1
|
Ma J, Lu Q, Zhao Y, Wang X, Ding G, Wang Y, Cheng X. Microglia-astrocyte crosstalk is regulated by Astragalus polysaccharides mediated through suppression of Sema4D-PlexinB2 signaling in experimental autoimmune encephalomyelitis. Brain Res 2024; 1845:149275. [PMID: 39401575 DOI: 10.1016/j.brainres.2024.149275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The crosstalk between microglia inflamed in multiple sclerosis (MIMS) and astrocytes inflamed in MS (AIMS) is a crucial factor in the formation of the central inflammatory microenvironment and neurotoxicity. Astragalus polysaccharides (APS), an important bioactive component extracted from the dried root of Astragalus, was previously found by our team to attenuate the formation of pro-inflammatory microglia and neurological dysfunction in the experimental autoimmune encephalomyelitis (EAE) mice, a classic model of MS. To investigate the effect of APS on the MIMS-AIMS crosstalk and its underlying mechanism, in this study, a mouse model of EAE and a co-culture model of microglia-astrocytes in vitro were established. It was discovered that APS can alleviate the neurological dysfunction of EAE mice and effectively inhibit the formation of MIMS and AIMS both in vivo and in vitro. Furthermore, it was found that APS can suppress the inflammatory factors of MIMS-AIMS crosstalk in EAE mice and the resulting neurotoxicity in vivo and in vitro. The Sema4D-PlexinB2 signaling is essential for MIMS-AIMS crosstalk and promotes CNS inflammation. We demonstrated that APS can inhibit this signaling in vivo and in vitro. Treatment of recombinant Sema4D protein on cultured astrocytes in vitro significantly increases pro-inflammatory and neurotoxic factors, while APS significantly inhibits them. Conversely, after knockdown of Sema4D expression in microglia, APS no longer improves the neurotoxicity from MIMS-AIMS crosstalk. Overall, these results indicate that APS may modulate MIMS-AIMS crosstalk via the Sema4D-PlexinB2 signaling. This study provides a scientific basis for APS as a potential treatment candidate for demyelinating diseases.
Collapse
Affiliation(s)
- Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaohan Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
2
|
Huang C, Zheng X, Yan S, Zhang Z. Advances in Clinical Therapies for Huntington's Disease and the Promise of Multi-Targeted/Functional Drugs Based on Clinicaltrials.gov. Clin Pharmacol Ther 2024; 116:1452-1471. [PMID: 38863261 DOI: 10.1002/cpt.3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.
Collapse
Affiliation(s)
- Chunhui Huang
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Sen Yan
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Huang Y, Wang M, Ni H, Zhang J, Li A, Hu B, Junqueira Alves C, Wahane S, Rios de Anda M, Ho L, Li Y, Kang S, Neff R, Kostic A, Buxbaum JD, Crary JF, Brennand KJ, Zhang B, Zou H, Friedel RH. Regulation of cell distancing in peri-plaque glial nets by Plexin-B1 affects glial activation and amyloid compaction in Alzheimer's disease. Nat Neurosci 2024; 27:1489-1504. [PMID: 38802590 PMCID: PMC11346591 DOI: 10.1038/s41593-024-01664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Communication between glial cells has a profound impact on the pathophysiology of Alzheimer's disease (AD). We reveal here that reactive astrocytes control cell distancing in peri-plaque glial nets, which restricts microglial access to amyloid deposits. This process is governed by guidance receptor Plexin-B1 (PLXNB1), a network hub gene in individuals with late-onset AD that is upregulated in plaque-associated astrocytes. Plexin-B1 deletion in a mouse AD model led to reduced number of reactive astrocytes and microglia in peri-plaque glial nets, but higher coverage of plaques by glial processes, along with transcriptional changes signifying reduced neuroinflammation. Additionally, a reduced footprint of glial nets was associated with overall lower plaque burden, a shift toward dense-core-type plaques and reduced neuritic dystrophy. Altogether, our study demonstrates that Plexin-B1 regulates peri-plaque glial net activation in AD. Relaxing glial spacing by targeting guidance receptors may present an alternative strategy to increase plaque compaction and reduce neuroinflammation in AD.
Collapse
Affiliation(s)
- Yong Huang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haofei Ni
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- School of Medicine, Tongji University, Shanghai, China
| | - Jinglong Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Hu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shalaka Wahane
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitzy Rios de Anda
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuhuan Li
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Sangjo Kang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Neff
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
6
|
Casden N, Belzer V, El Khayari A, El Fatimy R, Behar O. Astrocyte-to-microglia communication via Sema4B-Plexin-B2 modulates injury-induced reactivity of microglia. Proc Natl Acad Sci U S A 2024; 121:e2400648121. [PMID: 38781210 PMCID: PMC11145257 DOI: 10.1073/pnas.2400648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
After central nervous system injury, a rapid cellular and molecular response is induced. This response can be both beneficial and detrimental to neuronal survival in the first few days and increases the risk for neurodegeneration if persistent. Semaphorin4B (Sema4B), a transmembrane protein primarily expressed by cortical astrocytes, has been shown to play a role in neuronal cell death following injury. Our study shows that after cortical stab wound injury, cytokine expression is attenuated in Sema4B-/- mice, and microglia/macrophage reactivity is altered. In vitro, Sema4B enhances the reactivity of microglia following injury, suggesting astrocytic Sema4B functions as a ligand. Moreover, injury-induced microglia reactivity is attenuated in the presence of Sema4B-/- astrocytes compared to Sema4B+/- astrocytes. In vitro experiments indicate that Plexin-B2 is the Sema4B receptor on microglia. Consistent with this, in microglia/macrophage-specific Plexin-B2-/- mice, similar to Sema4B-/- mice, microglial/macrophage reactivity and neuronal cell death are attenuated after cortical injury. Finally, in Sema4B/Plexin-B2 double heterozygous mice, microglial/macrophage reactivity is also reduced after injury, supporting the idea that both Sema4B and Plexin-B2 are part of the same signaling pathway. Taken together, we propose a model in which following injury, astrocytic Sema4B enhances the response of microglia/macrophages via Plexin-B2, leading to increased reactivity.
