1
|
Xiang J, Wang Y, Shi L, Qiu J, Gan L, Xu Z, Zhang H, Deng J, Wang Z, Xu F, Zeng L. Optimal Timing of PD-1/PD-L1 Blockade Protects Organ Function During Sepsis. Inflammation 2024:10.1007/s10753-024-02113-3. [PMID: 39174864 DOI: 10.1007/s10753-024-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Jing Xiang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
- Department of Pharmacy, Chongqing Red Cross Hospital, People's Hospital of Jiangbei District, Chongqing, 400020, China
| | - Yuanyang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Langtian Shi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jinchao Qiu
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Lebin Gan
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Zhe Xu
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Huacai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Tang SQ, Xing T, Lyu ZS, Guo LP, Liang M, Li CY, Zhang YY, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2553-2570. [PMID: 37289327 DOI: 10.1007/s11427-022-2310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Aplastic anemia (AA) is a life-threatening disease characterized by bone marrow (BM) failure and pancytopenia. As an important component of the BM microenvironment, endothelial cells (ECs) play a crucial role in supporting hematopoiesis and regulating immunity. However, whether impaired BM ECs are involved in the occurrence of AA and whether repairing BM ECs could improve hematopoiesis and immune status in AA remain unknown. In this study, a classical AA mouse model and VE-cadherin blocking antibody that could antagonize the function of ECs were used to validate the role of BM ECs in the occurrence of AA. N-acetyl-L-cysteine (NAC, a reactive oxygen species scavenger) or exogenous EC infusion was administered to AA mice. Furthermore, the frequency and functions of BM ECs from AA patients and healthy donors were evaluated. BM ECs from AA patients were treated with NAC in vitro, and then the functions of BM ECs were evaluated. We found that BM ECs were significantly decreased and damaged in AA mice. Hematopoietic failure and immune imbalance became more severe when the function of BM ECs was antagonized, whereas NAC or EC infusion improved hematopoietic and immunological status by repairing BM ECs in AA mice. Consistently, BM ECs in AA patients were decreased and dysfunctional. Furthermore, dysfunctional BM ECs in AA patients led to their impaired ability to support hematopoiesis and dysregulate T cell differentiation toward proinflammatory phenotypes, which could be repaired by NAC in vitro. The reactive oxygen species pathway was activated, and hematopoiesis- and immune-related signaling pathways were enriched in BM ECs of AA patients. In conclusion, our data indicate that dysfunctional BM ECs with impaired hematopoiesis-supporting and immunomodulatory abilities are involved in the occurrence of AA, suggesting that repairing dysfunctional BM ECs may be a potential therapeutic approach for AA patients.
Collapse
Affiliation(s)
- Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Li-Ping Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Mi Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Chen-Yuan Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
3
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Ding C, Yu Z, Sefik E, Zhou J, Kaffe E, Wang G, Li B, Flavell RA, Hu W, Ye Y, Li HB. A T reg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver. NATURE AGING 2023; 3:813-828. [PMID: 37277640 DOI: 10.1038/s43587-023-00428-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhibin Yu
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Zhou
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gaoyang Wang
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Weiguo Hu
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
6
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Xing T, Lyu ZS, Duan CW, Zhao HY, Tang SQ, Wen Q, Zhang YY, Lv M, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Dysfunctional bone marrow endothelial progenitor cells are involved in patients with myelodysplastic syndromes. J Transl Med 2022; 20:144. [PMID: 35351133 PMCID: PMC8962499 DOI: 10.1186/s12967-022-03354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective haematopoiesis and immune deregulation. Emerging evidence has shown the effect of bone marrow (BM) endothelial progenitor cells (EPCs) in regulating haematopoiesis and immune balance. However, the number and functions of BM EPCs in patients with different stages of MDS remain largely unknown. METHODS Patients with MDS (N = 30), de novo acute myeloid leukaemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. MDS patients were divided into lower-risk MDS (N = 15) and higher-risk MDS (N = 15) groups according to the dichotomization of the Revised International Prognostic Scoring System. Flow cytometry was performed to analyse the number of BM EPCs. Tube formation and migration assays were performed to evaluate the functions of BM EPCs. In order to assess the gene expression profiles of BM EPCs, RNA sequencing (RNA-seq) were performed. BM EPC supporting abilities of haematopoietic stem cells (HSCs), leukaemia cells and T cells were assessed by in vitro coculture experiments. RESULTS Increased but dysfunctional BM EPCs were found in MDS patients compared with HDs, especially in patients with higher-risk MDS. RNA-seq indicated the progressive change and differences of haematopoiesis- and immune-related pathways and genes in MDS BM EPCs. In vitro coculture experiments verified that BM EPCs from HDs, lower-risk MDS, and higher-risk MDS to AML exhibited a progressively decreased ability to support HSCs, manifested as elevated apoptosis rates and intracellular reactive oxygen species (ROS) levels and decreased colony-forming unit plating efficiencies of HSCs. Moreover, BM EPCs from higher-risk MDS patients demonstrated an increased ability to support leukaemia cells, characterized by increased proliferation, leukaemia colony-forming unit plating efficiencies, decreased apoptosis rates and apoptosis-related genes. Furthermore, BM EPCs induced T cell differentiation towards more immune-tolerant cells in higher-risk MDS patients in vitro. In addition, the levels of intracellular ROS and the apoptosis ratios were increased in BM EPCs from MDS patients, especially in higher-risk MDS patients, which may be therapeutic candidates for MDS patients. CONCLUSION Our results suggest that dysfunctional BM EPCs are involved in MDS patients, which indicates that improving haematopoiesis supporting ability and immuneregulation ability of BM EPCs may represent a promising therapeutic approach for MDS patients.
