavage of sphingosine 1-phosphate (S1P) at the C2-3 carbon bond, resulting in its irreversible degradation to phosphoethanolamine (PE) and hexadecenal. The substrate of the reaction, S1P, is a bioactive sphingolipid metabolite that signals through a family of five G protein-coupled S1P receptors (S1PRs) to mediate biological activities including cell migration, cell survival/death/proliferation and cell extrusion, thereby contributing to development, physiological functions and - when improperly regulated - the pathophysiology of disease. In 2017, several groups including ours reported a novel childhood syndrome that featured a wide range of presentations including fetal hydrops, steroid-resistant nephrotic syndrome (SRNS), primary adrenal insufficiency (PAI), rapid or insidious neurological deterioration, immunodeficiency, acanthosis and endocrine abnormalities. In all cases, the disease was attributed to recessive mutations in the human SPL gene, SGPL1. We now refer to this condition as SPL Insufficiency Syndrome, or SPLIS. Some features of this new sphingolipidosis were predicted by the reported phenotypes of Sgpl1 homozygous null mice that serve as vertebrate SPLIS disease models. However, other SPLIS features reveal previously unrecognized roles for SPL in human physiology. In this review, we briefly summarize the biochemistry, functions and regulation of SPL, the main clinical and biochemical features of SPLIS and what is known about the pathophysiology of this condition from murine and cell models. Lastly, we consider potential therapeutic strategies for the treatment of SPLIS patients.
Collapse
Affiliation(s)
- Youn-Jeong Choi
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Julie D Saba
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|
18
|
Deletion of MCP-1 Impedes Pathogenesis of Acid Ceramidase Deficiency. Sci Rep 2018; 8:1808. [PMID: 29379059 PMCID: PMC5789088 DOI: 10.1038/s41598-018-20052-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Farber Disease (FD) is an ultra-rare Lysosomal Storage Disorder caused by deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency manifest a spectrum of symptoms including formation of nodules, painful joints, and a hoarse voice. Classic FD patients will develop histiocytes in organs and die in childhood. Monocyte chemotactic protein (MCP-1; CCL2) is significantly elevated in both FD patients and a mouse model we previously generated. Here, to further study MCP-1 in FD, we created an ACDase;MCP-1 double mutant mouse. We show that deletion of MCP-1 reduced leukocytosis, delayed weight loss, and improved lifespan. Reduced inflammation and fibrosis were observed in livers from double mutant animals. Bronchial alveolar lavage fluid analyses revealed a reduction in cellular infiltrates and protein accumulation. Furthermore, reduced sphingolipid accumulation was observed in the lung and liver but not in the brain. The neurological and hematopoietic defects observed in FD mice were maintained. A compensatory cytokine response was found in the double mutants, however, that may contribute to continued signs of inflammation and injury. Taken together, targeting a reduction of MCP-1 opens the door to a better understanding of the mechanistic consequences of ceramide accumulation and may even delay the progression of FD in some organ systems.
Collapse
|
19
|
Huwiler A, Pfeilschifter J. Sphingolipid signaling in renal fibrosis. Matrix Biol 2018; 68-69:230-247. [PMID: 29343457 DOI: 10.1016/j.matbio.2018.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Over the last decade, various sphingolipid subspecies have gained increasing attention as important signaling molecules that regulate a multitude of physiological and pathophysiological processes including inflammation and tissue remodeling. These mediators include ceramide, sphingosine 1-phosphate (S1P), the cerebroside glucosylceramide, lactosylceramide, and the gangliosides GM3 and Gb3. These lipids have been shown to accumulate in various chronic kidney diseases that typically end in renal fibrosis and ultimately renal failure. This review will summarize the effects and contributions of those enzymes that regulate the generation and interconversion of these lipids, notably the acid sphingomyelinase, the acid sphingomyelinase-like protein SMPDL3B, the sphingosine kinases, the S1P lyase, the glucosylceramide synthase, the GM3 synthase, and the α-galactosidase A, to renal fibrotic diseases. Strategies of manipulating these enzymes for therapeutic purposes and the impact of existing drugs on renal pathologies will be discussed.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe- University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Abstract
After undergoing positive and negative selection in the thymus, surviving mature T cells egress from the thymic parenchyma and enter the bloodstream to participate in adaptive immunity. Thymic egress requires signals mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that serves as the ligand for a family of G protein-coupled receptors (S1P1-5) expressed on many cell types, including T cells. In the final stage of their development, T cells upregulate S1P1 expression on the cell surface, which enables them to recognize and respond to a chemotactic S1P gradient that lures them into the bloodstream. The gradient is generated by an S1P source close to the site of egress combined with an S1P sink generated by the actions of S1P catabolic enzymes including S1P lyase (SPL), the only enzyme that irreversibly degrades S1P. The requisite contribution of SPL to thymic egress is demonstrated by the profound lymphopenia observed in SPL knockout (KO) mice and wild type mice treated with SPL inhibitors. SPL is robustly expressed in thymic epithelial cells (TECs), which make up the stromal reticular network of the thymus. However, TEC SPL was recently found to be dispensable for thymic egress. In contrast, deletion of SPL in dendritic cells (DCs) - which represent only a small percent of thymic stroma - disrupts the S1P gradient and blocks thymic egress. These recent observations identify DCs as homeostatic regulators of thymic export through the actions of SPL, thereby adding one more piece to the complex puzzle of how S1P signaling contributes to the regulation of T cell trafficking.