Collapse
Affiliation(s)
- Natania Casden
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| | - Vitali Belzer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| | - Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir43150, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir43150, Morocco
| | - Oded Behar
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| |
Collapse
|
7
|
Field SE, Curle AJ, Barker RA. Inflammation and Huntington's disease - a neglected therapeutic target? Expert Opin Investig Drugs 2024; 33:451-467. [PMID: 38758356 DOI: 10.1080/13543784.2024.2348738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.
Collapse
Affiliation(s)
- Sophie E Field
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Annabel J Curle
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Donovan LJ, Bridges CM, Nippert AR, Wang M, Wu S, Forman TE, Haight ES, Huck NA, Bond SF, Jordan CE, Gardner AM, Nair RV, Tawfik VL. Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Rep 2024; 43:113683. [PMID: 38261512 PMCID: PMC10947777 DOI: 10.1016/j.celrep.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Caldwell M Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amy R Nippert
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Meng Wang
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shaogen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Chapoval SP, Gao H, Fanaroff R, Keegan AD. Plexin B1 controls Treg numbers, limits allergic airway inflammation, and regulates mucins. Front Immunol 2024; 14:1297354. [PMID: 38259471 PMCID: PMC10801081 DOI: 10.3389/fimmu.2023.1297354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated the effect of global Plexin B1 deficiency on allergic airway responses to house dust mite (HDM) or ovalbumin (OVA). In the HDM model, there were higher Th2 cytokine levels in the BALF of Plexin B1 knock-out (KO) mice compared to wild type (WT), and tissue inflammation and mucus production were modestly enhanced. In the OVA model, Plexin B1 deficiency led to increases in lung inflammation, mucus production, and lung Th2 cytokines accompanied by dysregulated mucin gene expression without affecting anti-OVA IgE/IgG1 levels. Spleen cells from Plexin B1 KO mice proliferated more robustly than WT cells in vitro to a variety of stimuli. Plexin B1 KO CD4+ T cells from spleens expressed higher levels of Ki-67 and CD69 compared to WT cells. Spleen cells from naïve Plexin B1 KO mice secreted increased amounts of IL-4 and IL-6 when pulsed in vitro with OVA whereas in vivo OVA-primed spleen cells produced IL-4/IL-5 when subjected to in vitro OVA restimulation. The upregulated allergic inflammatory response in Plexin B1 KO mice was associated with a lower number of Tregs in the lung tissues. Moreover, these mice displayed lower numbers of Treg cells in the lymphoid tissues at the baseline. These results demonstrate a previously unrecognized link between Plexin B1, Treg cells, and mucus in allergic lung inflammation.
Collapse
Affiliation(s)
- Svetlana P. Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hongjuan Gao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rachel Fanaroff
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Veteran Affairs (VA) Maryland Health Care System, Baltimore Veteran Affairs (VA) Medical Center, Baltimore, MD, United States
| |
Collapse
|
10
|
Hojjati S, Ernerudh J, Vrethem M, Mellergård J, Raffetseder J. Dimethyl fumarate treatment in relapsing remitting MS changes the inflammatory CSF protein profile by a prominent decrease in T-helper 1 immunity. Mult Scler Relat Disord 2023; 80:105126. [PMID: 37952502 DOI: 10.1016/j.msard.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a common treatment for multiple sclerosis (MS), but its mechanisms of action are not fully understood. Targeted proteomics offers insights into effects of DMF and biomarkers for treatment responses. OBJECTIVES To assess influence of DMF on inflammation- and neuro-associated proteins in plasma and cerebrospinal fluid (CSF) in MS and to reveal biomarkers for predicting treatment responses. METHODS Using the high-sensitivity and high-specificity method of proximity extension assay (PEA), we measured 182 inflammation- and neuro-associated proteins in paired plasma (n = 28) and CSF (n = 12) samples before and after one year of DMF treatment. Disease activity was evaluated through clinical examination and MRI. Statistical tests, network analysis, and regression models were used. RESULTS Several proteins including T-helper 1 (Th1)-associated proteins (CXCL10, CXCL11, granzyme A, IL-12p70, lymphotoxin-alpha) were consistently decreased in CSF, while IL-7 was increased after one year of treatment. The changes in plasma protein levels did not follow the same pattern as in CSF. Logistic regression models identified potential biomarker candidates (including plexins and neurotrophins) for prediction of treatment response. CONCLUSIONS DMF treatment induced prominent changes in CSF proteins, consistently reducing Th1-associated pro-inflammatory proteins. Neurodegeneration-related CSF proteins were able to predict treatment response. Protein biomarkers hold promise for personalized medicine.