Collapse
Affiliation(s)
- Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
8
|
Drummer C, Saaoud F, Shao Y, Sun Y, Xu K, Lu Y, Ni D, Atar D, Jiang X, Wang H, Yang X. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler Thromb Vasc Biol 2021; 41:1032-1046. [PMID: 33380171 PMCID: PMC7904591 DOI: 10.1161/atvbaha.120.315452] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Innate immune cells can develop exacerbated immunologic response and long-term inflammatory phenotype following brief exposure to endogenous or exogenous insults, which leads to an altered response towards a second challenge after the return to a nonactivated state. This phenomenon is known as trained immunity (TI). TI is not only important for host defense and vaccine response but also for chronic inflammations such as cardiovascular and metabolic diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/macrophages, natural killer cells, endothelial cells (ECs), and nonimmune cells, such as fibroblast. In this brief review, we analyze the significance of TI in ECs, which are also considered as innate immune cells in addition to macrophages. TI can be induced by a variety of stimuli, including lipopolysaccharides, BCG (bacillus Calmette-Guerin), and oxLDL (oxidized low-density lipoprotein), which are defined as risk factors for cardiovascular and metabolic diseases. Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of TI, including increased glycolysis, glutaminolysis, increased accumulation of tricarboxylic acid cycle metabolites and acetyl-coenzyme A production, as well as increased mevalonate synthesis. Subsequently, this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that enables increased gene transcription and enhanced proinflammatory immune response. However, TI pathways and inflammatory pathways are separated to ensure memory stays when inflammation undergoes resolution. Additionally, reactive oxygen species play context-dependent roles in TI. Therefore, TI plays significant roles in EC and macrophage pathology and chronic inflammation. However, further characterization of TI in ECs and macrophages would provide novel insights into cardiovascular disease pathogenesis and new therapeutic targets. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Charles Drummer
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dong Ni
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Diana Atar
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
9
|
Guo T, Zou L, Ni J, Zhou Y, Ye L, Yang X, Zhu Z. Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Front Immunol 2020; 11:1769. [PMID: 32849634 PMCID: PMC7417370 DOI: 10.3389/fimmu.2020.01769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs), which have long been recognized as essential regulators of both inflammation and autoimmunity, also impede effective antitumor immune response due to their immunosuppressive properties. Combined radiotherapy and immunotherapeutic interventions focusing on the removal of Tregs have recently garnered interest as a promising strategy to reverse immunosuppression. Meanwhile, Tregs are emerging as a key player in the pathogenesis of radiation-induced lung injury (RILI), a frequent and potentially life-threatening complication of thoracic radiotherapy. Recognition of the critical role of Tregs in RILI raises the important question of whether radiotherapy combined with Treg-targeting immunotherapy offers any beneficial effects in the protection of normal lung tissue. This present review focuses on the contributions of Tregs to RILI, with particular emphasis on the suspected differential role of Tregs in the pneumonitic phase and fibrotic phase of RILI. We also introduce recent progress on the potential mechanisms by which Tregs modulate RILI and the crosstalk among Tregs, other infiltrating T cells, fibrocytes, and resident epithelial cells driving disease pathogenesis. Finally, we discuss whether Tregs also hold promise as a potential target for immunotherapeutic interventions for RILI.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Churov AV, Mamashov KY, Novitskaia AV. Homeostasis and the functional roles of CD4 + Treg cells in aging. Immunol Lett 2020; 226:83-89. [PMID: 32717201 DOI: 10.1016/j.imlet.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE An upward trend in life expectancy has been observed in a majority of developed countries and leading to increasing in aging-related diseases. Aging is a risk factor for the development of widespread clinical conditions such as cardiovascular and autoimmune diseases, cancer, infections. Although studies have been very active, the problem of aging still remains one of the most obscure aspects of human biology. Regulatory T (Treg) cells with immunosuppressive properties have a pivotal role in the maintenance of immune homeostasis. Alterations in Treg cell functionality appear to be of great importance in the development of immune senescence and contribute to increased susceptibility to immune-mediated diseases with age. DESIGN This review highlights recent findings regarding the age-related changes in the numbers and functional activity of human Tregs. Some of the mechanisms that maintain the balance of Tregs during human aging are discussed. The possible roles of Tregs in the pathogenesis of diseases associated with advanced age are also considered. RESULTS Age-related systemic changes, such as thymic involution, hormonal status, and epigenetic modifications, may affect the state of the Treg population and trigger various diseases. These changes involve decline or amplification in the functional activity of Tregs, an increase in the memory Treg subset and shifting of a Th17/Treg balance. CONCLUSION Taken together, the reviewed data suggest equal or even increased Treg functionality with age. Thus, age-mediated Treg expansion and higher Treg activity may contribute to elevated immune suppression and increased risk of infections and cancer.
Collapse
Affiliation(s)
- Alexey V Churov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia.
| | | | - Anastasiia V Novitskaia
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
11
|
Iwasaki K, Hamana H, Kishi H, Yamamoto T, Hiramitsu T, Okad M, Tomosugi T, Takeda A, Narumi S, Watarai Y, Miwa Y, Okumura M, Matsuoka Y, Horimi K, Muraguchi A, Kobayash T. The suppressive effect on CD4 T cell alloresponse against endothelial HLA-DR via PD-L1 induced by anti-A/B ligation. Clin Exp Immunol 2020; 202:249-261. [PMID: 32578199 DOI: 10.1111/cei.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
While donor-specific human leukocyte antigen (HLA) antibodies are a frequent cause for chronic antibody-mediated rejection in organ transplantation, this is not the case for antibodies targeting blood group antigens, as ABO-incompatible (ABO-I) organ transplantation has been associated with a favorable graft outcome. Here, we explored the role of CD4 T cell-mediated alloresponses against endothelial HLA-D-related (DR) in the presence of anti-HLA class I or anti-A/B antibodies. CD4 T cells, notably CD45RA-memory CD4 T cells, undergo extensive proliferation in response to endothelial HLA-DR. The CD4 T cell proliferative response was enhanced in the presence of anti-HLA class I, but attenuated in the presence of anti-A/B antibodies. Microarray analysis and molecular profiling demonstrated that the expression of CD274 programmed cell death ligand 1 (PD-L1) increased in response to anti-A/B ligation-mediated extracellular signal-regulated kinase (ERK) inactivation in endothelial cells that were detected even in the presence of interferon-γ stimulation. Anti-PD-1 antibody enhanced CD4 T cell proliferation, and blocked the suppressive effect of the anti-A/B antibodies. Educated CD25+ CD127- regulatory T cells (edu.Tregs ) were more effective at preventing CD4 T cell alloresponses to endothelial cells compared with naive Treg ; anti-A/B antibodies were not involved in the Treg -mediated events. Finally, amplified expression of transcript encoding PD-L1 was observed in biopsy samples from ABO-I renal transplants when compared with those from ABO-identical/compatible transplants. Taken together, our findings identified a possible factor that might prevent graft rejection and thus contribute to a favorable outcome in ABO-I renal transplantation.