Collapse
Affiliation(s)
- Julie D Saba
- University of California San Francisco Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94611 USA
| |
Collapse
|
21
|
Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca 2+ storage. Sci Rep 2017; 7:43575. [PMID: 28262793 PMCID: PMC5337937 DOI: 10.1038/srep43575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.
Collapse
|
22
|
Prasad R, Hadjidemetriou I, Maharaj A, Meimaridou E, Buonocore F, Saleem M, Hurcombe J, Bierzynska A, Barbagelata E, Bergadá I, Cassinelli H, Das U, Krone R, Hacihamdioglu B, Sari E, Yesilkaya E, Storr HL, Clemente M, Fernandez-Cancio M, Camats N, Ram N, Achermann JC, Van Veldhoven PP, Guasti L, Braslavsky D, Guran T, Metherell LA. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest 2017; 127:942-953. [PMID: 28165343 PMCID: PMC5330744 DOI: 10.1172/jci90171] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.
Collapse
Affiliation(s)
- Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Eirini Meimaridou
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Moin Saleem
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Jenny Hurcombe
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Agnieszka Bierzynska
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Eliana Barbagelata
- Servicio de Nefrología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Hamilton Cassinelli
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Urmi Das
- Alderhey Children’s Hospital NHS Foundation Trust, Eaton Road, Liverpool, United Kingdom
| | - GOSgene
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- The center is detailed in the Supplemental Acknowledgments
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | - Bulent Hacihamdioglu
- Health Sciences University, Suleymaniye Maternity and Children’s Training and Research Hospital, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - Erkan Sari
- Gulhane Military Medical School Department of Paediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ediz Yesilkaya
- Gulhane Military Medical School Department of Paediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Maria Clemente
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Monica Fernandez-Cancio
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nuria Camats
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - John C. Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paul P. Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Tulay Guran
- Marmara University, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - Louise A. Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|
23
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
24
|
Zamora-Pineda J, Kumar A, Suh JH, Zhang M, Saba JD. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med 2016; 213:2773-2791. [PMID: 27810923 PMCID: PMC5110016 DOI: 10.1084/jem.20160287] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Saba and collaborators show that dendritic cells generate the thymic sphingosine-1-phosphate gradient and regulate T cell egress. T cell egress from the thymus is essential for adaptive immunity and involves chemotaxis along a sphingosine-1-phosphate (S1P) gradient. Pericytes at the corticomedullary junction produce the S1P egress signal, whereas thymic parenchymal S1P levels are kept low through S1P lyase (SPL)–mediated metabolism. Although SPL is robustly expressed in thymic epithelial cells (TECs), in this study, we show that deleting SPL in CD11c+ dendritic cells (DCs), rather than TECs or other stromal cells, disrupts the S1P gradient, preventing egress. Adoptive transfer of peripheral wild-type DCs rescued the egress phenotype of DC-specific SPL knockout mice. These studies identify DCs as metabolic gatekeepers of thymic egress. Combined with their role as mediators of central tolerance, DCs are thus poised to provide homeostatic regulation of thymic export.