Collapse
Affiliation(s)
- Sara Hojjati
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
12
|
Thomas R, Yang X. Semaphorins in immune cell function, inflammatory and infectious diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100060. [PMID: 37645659 PMCID: PMC10461194 DOI: 10.1016/j.crimmu.2023.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
The Semaphorin family is a group of proteins studied broadly for their functions in nervous systems. They consist of eight subfamilies ubiquitously expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. Emerging evidence indicates the relevance of semaphorins outside the nervous system, including angiogenesis, cardiogenesis, osteoclastogenesis, tumour progression, and, more recently, the immune system. This review provides a broad overview of current knowledge on the role of semaphorins in the immune system, particularly its involvement in inflammatory and infectious diseases, including chlamydial infections.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Cowan R, Trokter M, Oleksy A, Fedorova M, Sawmynaden K, Worzfeld T, Offermanns S, Matthews D, Carr MD, Hall G. Nanobody inhibitors of Plexin-B1 identify allostery in plexin-semaphorin interactions and signalling. J Biol Chem 2023; 299:104740. [PMID: 37088134 DOI: 10.1016/j.jbc.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signalling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. Whilst inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterised a pair of nanobodies that are specific for mouse Plexin-B1, and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signalling, and provides a potential innovative route for therapeutic modulation of Plexin-B1.
Collapse
Affiliation(s)
- Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Martina Trokter
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Arkadiusz Oleksy
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Marina Fedorova
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Str. 2 35043, Germany; Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - David Matthews
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
15
|
Feigin A, Evans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, Oakes D, Siemers E, Kieburtz KD, Zauderer M. Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial. Nat Med 2022; 28:2183-2193. [PMID: 35941373 PMCID: PMC9361919 DOI: 10.1038/s41591-022-01919-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP). Pepinemab was generally well tolerated, with a relatively low frequency of serious treatment-emergent adverse events of 5% with pepinemab compared to 9% with placebo, including both EM and LP participants. Coprimary efficacy outcome measures consisted of assessments within the EM cohort of (1) a two-item HD cognitive assessment family comprising one-touch stockings of Cambridge (OTS) and paced tapping (PTAP) and (2) clinical global impression of change (CGIC). The differences between pepinemab and placebo in mean change (95% confidence interval) from baseline at month 17 for OTS were -1.98 (-4.00, 0.05) (one-sided P = 0.028), and for PTAP 1.43 (-0.37, 3.23) (one-sided P = 0.06). Similarly, because a significant treatment effect was not observed for CGIC, the coprimary endpoint, the study did not meet its prespecified primary outcomes. Nevertheless, a number of other positive outcomes and post hoc subgroup analyses-including additional cognitive measures and volumetric magnetic resonance imaging and fluorodeoxyglucose-positron-emission tomography imaging assessments-provide rationale and direction for the design of a phase 3 study and encourage the continued development of pepinemab in patients diagnosed with EM HD.
Collapse
Affiliation(s)
- Andrew Feigin
- New York University Langone Health and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York, NY, USA
| | | | | | | | | | | | | | | | | | - Lisa Kowarski
- WCG Statistics Collaborative, Inc., Washington, DC, USA
| | - David Oakes
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
16
|
De novo Fc-based receptor dimerizers differentially modulate PlexinB1 function. Structure 2022; 30:1411-1423.e4. [PMID: 35981535 DOI: 10.1016/j.str.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022]
Abstract
Signaling by single-pass transmembrane receptors often involves a formation of ligand-induced receptor dimers with particular conformation, and bivalent receptor binders can modulate receptor functions by inducing different receptor dimer conformations, although such agents are difficult to design. Here, we describe the generation of both antagonistic and agonistic receptor dimerizers toward PlexinB1 (PlxnB1), a receptor for semaphorin 4D (Sema4D), by grafting two different PlxnB1-binding peptides onto the human immunoglobulin G1 (IgG1) Fc protein. The function-modulating activity of a peptide Fc was strongly dependent on the type of the peptide as well as the grafting site, with the best variants showing activity at an nM concentration range. Structural analysis of each peptide-PlxnB1 complex revealed that the agonistic Fc dimerizes PlxnB1 in a face-to-face fashion similar to that induced by Sema4D, whereas antagonistic Fc would induce signaling-incompetent PlxnB1 dimer conformation, enforcing the idea that plexin activation is primarily controlled by the receptor orientation within the dimer.