Collapse
Affiliation(s)
- K Iwasaki
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - H Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - H Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Yamamoto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Hiramitsu
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - M Okad
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Tomosugi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - A Takeda
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - S Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Miwa
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - M Okumura
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Y Matsuoka
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - K Horimi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - A Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Kobayash
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
12
|
Taguchi K, Onoe T, Yoshida T, Yamashita Y, Tanaka Y, Ohdan H. Tumor Endothelial Cell–Mediated Antigen-Specific T-cell Suppression via the PD-1/PD-L1 Pathway. Mol Cancer Res 2020; 18:1427-1440. [DOI: 10.1158/1541-7786.mcr-19-0897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
|
13
|
Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C, Johnson C, Xu K, Jiang X, Wang H, Yang X. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol 2020; 40:e138-e152. [PMID: 32459541 PMCID: PMC7263359 DOI: 10.1161/atvbaha.120.314330] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the roles of endothelial cells (ECs) in physiological processes, ECs actively participate in both innate and adaptive immune responses. We previously reported that, in comparison to macrophages, a prototypic innate immune cell type, ECs have many innate immune functions that macrophages carry out, including cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular patterns-, and danger-associated molecular patterns-sensing, proinflammatory, immune-enhancing, anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity. In this highlight, we introduce recent advances published in both ATVB and many other journals: (1) several significant characters classify ECs as novel immune cells not only in infections and allograft transplantation but also in metabolic diseases; (2) several new receptor systems including conditional danger-associated molecular pattern receptors, nonpattern receptors, and homeostasis associated molecular patterns receptors contribute to innate immune functions of ECs; (3) immunometabolism and innate immune memory determine the innate immune functions of ECs; (4) a great induction of the immune checkpoint receptors in ECs during inflammations suggests the immune tolerogenic functions of ECs; and (5) association of immune checkpoint inhibitors with cardiovascular adverse events and cardio-oncology indicates the potential contributions of ECs as innate immune cells.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - William Y. Yang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yu Sun
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yifan Lu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Fatma Saaoud
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Charles Drummer
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Candice Johnson
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Keman Xu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaohua Jiang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaofeng Yang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| |
Collapse
|
14
|
The Role of Decidual PD-1 + Treg Cells in Adverse Pregnancy Outcomes due to Toxoplasma gondii Infection. Inflammation 2020; 42:2119-2128. [PMID: 31468303 DOI: 10.1007/s10753-019-01075-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii infection during pregnancy can result in adverse pregnancy outcomes. Previously, we have reported that these outcomes are associated with the impaired function of decidual Treg cells; however, the detailed mechanisms involved were unclear. It has been reported that the suppressive capacity of Treg cells is dependent on PD-1 expression. The present study explored the role of decidual PD-1+ Treg cell function in adverse pregnancy outcomes due to T. gondii infection. Toxoplasma gondii-infected pregnant mice were sacrificed on gestational day 14 and their pregnancy outcomes were observed. The expression of PD-1 on decidual Treg cells and expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ and PD-1- Treg cells were determined using flow cytometry. The results showed that the expression of PD-1 on decidual Treg cells was clearly higher in the T. gondii-infected mice than in the normal mice. Meanwhile, the expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ Treg cells were higher in the infected mice than in the normal mice. The expressions were higher in decidual PD1+ Treg cells than in PD-1- Treg cells in the infected mice. However, these expressions on PD-1- Treg cells did not significantly differ between the infected and normal mice. Nonetheless, the absolute percentages of decidual PD-1+ Treg cells decreased significantly in the infected mice compared with those in the normal mice. These results suggest that T. gondii infection mainly influences the function of decidual PD-1+ Treg cells, which would result in an insufficiently immunotolerant microenvironment and consequently in adverse pregnancy outcomes.
Collapse
|
15
|
Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 2019; 233:116671. [PMID: 31336122 PMCID: PMC7094289 DOI: 10.1016/j.lfs.2019.116671] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) comprise a clan of proteins involved in identification and triggering a suitable response against pathogenic attacks. As lung is steadily exposed to multiple infectious agents, antigens and host-derived danger signals, the inhabiting stromal and myeloid cells of the lung express an aggregate of TLRs which perceive the endogenously derived damage-associated molecular patterns (DAMPs) along with pathogen associated molecular patterns (PAMPs) and trigger the TLR-associated signalling events involved in host defence. Thus, they form an imperative component of host defence activation in case of microbial infections as well as non-infectious pulmonary disorders such as interstitial lung disease, acute lung injury and airways disease, such as COPD and asthma. They also play an equally important role in lung cancer. Targeting the TLR signalling network would pave ways to the design of more reliable and effective vaccines against infectious agents and control deadly infections, desensitize allergens and reduce inflammation. Moreover, TLR agonists may act as adjuvants by increasing the efficiency of cancer vaccines, thereby contributing their role in treatment of lung cancer too. Overall, TLRs present a compelling and expeditiously bolstered area of research and addressing their signalling events would be of significant use in pulmonary diseases.