Collapse
Affiliation(s)
- Jesus Zamora-Pineda
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Ashok Kumar
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Jung H Suh
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Meng Zhang
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Julie D Saba
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| |
Collapse
|
25
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Wakashima T, Abe K, Kihara A. Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. J Biol Chem 2014; 289:24736-48. [PMID: 25049234 DOI: 10.1074/jbc.m114.571869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) functions as a lipid mediator and as a key intermediate of the sole sphingolipid to glycerophospholipid metabolic pathway (S1P metabolic pathway). In this pathway, S1P is converted to palmitoyl-CoA through 4 reactions, then incorporated mainly into glycerophospholipids. Although most of the genes responsible for the S1P metabolic pathway have been identified, the gene encoding the trans-2-enoyl-CoA reductase, responsible for the saturation step (conversion of trans-2-hexadecenoyl-CoA to palmitoyl-CoA) remains unidentified. In the present study, we show that TER is the missing gene in mammals using analyses involving yeast cells, deleting the TER homolog TSC13, and TER-knockdown HeLa cells. TER is known to be involved in the production of very long-chain fatty acids (VLCFAs). A significant proportion of the saturated and monounsaturated VLCFAs are used for sphingolipid synthesis. Therefore, TER is involved in both the production of VLCFAs used in the fatty acid moiety of sphingolipids as well as in the degradation of the sphingosine moiety of sphingolipids via S1P.
Collapse
Affiliation(s)
- Takeshi Wakashima
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Kensuke Abe
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Mezzar S, de Schryver E, Van Veldhoven PP. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1. J Lipid Res 2013; 55:573-82. [PMID: 24323699 DOI: 10.1194/jlr.d044230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates.
Collapse
Affiliation(s)
- Serena Mezzar
- Department Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
28
|
Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:766-72. [PMID: 23994042 DOI: 10.1016/j.bbalip.2013.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022]
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) is a well-known lipid mediator. As a lipid mediator, S1P must be present in extracellular space and bind to its cell surface receptors (S1P1-5). However, most S1P, synthesized intracellularly, is metabolized without being released into extracellular space, in other words, without functioning as a lipid mediator in the vast majority of cells except those supplying plasma and lymph S1P such as blood cells and endothelial cells. Instead, intracellular S1P plays an important role as an intermediate of the sole sphingolipid-to-glycerophospholipid metabolic pathway. The degradation of S1P by S1P lyase is the first irreversible reaction (committed step) of this pathway. This metabolic pathway is conserved in eukaryotes from yeast to human, indicating its much older origin than the function of S1P as a lipid mediator, which is found to be present only in vertebrates and chordates. The sphingolipid-to-glycerophospholipid metabolism takes place ubiquitously in mammalian tissues, and its defect causes an aberration of several tissue functions as well as abnormal lipid metabolism. Although this metabolic pathway has been known for over four decades, only recently the precise reactions and enzymes involved in this pathway have been revealed. This review will focus on the recent advances in our understanding of the sphingolipid metabolic pathway via S1P and its physiological and pathological roles. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
|
29
|
Olivera A, Kitamura Y, Wright LD, Allende ML, Chen W, Kaneko-Goto T, Yoshihara Y, Proia RL, Rivera J. Sphingosine-1-phosphate can promote mast cell hyper-reactivity through regulation of contactin-4 expression. J Leukoc Biol 2013; 94:1013-24. [PMID: 23904439 DOI: 10.1189/jlb.0313163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Both genes and the environment are determinants in the susceptibility to allergies and may alter the severity of the disease. We explored whether an increase in the levels of the lipid mediator S1P in vivo, a condition found during allergic asthma, could affect the sensitivity or the response of MCs to IgE/Ag and the onset of allergic disease. We found that increasing S1P levels by genetic deletion of S1P lyase, the enzyme catabolizing S1P, led to elevated activity of circulating tryptase. Accordingly, MCs of S1P lyase-deficient mice were mostly degranulated in the tissues and showed enhanced calcium levels, degranulation, and cytokine production in response to IgE/Ag in vitro. Th 1-skewed mice (C57BL/6) had lower levels of S1P in circulation and histamine responses than did Th 2-skewed (129/Sv) mice. However, when S1P levels were increased by pharmacologic inhibition of S1P lyase, the C57BL/6 mice showed increased histamine release into the circulation and anaphylactic responses similar to those in the 129/Sv mice. Culturing of MCs in the presence of S1P enhanced their degranulation responses, and when the S1P-treated MCs were used to reconstitute MC-deficient (Kit(W-sh)) mice, they caused enhanced anaphylaxis. Gene expression arrays in S1P lyase-deficient MCs and MCs treated with S1P continuously revealed increased expression of numerous genes, including the adhesion molecule CNTN4,which contributed to the enhanced responses. Our findings argue that dysregulation in the metabolism of S1P is a contributing factor in modulating MC responsiveness and the allergic response.