Collapse
|
17
|
Evans EE, Mishra V, Mallow C, Gersz EM, Balch L, Howell A, Reilly C, Smith ES, Fisher TL, Zauderer M. Semaphorin 4D is upregulated in neurons of diseased brains and triggers astrocyte reactivity. J Neuroinflammation 2022; 19:200. [PMID: 35933420 PMCID: PMC9356477 DOI: 10.1186/s12974-022-02509-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The close interaction and interdependence of astrocytes and neurons allows for the possibility that astrocyte dysfunction contributes to and amplifies neurodegenerative pathology. Molecular pathways that trigger reactive astrocytes may represent important targets to preserve normal homeostatic maintenance and modify disease progression. METHODS Semaphorin 4D (SEMA4D) expression in the context of disease-associated neuropathology was assessed in postmortem brain sections of patients with Huntington's (HD) and Alzheimer's disease (AD), as well as in mouse models of HD (zQ175) and AD (CVN; APPSwDI/NOS2-/-) by immunohistochemistry. Effects of SEMA4D antibody blockade were assessed in purified astrocyte cultures and in the CVN mouse AD model. CVN mice were treated weekly from 26 to 38 weeks of age; thereafter mice underwent cognitive assessment and brains were collected for histopathology. RESULTS We report here that SEMA4D is upregulated in neurons during progression of neurodegenerative diseases and is a trigger of reactive astrocytes. Evidence of reactive astrocytes in close proximity to neurons expressing SEMA4D is detected in brain sections of patients and mouse models of HD and AD. We further report that SEMA4D-blockade prevents characteristic loss of GABAergic synapses and restores spatial memory and learning in CVN mice, a disease model that appears to reproduce many features of AD-like pathology including neuroinflammation. In vitro mechanistic studies demonstrate that astrocytes express cognate receptors for SEMA4D and that ligand binding triggers morphological variations, and changes in expression of key membrane receptors and enzymes characteristic of reactive astrocytes. These changes include reductions in EAAT-2 glutamate transporter and glutamine synthetase, key enzymes in neurotransmitter recycling, as well as reduced GLUT-1 glucose and MCT-4 lactate transporters, that allow astrocytes to couple energy metabolism with synaptic activity. Antibody blockade of SEMA4D prevented these changes and reversed functional deficits in glucose uptake. CONCLUSIONS Collectively, these results suggest that SEMA4D blockade may ameliorate disease pathology by preserving normal astrocyte function and reducing the negative consequences of reactive astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Alan Howell
- Vaccinex, Inc., Research, Rochester, NY, USA
| | | | | | | | - Maurice Zauderer
- Vaccinex, Inc., Research, Rochester, NY, USA.
- Department of Neurology, Center for Health and Technology (SMD), University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
18
|
Vogler M, Oleksy A, Schulze S, Fedorova M, Kojonazarov B, Nijjar S, Patel S, Jossi S, Sawmynaden K, Henry M, Brown R, Matthews D, Offermanns S, Worzfeld T. An antagonistic monoclonal anti-Plexin-B1 antibody exerts therapeutic effects in mouse models of postmenopausal osteoporosis and multiple sclerosis. J Biol Chem 2022; 298:102265. [PMID: 35850304 PMCID: PMC9396414 DOI: 10.1016/j.jbc.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor–ligand interaction by an anti–Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti–Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti–Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.
Collapse
Affiliation(s)
- Melanie Vogler
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Arkadiusz Oleksy
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sabrina Schulze
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Marina Fedorova
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), University Hospital Giessen and Marburg, Medical Clinic II, 35392 Giessen, Germany
| | - Sharandip Nijjar
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Seema Patel
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sian Jossi
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Kovilen Sawmynaden
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Maud Henry
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Richard Brown
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - David Matthews
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.
| |
Collapse
|
19
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
20
|
Mao Y, Evans EE, Mishra V, Balch L, Eberhardt A, Zauderer M, Gold WA. Anti-Semaphorin 4D Rescues Motor, Cognitive, and Respiratory Phenotypes in a Rett Syndrome Mouse Model. Int J Mol Sci 2021; 22:ijms22179465. [PMID: 34502373 PMCID: PMC8431088 DOI: 10.3390/ijms22179465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023] Open
Abstract
Rett syndrome is a neurodevelopmental disorder caused by mutations of the methyl-CpG binding protein 2 gene. Abnormal physiological functions of glial cells contribute to pathogenesis of Rett syndrome. Semaphorin 4D (SEMA4D) regulates processes central to neuroinflammation and neurodegeneration including cytoskeletal structures required for process extension, communication, and migration of glial cells. Blocking SEMA4D-induced gliosis may preserve normal glial and neuronal function and rescue neurological dysfunction in Rett syndrome. We evaluated the pre-clinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody in the Rett syndrome Mecp2T158A transgenic mouse model and investigated the contribution of glial cells as a proposed mechanism of action in treated mice and in primary glial cultures isolated from Mecp2T158A/y mutant mice. SEMA4D is upregulated in neurons while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1-positive cells are upregulated in Mecp2T158A/y mice. Anti-SEMA4D treatment ameliorates Rett syndrome-specific symptoms and improves behavioural functions in both pre-symptomatic and symptomatic cohorts of hemizygous Mecp2T158A/y male mice. Anti-SEMA4D also reduces astrocyte and microglia activation in vivo. In vitro experiments demonstrate an abnormal cytoskeletal structure in mutant astrocytes in the presence of SEMA4D, while anti-SEMA4D antibody treatment blocks SEMA4D–Plexin B1 signaling and mitigates these abnormalities. These results suggest that anti-SEMA4D immunotherapy may be an effective treatment option to alleviate symptoms and improve cognitive and motor function in Rett syndrome.