Collapse
Affiliation(s)
- Shweta Arora
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Rasha Irshad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Neha Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
16
|
Leone P, Di Lernia G, Solimando AG, Cicco S, Saltarella I, Lamanuzzi A, Ria R, Frassanito MA, Ponzoni M, Ditonno P, Dammacco F, Racanelli V, Vacca A. Bone marrow endothelial cells sustain a tumor-specific CD8 + T cell subset with suppressive function in myeloma patients. Oncoimmunology 2018; 8:e1486949. [PMID: 30546939 DOI: 10.1080/2162402x.2018.1486949] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) line the bone marrow microvasculature and are in close contact with CD8+ T cells that come and go across the permeable capillaries. Because of these intimate interactions, we investigated the capacity of EC to act as antigen-presenting cells (APC) and modulate CD8+ T cell activation and proliferation in bone marrow of patients with multiple myeloma (MM) and monoclonal gammopathy of undetermined significance. We found that EC from MM patients show a phenotype of semi-professional APC given that they express low levels of the co-stimulatory molecules CD40, CD80 and CD86, and of the inducible co-stimulator ligand (ICOSL). In addition, they do not undergo the strong switch from immunoproteasome to standard proteasome subunit expression which is typical of mature professional APC such as dendritic cells. EC can trap and present antigen to CD8+ T cells, stimulating a central memory CD8+ T cell population that expresses Foxp3 and produces high amounts of IL-10 and TGF-β. Another CD8+ T cell population is stimulated by professional APC, produces IFN-γ, and exerts antitumor activity. Thus, two distinct CD8+ T cell populations coexist in the bone marrow of MM patients: the first population is sustained by EC, expresses Foxp3, produces IL-10 and TGF-β, and exerts pro-tumor activity by negatively regulating the second population. This study adds new insight into the role that EC play in MM biology and describes an additional immune regulatory mechanism that inhibits the development of antitumor immunity and may impair the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Giuseppe Di Lernia
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maurilio Ponzoni
- Pathology Unit & Leukemia Unit, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - Paolo Ditonno
- Hematology Unit, IRCCS "Giovanni Paolo II", Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| |
Collapse
|
17
|
Gianchecchi E, Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Front Immunol 2018; 9:2374. [PMID: 30386337 PMCID: PMC6199356 DOI: 10.3389/fimmu.2018.02374] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Regulatory T (Treg) cells represent a subpopulation of suppressor CD4+ T cells critically involved in the establishment of peripheral tolerance through the inhibition of effector T (Teff) cells and the suppression of the immune-mediated tissue destruction toward self-antigens. Treg generation, their suppressive properties and also Treg-Teff cell interactions could be modulated at least in part by programmed cell death-1 (PD-1) expression on their surface and through binding between PD-1 and programmed cell death ligand-1 (PD-L1). Defects involving PD-1 and Tregs can lead to the development of pathological conditions, including autoimmune disorders or promote cancer progression by favoring tumor evasion from the host immune response. At the same time, PD-1 and Tregs could represent attractive targets for treatment, as demonstrated by the therapeutic blockade of PD-L1 applied for the management of different cancer conditions in humans. In the present Review, we focus specifically the role of PD-1/PD-L1 on Treg development and activity.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy.,VisMederi S.r.l., Siena, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
18
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Lim WC, Olding M, Healy E, Millar TM. Human Endothelial Cells Modulate CD4 + T Cell Populations and Enhance Regulatory T Cell Suppressive Capacity. Front Immunol 2018; 9:565. [PMID: 29628925 PMCID: PMC5876242 DOI: 10.3389/fimmu.2018.00565] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and have an active role in the recruitment of leukocytes, including immune cell activation. Regulatory T cells (Tregs) are immune suppressor cells that maintain peripheral tolerance and must interact with the endothelium as they traffic into tissue. We hypothesized that human ECs could modulate Tregs and their suppressor function. Cocultures of CD4+ T cells with human umbilical vein ECs (HUVECs) or dermal microvascular ECs (HDMECs) were conducted and analyzed for activation and proliferation after 72 and 120 h using flow cytometry. In monocyte-depleted cultures, human ECs were found to support CD4+ T cell proliferation in the presence of external mitogens phytohemagglutinin or anti-CD3/28 antibodies (aCD3/28). Activation was shown by CD25 expression in these cells that also transiently expressed the Treg transcription factor FOXP3. HUVECs supported the specific concurrent proliferation of both effector T cells and Tregs when cocultured with aCD3/28. Purified Tregs were also functionally activated by prior coculture with EC to suppress effector T (Teff) cell proliferation. Both direct coculture and indirect coculture of EC and Treg showed activation of the Treg suppressive phenotype. However, whereas HUVEC showed enhancement of suppression by both mechanisms, HDMEC only supported Treg suppressive activity via the contact-independent mechanism. In the contact-independent cultures, the soluble mediators IL-6, GM-CSF, or G-CSF released from ECs following interferon-γ activation were not responsible for the enhanced Treg suppressor function. Following direct coculture, Treg expression of inhibitory receptors PD-1 and OX40 was elevated while activated EC expressed the counter ligands programmed death ligand (PD-L)1 and PD-L2. Therefore, human ECs have a role in supporting T cell proliferation and increasing Treg suppressor function. This ability of EC to enhance Treg function could offer novel targets to boost Treg activity during inflammatory disorders.
Collapse
Affiliation(s)
- Wen Chean Lim
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michael Olding
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Timothy M Millar
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Self-Transducible Bimodal PDX1-FOXP3 Protein Lifts Insulin Secretion and Curbs Autoimmunity, Boosting Tregs in Type 1 Diabetic Mice. Mol Ther 2017; 26:184-198. [PMID: 28988715 DOI: 10.1016/j.ymthe.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing β cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting β cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4+ T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other β lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3+CD4+CD25+ T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential.