Collapse
Affiliation(s)
- Ana Olivera
- 1.Laboratory of Molecular Immunogenetics, NIAMS, NIH, Building 10, Room 13C103, Bethesda, MD 20892. ; J.R., E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aguilar A, Saba JD. Truth and consequences of sphingosine-1-phosphate lyase. Adv Biol Regul 2013; 52:17-30. [PMID: 21946005 DOI: 10.1016/j.advenzreg.2011.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 01/07/2023]
Affiliation(s)
- Ana Aguilar
- Children’s Hospital Oakland Research Institute (CHORI), Center for Cancer Research, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
31
|
Bot M, Van Veldhoven PP, de Jager SCA, Johnson J, Nijstad N, Van Santbrink PJ, Westra MM, Van Der Hoeven G, Gijbels MJ, Müller-Tidow C, Varga G, Tietge UJF, Kuiper J, Van Berkel TJC, Nofer JR, Bot I, Biessen EAL. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice. PLoS One 2013; 8:e63360. [PMID: 23700419 PMCID: PMC3659045 DOI: 10.1371/journal.pone.0063360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/31/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS LDL receptor deficient mice that were transplanted with Sgpl1(-/-) bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/-) chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.
Collapse
Affiliation(s)
- Martine Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Saskia C. A. de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jason Johnson
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, England
| | - Niels Nijstad
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J. Van Santbrink
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marijke M. Westra
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Marion J. Gijbels
- Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Georg Varga
- Institute of Experimental Dermatology, University of Münster, Münster, Germany
| | - Uwe J. F. Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
- Department of Internal Medicine, Endocrinology, and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik A. L. Biessen
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
32
|
Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, Isken A, Kinzel B, Loetscher E, Metzler B, Mueller M, Nuesslein-Hildesheim B, Kleylein-Sohn B. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS One 2013; 8:e59630. [PMID: 23544080 PMCID: PMC3609791 DOI: 10.1371/journal.pone.0059630] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 11/23/2022] Open
Abstract
Background Sphingosine-1-phosphate (S1P) regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1). Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. Methodology We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. Principal Findings The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE). T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. Significance The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.
Collapse
MESH Headings
- Aldehyde-Lyases/deficiency
- Aldehyde-Lyases/metabolism
- Animals
- Brain/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Forkhead Transcription Factors/metabolism
- Hypersensitivity, Delayed/blood
- Hypersensitivity, Delayed/complications
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immunologic Memory/immunology
- Integrases/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Count
- Mice
- Mice, Knockout
- Sheep
- Sphingolipids/metabolism
- Spleen/immunology
- Spleen/pathology
- Survival Analysis
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Andreas Billich
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Albinet V, Bats ML, Bedia C, Sabourdy F, Garcia V, Ségui B, Andrieu-Abadie N, Hornemann T, Levade T. Genetic disorders of simple sphingolipid metabolism. Handb Exp Pharmacol 2013:127-152. [PMID: 23579453 DOI: 10.1007/978-3-7091-1368-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A better understanding of the functions sphingolipids play in living organisms can be achieved by analyzing the biochemical and physiological changes that result from genetic alterations of sphingolipid metabolism. This review summarizes the current knowledge gained from studies both on human patients and mutant animals (mice, cats, dogs, and cattle) with genetic disorders of sphingolipid metabolism. Genetic alterations affecting the biosynthesis, transport, or degradation of simple sphingolipids are discussed.
Collapse
Affiliation(s)
- Virginie Albinet
- Institut National de la Santé et de la Recherche Médicale UMR1037, Centre de Recherches en Cancérologie de Toulouse, Team n°4, Université de Toulouse, CHU Rangueil, 84225, Toulouse Cedex 4, 31432, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Evidence for a link between histone deacetylation and Ca²+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. Biochem J 2012; 447:457-64. [PMID: 22908849 DOI: 10.1042/bj20120811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2 in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.