Collapse
Affiliation(s)
- Yilin Mao
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elizabeth E. Evans
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Vikas Mishra
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Leslie Balch
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Allison Eberhardt
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Maurice Zauderer
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Wendy A. Gold
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Molecular Neurobiology Research Laboratory, The Children’s Medical Research Institute, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
21
|
The emerging roles of semaphorin4D/CD100 in immunological diseases. Biochem Soc Trans 2021; 48:2875-2890. [PMID: 33258873 DOI: 10.1042/bst20200821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
In vertebrates, the semaphorin family of proteins is composed of 21 members that are divided into five subfamilies, i.e. classes 3 to 7. Semaphorins play crucial roles in regulating multiple biological processes, such as neural remodeling, tissue regeneration, cancer progression, and, especially, in immunological regulation. Semaphorin 4D (SEMA4D), also known as CD100, is an important member of the semaphorin family and was first characterized as a lymphocyte-specific marker. SEMA4D has diverse effects on immunologic processes, including immune cell proliferation, differentiation, activation, and migration, through binding to its specific membrane receptors CD72, PLXNB1, and PLXNB2. Furthermore, SEMA4D and its underlying signaling have been increasingly linked with several immunological diseases. This review focuses on the significant immunoregulatory role of SEMA4D and the associated underlying mechanisms, as well as the potential application of SEMA4D as a diagnostic marker and therapeutic target for the treatment of immunological diseases.
Collapse
|
22
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
23
|
Nakanishi Y, Kang S, Kumanogoh A. Neural guidance factors as hubs of immunometabolic crosstalk. Int Immunol 2021; 33:749-754. [PMID: 34174067 PMCID: PMC8633672 DOI: 10.1093/intimm/dxab035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer and metabolic disorders. In particular, several lines of evidence indicate that mammalian/mechanistic target of rapamycin (mTOR), a central regulator of cell metabolism, regulates the functions of semaphorins in various types of cells, revealing a novel link between semaphorins and cell metabolism. In this review, we discuss recent advances in the immunometabolic functions of semaphorins, with a particular focus on mTOR signaling.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, Linnerbauer M, Sanmarco LM, Guo L, Blain M, Zandee SEJ, Chao CC, Batterman KV, Schwabenland M, Lotfy P, Tejeda-Velarde A, Hewson P, Manganeli Polonio C, Shultis MW, Salem Y, Tjon EC, Fonseca-Castro PH, Borucki DM, Alves de Lima K, Plasencia A, Abate AR, Rosene DL, Hodgetts KJ, Prinz M, Antel JP, Prat A, Quintana FJ. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 2021; 372:372/6540/eabf1230. [PMID: 33888612 DOI: 10.1126/science.abf1230] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.
Collapse
Affiliation(s)
- Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn V Batterman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany
| | - Peter Lotfy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amalia Tejeda-Velarde
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Manganeli Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael W Shultis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmin Salem
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro H Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany.,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, D-79106 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
25
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
26
|
The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol 2021; 95:107556. [PMID: 33756227 DOI: 10.1016/j.intimp.2021.107556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
The immune and nervous systems possess a highly intricate network of synaptic connections, shared messenger molecules, and exquisite communication ways, allowing intercellular signal transduction. The semaphorins (Semas) were initially identified as axonal guidance molecules in the development of the nervous system but later were found to be implicated also in regulating the immune system, known in this case as the "immune Semas" or "immunoregulatory Semas". Increasingly, these molecules are involved in multiple aspects of both physiological and pathological immune responses and were recently indicated to take part in various immunological disorders, encompassing allergy, cancer, and autoimmunity. Semas transduce signals by connecting to their cognate receptors, namely, plexins and neuropilins. Some of them, like Sema-3F, have been found to function as the inducer of the remyelination process whereas some others, like Sema-3A and Sema-4D, act to inhibit this process, either directly or indirectly. Besides, Sema-4A is crucial to the differentiation of T helper type 1 (Th1) and Th17 cells that are potentially involved in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. This review aims to reveal the role of immune Semas in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis, focusing on the therapeutic usages of these molecules to treat this neurodegenerative disease.