Collapse
|
21
|
Walusimbi SS, Wetzel LM, Townson DH, Pate JL. Isolation of luteal endothelial cells and functional interactions with T lymphocytes. Reproduction 2017; 153:519-533. [PMID: 28174320 DOI: 10.1530/rep-16-0578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to optimize the isolation of luteal endothelial cells (LEC) and examine their functional interactions with autologous T lymphocytes. Analysis by flow cytometry showed that the purity of LEC isolated by filtration was nearly 90% as indicated by Bandeiraea simplicifolia (BS)-1 lectin binding. LEC expressed mRNA for progesterone receptor (PGR), prostaglandin receptors (PTGFR, PTGER2 and 4, and PTGIR), tumor necrosis factor receptors (TNFRSF1A&B) and interleukin (IL) 1B receptors (IL1R1&2). LEC were pretreated with either vehicle, progesterone (P4; 0-20 µM), prostaglandin (PG) E2 or PGF2α (0-0.2 µM), and further treated with or without TNF and IL1B (50 ng/mL each). LEC were then incubated with autologous T lymphocytes in an adhesion assay. Fewer lymphocytes adhered to LEC after exposure to high compared to low P4 concentrations (cubic response; P < 0.05). In contrast, 0.2 µM PGE2 and PGF2α each increased T lymphocyte adhesion in the absence of cytokines (P < 0.05). LEC induced IL2 receptor alpha (CD25) expression and proliferation of T lymphocytes. In conclusion, filtration is an effective way of isolating large numbers of viable LEC. It is proposed that PGs and P4 modulate the ability of endothelial cells to bind T lymphocytes, potentially regulating extravasation, and that LEC activate T lymphocytes migrating into or resident in the CL.
Collapse
Affiliation(s)
- S S Walusimbi
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - L M Wetzel
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D H Townson
- Department of Animal and Veterinary SciencesUniversity of Vermont, Burlington, Vermont, USA
| | - J L Pate
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
22
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
23
|
Johansson A, Hamzah J, Ganss R. More than a scaffold: Stromal modulation of tumor immunity. Biochim Biophys Acta Rev Cancer 2015; 1865:3-13. [PMID: 26071879 DOI: 10.1016/j.bbcan.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
Current clinical success with anti-cancer immunotherapy provides exciting new treatment opportunities. While encouraging, more needs to be done to induce durable effects in a higher proportion of patients. Increasing anti-tumor effector T cell quantity or quality alone does not necessarily correlate with therapeutic outcome. Instead, the tumor microenvironment is a critical determinant of anti-cancer responsiveness to immunotherapy and can confer profound resistance. Yet, the tumor-promoting environment - due to its enormous plasticity - also delivers the best opportunities for adjuvant therapy aiming at recruiting, priming and sustaining anti-tumor cytotoxicity. While the tumor environment as an entity is increasingly well understood, current interventions are still broad and often systemic. In contrast, tumors grow in a highly compartmentalized environment which includes the vascular/perivascular niche, extracellular matrix components and in some tumors lymph node aggregates; all of these structures harbor and instruct subsets of immune cells. Targeting and re-programming specific compartments may provide better opportunities for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Anna Johansson
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging and Therapy, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
24
|
Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine 2014; 65:33-41. [DOI: 10.1016/j.cyto.2013.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 01/22/2023]
|
25
|
Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol 2013; 6:61. [PMID: 23965413 PMCID: PMC3765446 DOI: 10.1186/1756-8722-6-61] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Collapse
Affiliation(s)
- Jietang Mai
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Anthony Virtue
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jerry Shen
- Department of Family Medicine, College of Community Health Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Hong Wang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
26
|
Rueda CM, Velilla PA, Chougnet CA, Rugeles MT. Incomplete normalization of regulatory t-cell frequency in the gut mucosa of Colombian HIV-infected patients receiving long-term antiretroviral treatment. PLoS One 2013; 8:e71062. [PMID: 23967152 PMCID: PMC3744540 DOI: 10.1371/journal.pone.0071062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION To evaluate the effect of late initiation of HAART and poor immune reconstitution on the frequency of regulatory T-cells (Treg) in the peripheral blood and gut of HIV-infected patients, we studied Colombian HIV-infected patients who had been on suppressive HAART for at least one year. They had undetectable viremia but were either immunological responders (HIR); (CD4 counts >500 cells/µl) or non-immunological responders (NIR); (CD4 T-cell count <300 cells/µl). Untreated HIV-infected patients and uninfected controls from the same region were also evaluated. METHODS Frequency and phenotype of regulatory T-cells (Treg) were analyzed in gut biopsies and blood samples. The functional effect of Treg depletion on CMV and HIV responses was determined. Markers of immune activation and circulating LPS levels were quantified. RESULTS Untreated patients exhibited high Treg frequency in PBMC and gut, and their Treg express high levels of CTLA-4 and PD-1. Although HAART significantly decreased mucosal Treg frequency, it did not normalize it in any of the treated groups (HIR and NIR patients). Treg normalization was observed in the blood of HIR patients following HAART, but did not occur in NIR patients. Treg from HIV-infected patients (treated or not) suppressed HIV and hCMV-specific T-cells from gut and blood. Plasma LPS levels and percentage of HLA-DR+CD38+ T-cells were significantly elevated in all infected groups compared to controls. CONCLUSIONS These findings suggest that control of viral replication is not sufficient to normalize gut Treg frequency in patients, independent of their response to HAART. Furthermore, persistence of functional Treg in the gut appears to be associated with the failure of HAART to repair mucosal damage.
Collapse
Affiliation(s)
- Cesar M. Rueda
- Grupo Inmunovirologia, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirologia, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claire A. Chougnet
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Maria T. Rugeles
- Grupo Inmunovirologia, Universidad de Antioquia, Medellín, Antioquia, Colombia
- * E-mail:
| |
Collapse
|
27
|
Adipocytes as immune regulatory cells. Int Immunopharmacol 2013; 16:224-31. [PMID: 23587489 DOI: 10.1016/j.intimp.2013.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/30/2022]
Abstract
Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4(+) or CD8(+) T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8(+) T-cells, not CD4(+) T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators.