Collapse
|
35
|
Newbigging S, Zhang M, Saba JD. Immunohistochemical analysis of sphingosine phosphate lyase expression during murine development. Gene Expr Patterns 2012; 13:21-9. [PMID: 23041657 DOI: 10.1016/j.gep.2012.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
Abstract
Sphingosine-1-phosphate lyase (SPL) catalyzes the degradation of sphingosine-1-phosphate (S1P), a bioactive lipid that controls cell proliferation, migration and survival. Mice lacking SPL expression exhibit developmental abnormalities, runting and death during the perinatal period, suggesting that SPL plays a role in mammalian development and adaptation to extrauterine life. We investigated the pattern of SPL expression in the mouse embryo and placenta from day 8 to day 18. Our findings reveal that SPL is expressed in the developing brain and neural tube, Rathke's pouch, first brachial arch, third brachial arch, optic stalk, midgut loops, and lung buds. Diffuse signal was high at E12, whereas a recognizable adult SPL pattern was evident by E15 and more intensely at E18, with strong expression in skin, nasal epithelium, intestinal epithelium, cartilage, thymus and pituitary gland. These findings suggest SPL may be involved in development of the mammalian central nervous system (CNS), anterior pituitary, trigeminal nerve, palate and facial bones, thymus and other organs. Our findings are consistent with the SPL expression pattern of the adult mouse and with congenital abnormalities observed in SPL mutant mice.
Collapse
Affiliation(s)
- Susan Newbigging
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The Toronto Centre for Phenogenomics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Abstract
The lipid mediator sphingosine-1-phosphate (S1P) is generated within cells from sphingosine by two sphingosine kinases (SPHK1 and SPHK2). Intracellularly synthesized S1P is released into the extracellular fluid by S1P transporters, including SPNS2. Released S1P binds specifically to the G protein-coupled S1P receptors (S1PR1/S1P(1)-S1PR5/S1P(5)), which activate a diverse range of downstream signalling pathways. Recent studies have proposed that one of the central physiological functions of intercellular S1P signalling is in lymphocyte trafficking in vivo because genetic disruption of SPHK1/2, SPNS2 or S1PR1/S1P(1) in mice induces a lymphopenia phenotype. In this review, we discuss the current understanding of intercellular S1P signalling in the context of immunity.
Collapse
Affiliation(s)
- Yu Hisano
- Laboratory for Cardiovascular Molecular Dynamics, Riken Quantitative Biology Center (QBiC), Furuedai 6-2-3, Suita, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
37
|
Borowsky AD, Bandhuvula P, Kumar A, Yoshinaga Y, Nefedov M, Fong LG, Zhang M, Baridon B, Dillard L, de Jong P, Young SG, West DB, Saba JD. Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. J Lipid Res 2012; 53:1920-31. [PMID: 22781001 DOI: 10.1194/jlr.m028084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in immunity, inflammation, angiogenesis, and cancer. S1P lyase (SPL) is the essential enzyme responsible for S1P degradation. SPL augments apoptosis and is down-regulated in cancer. SPL generates a S1P chemical gradient that promotes lymphocyte trafficking and as such is being targeted to treat autoimmune diseases. Despite growing interest in SPL as a disease marker, antioncogene, and pharmacological target, no comprehensive characterization of SPL expression in mammalian tissues has been reported. We investigated SPL expression in developing and adult mouse tissues by generating and characterizing a β-galactosidase-SPL reporter mouse combined with immunohistochemistry, immunoblotting, and enzyme assays. SPL was expressed in thymic and splenic stromal cells, splenocytes, Peyer's Patches, colonic lymphoid aggregates, circulating T and B lymphocytes, granulocytes, and monocytes, with lowest expression in thymocytes. SPL was highly expressed within the CNS, including arachnoid lining cells, spinal cord, choroid plexus, trigeminal nerve ganglion, and specific neurons of the olfactory bulb, cerebral cortex, midbrain, hindbrain, and cerebellum. Expression was detected in brown adipose tissue, female gonads, adrenal cortex, bladder epithelium, Harderian and preputial glands, and hair follicles. This unique expression pattern suggests SPL has many undiscovered physiological functions apart from its role in immunity.