Collapse
|
27
|
Khaw YM, Tierney A, Cunningham C, Soto-Díaz K, Kang E, Steelman AJ, Inoue M. Astrocytes lure CXCR2-expressing CD4 + T cells to gray matter via TAK1-mediated chemokine production in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:e2017213118. [PMID: 33597297 PMCID: PMC7923593 DOI: 10.1073/pnas.2017213118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system driven by peripheral immune cell infiltration and glial activation. The pathological hallmark of MS is demyelination, and mounting evidence suggests neuronal damage in gray matter is a major contributor to disease irreversibility. While T cells are found in both gray and white matter of MS tissue, they are typically confined to the white matter of the most commonly used mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Here, we used a modified EAE mouse model (Type-B EAE) that displays severe neuronal damage to investigate the interplay between peripheral immune cells and glial cells in the event of neuronal damage. We show that CD4+ T cells migrate to the spinal cord gray matter, preferentially to ventral horns. Compared to CD4+ T cells in white matter, gray matter-infiltrated CD4+ T cells were mostly immobilized and interacted with neurons, which are behaviors associated with detrimental effects to normal neuronal function. T cell-specific deletion of CXCR2 significantly decreased CD4+ T cell infiltration into gray matter in Type-B EAE mice. Further, astrocyte-targeted deletion of TAK1 inhibited production of CXCR2 ligands such as CXCL1 in gray matter, successfully prevented T cell migration into spinal cord gray matter, and averted neuronal damage and motor dysfunction in Type-B EAE mice. This study identifies astrocyte chemokine production as a requisite for the invasion of CD4+T cell into the gray matter to induce neuronal damage.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Abbey Tierney
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Claire Cunningham
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Katiria Soto-Díaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Eunjoo Kang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802;
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
28
|
Pan L, Feigin A. Huntington's Disease: New Frontiers in Therapeutics. Curr Neurol Neurosci Rep 2021; 21:10. [PMID: 33586075 DOI: 10.1007/s11910-021-01093-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This article describes and discusses new potential disease-modifying therapies for Huntington's disease that are currently in human clinical trials as well as promising new therapies in preclinical development. RECENT FINDINGS Multiple potential disease-modifying therapeutics for HD are in active development, including direct DNA/gene therapies, RNA modulation, and therapies targeted at aberrant downstream pathways. The etiology of Huntington's disease (HD) is well-known as an abnormally expanded trinucleotide repeat within the huntingtin gene. However, the pathogenesis downstream of the mutant huntingtin gene is complex, involving multiple toxic pathways, including abnormal protein fragmentation and neuroinflammation. The current treatment of HD focuses largely on symptomatic management. This article discusses new, potential disease-modifying therapies that are currently in human clinical trials and preclinical development.
Collapse
Affiliation(s)
- Ling Pan
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, 222 East 41st Street - 13th Floor, New York, USA.
| | - Andrew Feigin
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, 222 East 41st Street - 13th Floor, New York, USA
| |
Collapse
|
29
|
Dash D, Mestre TA. Therapeutic Update on Huntington's Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies. Neurotherapeutics 2020; 17:1645-1659. [PMID: 32705582 PMCID: PMC7851270 DOI: 10.1007/s13311-020-00891-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder that presents with progressive motor, behavior, and cognitive symptoms leading to early disability and mortality. HD is caused by an expanded CAG repeats in exon 1 of the huntingtin (HTT) gene. The corresponding genetic test allows a clinical, definite diagnosis in life and the identification of a fully penetrant mutation carrier in a premanifest stage. In addition to the development of symptomatic treatments that attempt to address unmet care needs such as apathy, irritability, and cognition, novel therapies that target pathways specific to HD biology are being developed with the intent of slowing disease progression. Among these approaches, HTT protein lowering therapies hold great promise. There are currently active programs using antisense oligonucleotides (ASOs), RNA interference, small-molecule splicing modulators, and zinc-finger protein transcription factor. Except for ASOs and RNA interference approaches, the remaining therapeutic strategies are at a preclinical stage of development. While the current therapeutic landscape in HD may bring an unparalleled change in the lives of people with HD and their families with the first-ever disease-modifying therapy, the evaluation of these therapies requires novel tools that enable a more efficient and expedited discovery and evaluative process. Examples are biomarkers targeting the HTT protein to measure target engagement or disease progression and rating scales more sensitive to the earliest clinical changes. These tools will be instrumental in the next phase of disease-modifying clinical trials in HD likely to target the phenoconversion period of the disease, including the prodromal HD stage.
Collapse
Affiliation(s)
- Deepa Dash
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Parkinson Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital and the University of Ottawa, Ottawa, Canada
| | - Tiago A Mestre
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Parkinson Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital and the University of Ottawa, Ottawa, Canada.
| |
Collapse
|
30
|
Sema4D Aggravated LPS-Induced Injury via Activation of the MAPK Signaling Pathway in ATDC5 Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8691534. [PMID: 32382577 PMCID: PMC7196969 DOI: 10.1155/2020/8691534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease, and it remains the main cause of chronic disability in elderly individuals. Sema4D (semaphorin 4D) is involved in the immune system and related to bone injury, osteoporosis, osteoblast differentiation, and rheumatoid arthritis. However, the role of Sema4D in OA remains unclear. Hence, the LPS-stimulated chondrocyte cell injury model was constructed in this study to investigate the role of Sema4D in OA development. The results showed that Sema4D was increased in LPS-treated ATDC5 cells, and the knockdown of Sema4D suppressed the decline of cell viability, the increase of cell apoptosis, and the increase of IL-6, IL-1β, and TNF-α secretion in ATDC5 cells induced by LPS. Meanwhile, Sema4D overexpression aggravated the cell injury triggered by LPS, and inhibiting Plexin B1 partly abolished the effect of Sema4D overexpression on LPS-induced chondrocyte injury. Furthermore, silencing of Sema4D blocked the activation of the MAPK pathway in LPS-stimulated ATDC5 cells. Enhanced Sema4D promoted the activation of the MAPK pathway in LPS-stimulated ATDC5 cells. What is more, inhibiting the MAPK signaling pathway abolished the promoting effect of Sema4D overexpression on LPS-induced chondrocyte injury. Therefore, our study suggested that the knockdown of Sema4D protects ATDC5 cells against LPS-induced injury through inactivation of the MAPK signaling pathway via interacting with Plexin B1.