Collapse
|
28
|
Burrell BE, Nakayama Y, Xu J, Brinkman CC, Bromberg JS. Regulatory T cell induction, migration, and function in transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4705-11. [PMID: 23125426 PMCID: PMC3490202 DOI: 10.4049/jimmunol.1202027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) are important in maintaining immune homeostasis and in regulating a variety of immune responses, making them attractive targets for modulating immune-related diseases. Success in using induction or transfer of Treg in mice to mediate transplant tolerance suggests Treg-based therapies as mechanisms of long-term drug-free transplant tolerance in human patients. Although more work is needed, critical analyses suggest that key factors in Treg induction, migration, and function are important areas to concentrate investigative efforts and therapeutic development. Elucidation of basic biology will aid in translating data gleaned from mice to humans so that Treg therapies become a reality for patients.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
29
|
Kinsey GR, Huang L, Jaworska K, Khutsishvili K, Becker DA, Ye H, Lobo PI, Okusa MD. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J Am Soc Nephrol 2012; 23:1528-37. [PMID: 22835488 DOI: 10.1681/asn.2012010070] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Regulatory T cells (Tregs) suppress the innate inflammation associated with kidney ischemia-reperfusion injury (IRI), but the mechanism is not well understood. Tregs express CD73, the final enzyme involved in the production of extracellular adenosine, and activation of the adenosine 2A receptor (A(2A)R) on immune cells suppresses inflammation and preserves kidney function after IRI. We hypothesized that Treg-generated adenosine is required to block innate immune responses in kidney IRI and that the Treg-generated adenosine would signal through A(2A)Rs on inflammatory cells and, in an autocrine manner, on Tregs themselves. We found that adoptively transferred wild-type Tregs protected wild-type mice from kidney IRI, but the absence of adenosine generation (CD73-deficient Tregs) or adenosine responsiveness (A(2A)R-deficient Tregs) led to inhibition of Treg function. Pharmacologic stimulation of A(2A)R before adoptive transfer augmented the ability of wild-type and CD73-deficient Tregs to suppress kidney IRI. Microarray analysis and flow cytometry revealed that A(2A)R activation enhanced surface PD-1 expression on Tregs in the absence of any other activation signal. Treatment of Tregs with a PD-1 blocking antibody before adoptive transfer reversed their protective effects, even if pretreated with an A(2A)R agonist. Taken together, these results demonstrate that the simultaneous ability to generate and respond to adenosine is required for Tregs to suppress innate immune responses in IRI through a PD-1-dependent mechanism.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Box 800746, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
García-Muñoz R, Roldan Galiacho V, Llorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann Hematol 2012; 91:981-96. [PMID: 22526361 PMCID: PMC3368117 DOI: 10.1007/s00277-012-1460-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/26/2012] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Profiling
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/physiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Models, Biological
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/physiology
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/physiology
Collapse
Affiliation(s)
- Ricardo García-Muñoz
- Hematology Department, Hospital San Pedro, c/Piqueras 98, Logroño, La Rioja, 26006, Spain.
| | | | | |
Collapse
|
31
|
Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. THE JOURNAL OF IMMUNOLOGY 2012; 188:4876-84. [PMID: 22491251 DOI: 10.4049/jimmunol.1200389] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PD-1, a member of the CD28 family of immune regulatory molecules, is expressed on activated T cells, interacts with its ligands, PD-L1/B7-H1 and PD-L2/B7-DC, on other cells, and delivers inhibitory signals to the T cell. We studied the role of this pathway in modulating autoreactive T cell responses in two models of myocarditis. In a CD8(+) T cell-mediated adoptive transfer model, we found that compared with Pd1(+/+) CD8(+) T cells, Pd1(-/-) CD8(+) T cells cause enhanced disease, with increased inflammatory infiltrate, particularly rich in neutrophils. Additionally, we show enhanced proliferation in vivo and enhanced cytotoxic activity of PD-1-deficient T lymphocytes against myocardial endothelial cells in vitro. In experimental autoimmune myocarditis, a disease model dependent on CD4(+) T cells, we show that mice lacking PD-1 develop enhanced disease compared with wild-type mice. PD-1-deficient mice displayed increased inflammation, enhanced serum markers of myocardial damage, and an increased infiltration of inflammatory cells, including CD8(+) T cells. Together, these studies show that PD-1 plays an important role in limiting T cell responses in the heart.
Collapse
Affiliation(s)
- Margarite L Tarrio
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Fujimura T, Ring S, Umansky V, Mahnke K, Enk AH. Regulatory T Cells Stimulate B7-H1 Expression in Myeloid-Derived Suppressor Cells in ret Melanomas. J Invest Dermatol 2012; 132:1239-46. [DOI: 10.1038/jid.2011.416] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306:2594-605. [PMID: 22187279 PMCID: PMC3361243 DOI: 10.1001/jama.2011.1829] [Citation(s) in RCA: 1203] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Severe sepsis is typically characterized by initial cytokine-mediated hyperinflammation. Whether this hyperinflammatory phase is followed by immunosuppression is controversial. Animal studies suggest that multiple immune defects occur in sepsis, but data from humans remain conflicting. OBJECTIVES To determine the association of sepsis with changes in host innate and adaptive immunity and to examine potential mechanisms for putative immunosuppression. DESIGN, SETTING, AND PARTICIPANTS Rapid postmortem spleen and lung tissue harvest was performed at the bedsides of 40 patients who died in intensive care units (ICUs) of academic medical centers with active severe sepsis to characterize their immune status at the time of