Collapse
Affiliation(s)
- Alexander D Borowsky
- Center for Comparative Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:193-202. [PMID: 22735358 DOI: 10.1016/j.bbalip.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
39
|
Hagen-Euteneuer N, Lütjohann D, Park H, Merrill AH, van Echten-Deckert G. Sphingosine 1-phosphate (S1P) lyase deficiency increases sphingolipid formation via recycling at the expense of de novo biosynthesis in neurons. J Biol Chem 2012; 287:9128-36. [PMID: 22291021 PMCID: PMC3308789 DOI: 10.1074/jbc.m111.302380] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/10/2012] [Indexed: 12/11/2022] Open
Abstract
Sphingosine 1-phosphate lyase (S1P lyase) irreversibly cleaves sphingosine 1-phosphate (S1P) in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphate are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. Indeed, we have previously reported that S1P lyase deficiency causes neurodegeneration and other adverse symptoms. We next asked the question whether and how S1P lyase deficiency affects the metabolism of (glyco)sphingolipids and cholesterol, two lipid classes that might be involved in the neurodegenerative processes observed in S1P lyase-deficient mice. As predicted, there was a considerable increase in free and phosphorylated sphingoid bases upon elimination of S1P lyase, but to our surprise, rather than increasing, the mass of (glyco)sphingolipids persisted at wild type levels. This was discovered to be due to reduced de novo sphingoid base biosynthesis and a corresponding increase in the recycling of the backbones via the salvage pathway. There was also a considerable increase in cholesterol esters, although free cholesterol persisted at wild type levels, which might be secondary to the shifts in sphingolipid metabolism. All in all, these findings show that accumulation of free and phosphorylated sphingoid bases by loss of S1P lyase causes an interesting readjustment of the balance between de novo biosynthesis and recycling to maintain (glyco)sphingolipid homeostasis. These changes, and their impact on the metabolism of other cellular lipids, should be explored as possible contributors to the neurodegeneration in S1P lyase deficiency.
Collapse
Affiliation(s)
- Nadine Hagen-Euteneuer
- From the Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany
| | - Dieter Lütjohann
- the Institute of Clinical Chemistry and Clinical Pharmacology, University Clinic Bonn, 53127 Bonn, Germany, and
| | - Hyejung Park
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Alfred H. Merrill
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Gerhild van Echten-Deckert
- From the Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
40
|
Immune regulation by sphingosine 1-phosphate and its receptors. Arch Immunol Ther Exp (Warsz) 2011; 60:3-12. [PMID: 22159476 DOI: 10.1007/s00005-011-0159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/28/2011] [Indexed: 01/23/2023]
Abstract
It is well established that the lysophospholipid and signalling molecule sphingosine 1-phosphate (S1P) has many important functions in immune surveillance. S1P is produced from sphingosine by two distinct sphingosine kinases, SphK1 and SphK2, and acts as an intracellular messenger and as an extracellular ligand of five G protein-coupled cell surface receptors designated S1P(1)-S1P(5). S1P not only regulates peripheral lymphocyte circulation, but also influences their differentiation, activation, infiltration, and local positioning. The therapeutic value of modulating S1P metabolism and S1P receptor function is currently tested in clinical trials and holds great promise for treatment of different autoimmune diseases. Despite its obvious contribution to immune regulation, the analysis of S1P is still challenging. A major obstacle is the difficulty to analyze S1P locally in tissues and within cells due to its high metabolic turnover and the limited resolution of current analytical techniques like liquid chromatography and mass spectrometry. This review focuses on recent advancements to our understanding how different sources of S1P contribute to immune function, and how changes in production, secretion, and degradation of S1P can influence immune responses.
Collapse
|
41
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
42
|
Sensken SC, Nagarajan M, Bode C, Gräler MH. Local inactivation of sphingosine 1-phosphate in lymph nodes induces lymphopenia. THE JOURNAL OF IMMUNOLOGY 2011; 186:3432-40. [PMID: 21289303 DOI: 10.4049/jimmunol.1002169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sphingosine 1-phosphate (S1P) initiates T and B cell exit from lymphoid tissues by activating the S1P(1) receptor on lymphocytes. To define the mechanistic details of this ligand-receptor interaction, the biological activity of the S1P-blocking Ab Sphingomab was investigated. Treatment of mice with Sphingomab resulted in blood B and T cell lymphopenia. Although Sphingomab blocked S1P(1)-mediated calcium flux and receptor downregulation by S1P in vitro, plasma from Sphingomab-treated mice demonstrated a 4-fold increase in S1P concentration and largely retained its stimulating activity on S1P receptors. Plasma-borne S1P was obviously not sufficiently inactivated by Sphingomab to account for the observed lymphopenia. Therefore, we addressed the local S1P-blocking activity of Sphingomab in spleen and peripheral lymph nodes (pLNs) as a potential cause of PBL depletion. Transwell chemotaxis assays revealed the migration of freshly isolated splenocytes, but not pLN cells to S1P. However, chemotaxis of pLN cells was regained after culture in S1P-low medium, and pLN cells isolated from Sphingomab-treated mice also revealed enhanced chemotaxis to S1P, indicating substantial local inactivation of S1P in pLN after Sphingomab treatment. We conclude that treatment with the S1P-blocking Ab Sphingomab induces lymphopenia by inactivating S1P locally in pLN and not systemically in plasma. Consequently, the presence of local S1P amounts in secondary lymphoid organs contributes to B and T cell egress.