Collapse
|
31
|
Rajabinejad M, Asadi G, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Semaphorin 4A, 4C, and 4D: Function comparison in the autoimmunity, allergy, and cancer. Gene 2020; 746:144637. [PMID: 32244055 DOI: 10.1016/j.gene.2020.144637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
32
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
33
|
Fatoba O, Ohtake Y, Itokazu T, Yamashita T. Immunotherapies in Huntington's disease and α-Synucleinopathies. Front Immunol 2020; 11:337. [PMID: 32161599 PMCID: PMC7052383 DOI: 10.3389/fimmu.2020.00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of immune activation using immunotherapy has attracted considerable attention for many years as a potential therapeutic intervention for several inflammation-associated neurodegenerative diseases. However, the efficacy of single-target immunotherapy intervention has shown limited or no efficacy in alleviating disease burden and restoring functional capacity. Marked immune system activation and neuroinflammation are important features and prodromal signs in polyQ repeat disorders and α-synucleinopathies. This review describes the current status and future directions of immunotherapies in proteinopathy-induced neurodegeneration with emphasis on preclinical and clinical efficacies of several anti-inflammatory compounds and antibody-based therapies for the treatment of Huntington's disease and α-synucleinopathies. The review concludes with how disease modification and functional restoration could be achieved by using targeted multimodality therapy to target multiple factors.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yosuke Ohtake
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
34
|
Tsuda T, Nishide M, Maeda Y, Hayama Y, Koyama S, Nojima S, Takamatsu H, Okuzaki D, Morita T, Nakatani T, Kato Y, Nakanishi Y, Futami Y, Suga Y, Naito Y, Konaka H, Satoh S, Naito M, Izumi M, Obata S, Nakatani A, Shikina T, Takeda K, Hayama M, Inohara H, Kumanogoh A. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:843-854.e4. [PMID: 32035658 DOI: 10.1016/j.jaci.2019.12.893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis. Clinical markers for ECRS disease activity and treatment strategies have not been sufficiently established. Although semaphorins are originally identified as neuronal guidance factors, it is becoming clear that they play key roles in immune regulation and inflammatory diseases. OBJECTIVE We sought to investigate the pathological functions and therapeutic potential of semaphorin 4D (SEMA4D) in ECRS. METHODS Serum soluble SEMA4D levels in patients with paranasal sinus diseases were measured by ELISA. The expression of SEMA4D in blood cells and nasal polyp tissues was assessed by flow cytometry and immunohistochemistry, respectively. Generation of soluble SEMA4D was evaluated in matrix metalloproteinase-treated eosinophils. Endothelial cells were stimulated with recombinant SEMA4D, followed by eosinophil transendothelial migration assays. Allergic chronic rhinosinusitis was induced in mice using Aspergillus protease with ovalbumin. The efficacy of treatment with anti-SEMA4D antibody was evaluated histologically and by nasal lavage fluid analysis. RESULTS Serum soluble SEMA4D levels were elevated in patients with ECRS and positively correlated with disease severity. Tissue-infiltrated eosinophils in nasal polyps from patients with ECRS stained strongly with anti-SEMA4D antibody. Cell surface expression of SEMA4D on eosinophils from patients with ECRS was reduced, which was due to matrix metalloproteinase-9-mediated cleavage of membrane SEMA4D. Soluble SEMA4D induced eosinophil transendothelial migration. Treatment with anti-SEMA4D antibody ameliorated eosinophilic infiltration in sinus tissues and nasal lavage fluid in the ECRS animal model. CONCLUSIONS Eosinophil-derived SEMA4D aggravates ECRS. Levels of serum SEMA4D reflect disease severity, and anti-SEMA4D antibody has therapeutic potential as a treatment for ECRS.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan.
| | - Yohei Maeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine, Kinki Central Hospital, Itami City, Hyogo, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yu Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Sho Obata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Ayaka Nakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Takashi Shikina
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Otolaryngology, Ikeda Municipal Hospital, Ikeda City, Osaka, Japan
| | - Kazuya Takeda
- Department of Otolaryngology, Osaka City General Hospital, Osaka City, Osaka, Japan
| | - Masaki Hayama
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiatives, Suita City, Osaka, Japan.