death (2009-2011). Control spleens (n = 29) were obtained from patients who were declared brain-dead or had emergent splenectomy due to trauma; control lungs (n = 20) were obtained from transplant donors or from lung cancer resections. MAIN OUTCOME MEASURES Cytokine secretion assays and immunophenotyping of cell surface receptor-ligand expression profiles were performed to identify potential mechanisms of immune dysfunction. Immunohistochemical staining was performed to evaluate the loss of immune effector cells. RESULTS The mean ages of patients with sepsis and controls were 71.7 (SD, 15.9) and 52.7 (SD, 15.0) years, respectively. The median number of ICU days for patients with sepsis was 8 (range, 1-195 days), while control patients were in ICUs for 4 or fewer days. The median duration of sepsis was 4 days (range, 1-40 days). Compared with controls, anti-CD3/anti-CD28-stimulated splenocytes from sepsis patients had significant reductions in cytokine secretion at 5 hours: tumor necrosis factor, 5361 (95% CI, 3327-7485) pg/mL vs 418 (95% CI, 98-738) pg/mL; interferon γ, 1374 (95% CI, 550-2197) pg/mL vs 37.5 (95% CI, -5 to 80) pg/mL; interleukin 6, 3691 (95% CI, 2313-5070) vs 365 (95% CI, 87-642) pg/mL; and interleukin 10, 633 (95% CI, -269 to 1534) vs 58 (95% CI, -39 to 156) pg/mL; (P < .001 for all). There were similar reductions in 5-hour lipopolysaccharide-stimulated cytokine secretion. Cytokine secretion in sepsis patients was generally less than 10% that in controls, independent of age, duration of sepsis, corticosteroid use, and nutritional status. Although differences existed between spleen and lung, flow cytometric analysis showed increased expression of selected inhibitory receptors and ligands and expansion of suppressor cell populations in both organs. Unique differences in cellular inhibitory molecule expression existed in immune cells isolated from lungs of sepsis patients vs cancer patients and vs transplant donors. Immunohistochemical staining showed extensive depletion of splenic CD4, CD8, and HLA-DR cells and expression of ligands for inhibitory receptors on lung epithelial cells. CONCLUSIONS Patients who die in the ICU following sepsis compared with patients who die of nonsepsis etiologies have biochemical, flow cytometric, and immunohistochemical findings consistent with immunosuppression. Targeted immune-enhancing therapy may be a valid approach in selected patients with sepsis.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Medicine, Washington University School of Medicine, 660 S Euclid, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsakiri N, Papadopoulos D, Denis MC, Mitsikostas DD, Kollias G. TNFR2 on non-haematopoietic cells is required for Foxp3+ Treg-cell function and disease suppression in EAE. Eur J Immunol 2011; 42:403-12. [PMID: 22105853 DOI: 10.1002/eji.201141659] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/18/2011] [Accepted: 11/14/2011] [Indexed: 12/19/2022]
Abstract
The TNF/TNFR system exerts multiple proinflammatory and immunosuppressive functions in the pathogenesis of chronic inflammation and autoimmunity. In EAE, the experimental model of Multiple Sclerosis (MS), genetic ablation of TNFR2, results in exacerbated immune reactivity and chronic disease course. The underlying mechanism driving this immunosuppressive function of TNFR2 remains unclear. We show here that chronic exacerbated EAE in TNFR2 KO mice is associated with increased Th17-cell responses and reduced numbers of Foxp3(+) Treg cells both in the spinal cord and peripheral lymphoid organs. Treg cells from TNFR2-deficient animals developing EAE show decreased proliferative and suppressive functions, both ex vivo and in vivo, and appear responsible for the exacerbated non-remitting disease, as evidenced by phenotypic rescue following adoptive transfer of Treg cells from WT but not TNFR2(-/-) donors. Reciprocal BM transplantation experiments between WT and TNFR2-deficient mice demonstrated that the capacity of TNFR2 to support Treg-cell expansion and function during EAE is non-intrinsic to Treg or other haematopoietic cells but requires expression of TNFR2 in radiation-resistant cells of the host. These results reveal a previously unsuspected role for non-haematopoietic TNFR2 in modulating Treg-cell expansion and immune suppression during development of autoimmunity and suggest that a similar mechanism may affect chronicity and relapses characterizing human autoimmune disease, including MS.
Collapse
Affiliation(s)
- Niki Tsakiri
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | | | | | | |
Collapse
|
35
|
Yu Y, Zitzner JR, Houlihan J, Herrera N, Xu L, Miller J, Mathew JM, Tambur AR, Luo X. Common gamma chain cytokines promote rapid in vitro expansion of allo-specific human CD8+ suppressor T cells. PLoS One 2011; 6:e28948. [PMID: 22194954 PMCID: PMC3237561 DOI: 10.1371/journal.pone.0028948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/17/2011] [Indexed: 01/12/2023] Open
Abstract
Human CD8+ regulatory T cells, particularly the CD8+CD28− T suppressor cells, have emerged as an important modulator of alloimmunity. Understanding the conditions under which these cells are induced and/or expanded would greatly facilitate their application in future clinical trials. In the current study, we develop a novel strategy that combines common gamma chain (γc) cytokines IL-2, IL-7 and IL-15 and donor antigen presenting cells (APCs) to stimulate full HLA-mismatched allogeneic human CD8+ T cells which results in significant expansions of donor-specific CD8+CD28− T suppressor cells in vitro. The expanded CD8+CD28− T cells exhibit increased expressions of CTLA-4, FoxP3, and CD25, while down-regulate expressions of CD56, CD57, CD127, and perforin. Furthermore, these cells suppress proliferation of CD4+ T cells in a contact-dependent and cytokine-independent manner. Interestingly, the specificity of suppression is restricted by the donor HLA class I antigens but promiscuous to HLA class II antigens, providing a potential mechanism for linked suppression. Taken together, our results demonstrate a novel role for common γc cytokines in combination with donor APCs in the expansion of donor-specific CD8+CD28− T suppressor cells, and represent a robust strategy for in vitro generation of such cells for adoptive cellular immunotherapy in transplantation.