Collapse
|
43
|
Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, Chen W, Saba JD, Proia RL. Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 2010; 286:7348-58. [PMID: 21173151 DOI: 10.1074/jbc.m110.171819] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase catalyzes the degradation of S1P, a potent signaling lysosphingolipid. Mice with an inactive S1P lyase gene are impaired in the capacity to degrade S1P, resulting in highly elevated S1P levels. These S1P lyase-deficient mice have low numbers of lymphocytes and high numbers of neutrophils in their blood. We found that the S1P lyase-deficient mice exhibited features of an inflammatory response including elevated levels of pro-inflammatory cytokines and an increased expression of genes in liver associated with an acute-phase response. However, the recruitment of their neutrophils into inflamed tissues was impaired and their neutrophils were defective in migration to chemotactic stimulus. The IL-23/IL-17/granulocyte-colony stimulating factor (G-CSF) cytokine-controlled loop regulating neutrophil homeostasis, which is dependent on neutrophil trafficking to tissues, was disturbed in S1P lyase-deficient mice. Deletion of the S1P4 receptor partially decreased the neutrophilia and inflammation in S1P lyase-deficient mice, implicating S1P receptor signaling in the phenotype. Thus, a genetic block in S1P degradation elicits a pro-inflammatory response but impairs neutrophil migration from blood into tissues.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chi H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci 2010; 32:16-24. [PMID: 21159389 DOI: 10.1016/j.tips.2010.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with important functions in the immune system. S1P levels are regulated by the balance between its synthesis through sphingosine kinases and its degradation by S1P lyase. S1P signals through plasma membrane G-protein-coupled receptors (S1PR1-S1PR5) or acts directly on intracellular targets. Although it has long been known that the S1P-S1PR1 axis mediates T cell egress from lymphoid organs, recent studies have revealed intrinsic functions of S1P and its receptors in both innate and adaptive immune systems that are independent of immune cell trafficking. Here I summarize recent advances in understanding of the roles of S1P and S1P receptors in inflammatory and allergic responses and lymphocyte differentiation, which directly contribute to the regulation of inflammatory and autoimmune diseases. I also describe strategies to target S1P and S1P receptors for immune-mediated diseases, particularly the immunosuppressant FTY720 (fingolimod), which has recently become the first oral therapy for relapsing multiple sclerosis.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Bagdanoff JT, Donoviel MS, Nouraldeen A, Carlsen M, Jessop TC, Tarver J, Aleem S, Dong L, Zhang H, Boteju L, Hazelwood J, Yan J, Bednarz M, Layek S, Owusu IB, Gopinathan S, Moran L, Lai Z, Kramer J, Kimball SD, Yalamanchili P, Heydorn WE, Frazier KS, Brooks B, Brown P, Wilson A, Sonnenburg WK, Main A, Carson KG, Oravecz T, Augeri DJ. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J Med Chem 2010; 53:8650-62. [PMID: 21090716 DOI: 10.1021/jm101183p] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sphingosine 1-phosphate lyase (S1PL) has been characterized as a novel target for the treatment of autoimmune disorders using genetic and pharmacological methods. Medicinal chemistry efforts targeting S1PL by direct in vivo evaluation of synthetic analogues of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI, 1) led to the discovery of 2 (LX2931) and 4 (LX2932). The immunological phenotypes observed in S1PL deficient mice were recapitulated by oral administration of 2 or 4. Oral dosing of 2 or 4 yielded a dose-dependent decrease in circulating lymphocyte numbers in multiple species and showed a therapeutic effect in rodent models of rheumatoid arthritis (RA). Phase I clinical trials indicated that 2, the first clinically studied inhibitor of S1PL, produced a dose-dependent and reversible reduction of circulating lymphocytes and was well tolerated at dose levels of up to 180 mg daily. Phase II evaluation of 2 in patients with active rheumatoid arthritis is currently underway.