Collapse
Affiliation(s)
- Yuming Yu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jennifer R. Zitzner
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Josetta Houlihan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nancy Herrera
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Luting Xu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joshua Miller
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - James M. Mathew
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Anat R. Tambur
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Xunrong Luo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS. Tolerance and lymphoid organ structure and function. Front Immunol 2011; 2:64. [PMID: 22566853 PMCID: PMC3342028 DOI: 10.3389/fimmu.2011.00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from “96-well plate immunology,” but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their three-dimensional setting; instead techniques have tended to be dominated by two-dimensional renderings, although advanced confocal and two-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and beyond. We believe this represents one of the fundamental barriers to understanding the immune system and devising therapeutic approaches that take into account anatomy and structure as major controlling principles of tolerance.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Pinto A, Morello S, Sorrentino R. Lung cancer and Toll-like receptors. Cancer Immunol Immunother 2011; 60:1211-20. [PMID: 21789594 PMCID: PMC11029286 DOI: 10.1007/s00262-011-1057-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/28/2011] [Indexed: 01/11/2023]
Abstract
Lung carcinoma is one of the leading causes of death worldwide. It is a non-immunogenic cancer, resistant to immune surveillance. Toll-like receptors (TLRs) connect the innate to the adaptive immune system. Given that cancerous cells evade the immune system, the activation of TLRs could represent a potential target for cancer therapy. The induction of Th1-like and cytotoxic immunity by TLR signalling could lead to tumour cell death, resulting in tumour regression or arrest. However, basic research and clinical trials revealed that the activation of specific TLRs, such as TLR2, TLR4 and TLR9, do not have any anti-tumour activity in lung carcinoma. Increasing evidence suggests that TLRs are important regulators of tumour biology; however, little is known about their function in lung cancer. Thus, in order to develop new therapeutic approaches, further studies are needed to understand the connection between TLRs and lung cancer progression. This review focuses on the potential mechanisms by which TLR ligands can facilitate or not lung cancer and lung metastases establishment/progression.
Collapse
Affiliation(s)
- Aldo Pinto
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| | - Silvana Morello
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| | - Rosalinda Sorrentino
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED), University of Salerno, 84084 Fisciano, Salerno Italy
| |
Collapse
|
38
|
Little PJ, Chait A, Bobik A. Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther 2011; 131:255-68. [DOI: 10.1016/j.pharmthera.2011.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/14/2022]
|
39
|
Sun J, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC. Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+ regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 2011; 27:587-96. [PMID: 21691076 DOI: 10.1159/000329980] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Systemic and local inflammatory processes play key, mainly detrimental roles in the pathophysiology of acute lung injury (ALI). The present study was designed to determine whether human umbilical cord mesenchymal stem cells (UCMSC) are able to act on CD4(+)CD25(+) Foxp3(+)Treg cells and lead to an improvement in ALI. METHODS Mice were administered intratracheally endotoxin (lipopolysaccharide [LPS]) and received intrapulmonary 1×10(6) UCMSC 4 hours after challenge. The CD4(+)CD25(+) Foxp3(+)Treg, survival time, body weight, histology and lung injury scores were assessed after transplantation of UCMSC. In addition, anti-inflammatory factor IL10 and pro-inflammatory mediators production including tumor necrosis factor-a (TNF-α), macrophage inflammatory protein-2(MIP-2) and interferon-γ (IFN-γ) were detected. RESULTS Transplantation of UCMSC resulted in significant increase in the level of CD4(+)CD25(+) Foxp3(+)Treg in ALI. Increased level of anti-inflammatory factor IL-10 and reduced levels of TNF-α, MIP-2 and IFN-γ were simultaneously observed in ALI in comparison with control mice. CONCLUSION Our data demonstrate for the first time that transplantation of UCMSC ameliorates ALI by enhancing the diminished levels of alveolar CD4(+)CD25(+) Foxp3(+)Treg and balancing anti- and pro-inflammatory factors in ALI mice.
Collapse
Affiliation(s)
- Jun Sun
- The State Key Laboratory of Experimental Hematology, National Engineering Technology Research Center of Stem Cells, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eissner G, Hartmann I, Kesikli A, Holler E, Haffner S, Sax T, Schray C, Meiser B, Reichart B. CD4+CD25+FoxP3+ regulatory T cells enhance the allogeneic activity of endothelial-specific CD8+/CD28-CTL. Int Immunol 2011; 23:485-92. [DOI: 10.1093/intimm/dxr041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011; 32:328-34. [PMID: 21612981 DOI: 10.1016/j.it.2011.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The lung is exposed to a myriad of innocuous antigens on a daily basis and must maintain a state of immune ignorance or tolerance to these harmless stimuli to retain pulmonary homeostasis and to prevent potentially fatal immunopathology. Here, we examine how, in the lower airways, resident cell populations contribute to the immune regulatory strategies that restrain inflammation. During influenza infection, these suppressive signals must be overcome to elicit a protective immune response that eliminates the virus. We also discuss how, after resolution of infection, the lung does not return to the original homeostatic state, and how the induced altered state can persist for long periods, which leaves the lung more susceptible to other infectious insults.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, SW7 2AZ, UK
| | | | | |
Collapse
|
42
|
Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A 2011; 108:2891-6. [PMID: 21282653 DOI: 10.1073/pnas.1011811108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation represents a unique therapeutic option for irreparable organ dysfunction and rejection of transplants results from a breakdown in operational tolerance. Although endothelial cells (ECs) are the first target in graft rejection following kidney transplantation, their capacity to alloactivate and generate particular T lymphocyte subsets that could intervene in this process remains unknown. By using an experimental model of microvascular endothelium, we demonstrate that, under inflammatory conditions, human ECs induced proliferation of memory CD4(+)CD45RA(-) T cells and selectively amplified proinflammatory Th17 and suppressive CD45RA(-)HLA-DR(+)FoxP3(bright) regulatory CD4(+) T lymphocytes (Tregs). Although HLA-DR expression on resting microvascular ECs was sufficient to induce proliferation of memory CD4(+) T cells, Treg amplification was dependent on the interaction with CD54, highly expressed only under inflammatory conditions. Moreover, expansion of Th17 cells was dependent on IL-6 and STAT-3, and inhibition of either specifically impaired Th17, without altering Treg expansion. Collectively these data reveal that the HLA-DR(+) ECs regulate the local inflammatory allogeneic response, promoting either an IL-6/STAT-3-dependent Th17 response or a contact-CD54-dependent regulatory response according to the cytokine environment. Finally, these data open therapeutic perspectives in human organ transplantation based on targeting the IL-6/STAT-3 pathway and/or promoting CD54 dependent Treg proliferation.
Collapse
|