Collapse
|
46
|
Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Collapse
|
47
|
Sensken SC, Bode C, Nagarajan M, Peest U, Pabst O, Gräler MH. Redistribution of Sphingosine 1-Phosphate by Sphingosine Kinase 2 Contributes to Lymphopenia. THE JOURNAL OF IMMUNOLOGY 2010; 184:4133-42. [DOI: 10.4049/jimmunol.0903358] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Sensken SC, Gräler MH. Down-regulation of S1P1 receptor surface expression by protein kinase C inhibition. J Biol Chem 2010; 285:6298-307. [PMID: 20032465 PMCID: PMC2825425 DOI: 10.1074/jbc.m109.049692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/18/2009] [Indexed: 11/06/2022] Open
Abstract
The sphingosine 1-phosphate receptor type 1 (S1P(1)) is important for the maintenance of lymphocyte circulation. S1P(1) receptor surface expression on lymphocytes is critical for their egress from thymus and lymph nodes. Premature activation-induced internalization of the S1P(1) receptor in lymphoid organs, mediated either by pharmacological agonists or by inhibition of the S1P degrading enzyme S1P-lyase, blocks lymphocyte egress and induces lymphopenia in blood and lymph. Regulation of S1P(1) receptor surface expression is therefore a promising way to control adaptive immunity. Hence, we analyzed potential cellular targets for their ability to alter S1P(1) receptor surface expression without stimulation. The initial observation that preincubation of mouse splenocytes with its natural analog sphingosine was sufficient to block Transwell chemotaxis to S1P directed subsequent investigations to the underlying mechanism. Sphingosine is known to inhibit protein kinase C (PKC), and PKC inhibition with nanomolar concentrations of staurosporine, calphostin C, and GF109203X down-regulated surface expression of S1P(1) but not S1P(4) in transfected rat hepatoma HTC(4) cells. The PKC activator phorbol 12-myristate 13-acetate partially rescued FTY720-induced down-regulation of the S1P(1) receptor, linking PKC activation with S1P(1) receptor surface expression. FTY720, but not FTY720 phosphate, efficiently inhibited PKC. Cell-based efficacy was obvious with 10 nm FTY720, and in vivo treatment of mice with 0.3-3 mg/kg/day FTY720 showed increasing concentration-dependent effectiveness. PKC inhibition therefore may contribute to lymphopenia by down-regulating S1P(1) receptor cell surface expression independently from its activation.
Collapse
Affiliation(s)
| | - Markus H. Gräler
- From the Institute for Immunology, Hannover Medical School, 30625 Hanover, Germany
| |
Collapse
|
49
|
Bektas M, Allende ML, Lee BG, Chen W, Amar MJ, Remaley AT, Saba JD, Proia RL. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 2010; 285:10880-9. [PMID: 20097939 DOI: 10.1074/jbc.m109.081489] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cleavage of sphingoid base phosphates by sphingosine-1-phosphate (S1P) lyase to produce phosphoethanolamine and a fatty aldehyde is the final degradative step in the sphingolipid metabolic pathway. We have studied mice with an inactive S1P lyase gene and have found that, in addition to the expected increase of sphingoid base phosphates, other sphingolipids (including sphingosine, ceramide, and sphingomyelin) were substantially elevated in the serum and/or liver of these mice. This latter increase is consistent with a reutilization of the sphingosine backbone for sphingolipid synthesis due to its inability to exit the sphingolipid metabolic pathway. Furthermore, the S1P lyase deficiency resulted in changes in the levels of serum and liver lipids not directly within the sphingolipid pathway, including phospholipids, triacyglycerol, diacylglycerol, and cholesterol. Even though lipids in serum and lipid storage were elevated in liver, adiposity was reduced in the S1P lyase-deficient mice. Microarray analysis of lipid metabolism genes in liver showed that the S1P lyase deficiency caused widespread changes in their expression pattern, with a significant increase in the expression of PPARgamma, a master transcriptional regulator of lipid metabolism. However, the mRNA expression of the genes encoding the sphingosine kinases and S1P phosphatases, which directly control the levels of S1P, were not significantly changed in liver of the S1P lyase-deficient mice. These results demonstrate that S1P lyase is a key regulator of the levels of multiple sphingolipid substrates and reveal functional links between the sphingolipid metabolic pathway and other lipid metabolic pathways that may be mediated by shared lipid substrates and changes in gene expression programs. The disturbance of lipid homeostasis by altered sphingolipid levels may be relevant to metabolic diseases.
Collapse
Affiliation(s)
- Meryem Bektas
- Genetics of Development and Disease Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|