| |
Collapse
|
35
|
Tsuchihashi R, Sawano T, Watanabe F, Yamaguchi N, Yamaguchi W, Niimi K, Shibata S, Furuyama T, Tanaka H, Inagaki S. Upregulation of IFN-β induced by Sema4D-dependent partial Erk1/2 inhibition promotes NO production in microglia. Biochem Biophys Res Commun 2019; 521:827-832. [PMID: 31708102 DOI: 10.1016/j.bbrc.2019.10.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Interactions between Sema4D and its receptors, PlexinB1 and CD72, induce various functions, including axon guidance, angiogenesis, and immune activation. Our previous study revealed that Sema4D is involved in the upregulation of nitric oxide production in microglia after cerebral ischemia. In this study, we investigated the underlying mechanisms of the enhancement of microglial nitric oxide production by Sema4D. Primary microglia expressed PlexinB1 and CD72, and cortical microglia expressed CD72. Sema4D promoted nitric oxide production and slightly inhibited Erk1/2 phosphorylation in microglia. Partial Erk1/2 inhibition enhanced microglial nitric oxide production. Inhibition of Erk1/2 phosphorylation induced the expression of Ifn-β mRNA, and IFN-β promoted nitric oxide production in microglia. In the ischemic cortex, the expression of Ifn-β mRNA was downregulated by Sema4D deficiency. These findings indicated that the enhancement of nitric oxide production by Sema4D is involved in partial Erk1/2 inhibition and upregulation of IFN-β.
Collapse
Affiliation(s)
- Ryo Tsuchihashi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsumi Yamaguchi
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Kenta Niimi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuo Furuyama
- Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Hidekazu Tanaka
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan.
| |
Collapse
|
36
|
Binamé F, Pham-Van LD, Spenlé C, Jolivel V, Birmpili D, Meyer LA, Jacob L, Meyer L, Mensah-Nyagan AG, Po C, Van der Heyden M, Roussel G, Bagnard D. Disruption of Sema3A/Plexin-A1 inhibitory signalling in oligodendrocytes as a therapeutic strategy to promote remyelination. EMBO Mol Med 2019; 11:e10378. [PMID: 31566924 PMCID: PMC6835579 DOI: 10.15252/emmm.201910378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 11/15/2022] Open
Abstract
Current treatments in multiple sclerosis (MS) are modulating the inflammatory component of the disease, but no drugs are currently available to repair lesions. Our study identifies in MS patients the overexpression of Plexin‐A1, the signalling receptor of the oligodendrocyte inhibitor Semaphorin 3A. Using a novel type of peptidic antagonist, we showed the possibility to counteract the Sema3A inhibitory effect on oligodendrocyte migration and differentiation in vitro when antagonizing Plexin‐A1. The use of this compound in vivo demonstrated a myelin protective effect as shown with DTI‐MRI and confirmed at the histological level in the mouse cuprizone model of induced demyelination/remyelination. This effect correlated with locomotor performances fully preserved in chronically treated animals. The administration of the peptide also showed protective effects, leading to a reduced severity of demyelination in the context of experimental autoimmune encephalitis (EAE). Hence, the disruption of the inhibitory microenvironmental molecular barriers allows normal myelinating cells to exert their spontaneous remyelinating capacity. This opens unprecedented therapeutic opportunity for patients suffering a disease for which no curative options are yet available.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Lucas D Pham-Van
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Caroline Spenlé
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Valérie Jolivel
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Dafni Birmpili
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Lionel A Meyer
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Laurent Jacob
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Laurence Meyer
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Ayikoé G Mensah-Nyagan
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Chrystelle Po
- Institut de Physique Biologique, Faculté de Médecine, Strasbourg University, Strasbourg, France
| | - Michaël Van der Heyden
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Guy Roussel
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| | - Dominique Bagnard
- INSERM U1119 Biopathology of Myelin, Neuroprotection, Therapeutic Strategy, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France
| |
Collapse
|
37
|
MiR-125b Suppression Inhibits Apoptosis and Negatively Regulates Sema4D in Avian Leukosis Virus-Transformed Cells. Viruses 2019; 11:v11080728. [PMID: 31394878 PMCID: PMC6723722 DOI: 10.3390/v11080728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J), an oncogenic retrovirus, causes hemangiomas and myeloid tumors in chickens. We previously showed that miR-125b is down-regulated in ALV-J-induced tumors. This study aimed to investigate the possible role of miR-125b in ALV-J-mediated infection and tumorigenesis. Knockdown of miR-125b expression in HP45 cells reduced, whereas over-expression induced late-stage apoptosis. Bioinformatics analysis and luciferase activity assays indicate that miR-125b targets Semaphorin 4D/CD100 (Sema4D) by binding the 3'-untranslated region of messenger RNA (mRNA). Up-regulation of miR-125b in the DF1 cell line suppressed Sema4D expression, whereas miR-125 down-regulation increased Sema4D expression levels. To uncover the function of Sema4D during ALV-J infection, animal infection experiments and in vitro assays were performed and show that Sema4D mRNA levels were up-regulated in ALV-J-infected tissues and cells. Finally, functional experiments show that miR-125 down-regulation and Sema4D over-expression inhibited apoptosis in HP45 cells. These results suggest that miR-125b and its target Sema4D might play an important role in the aggressive growth of HP45 cells induced by avian leukosis viruses (ALVs). These findings improve our understanding of the underlying mechanism of ALV-J infection and tumorigenesis.
Collapse
|
38
|
Abstract
Introduction: Huntington's disease (HD) is an inherited neurodegenerative condition for which there are no disease-modifying treatments. The availability of early genetic diagnosis makes HD an ideal candidate for early intervention. Growing understanding of pathogenesis has led to the identification of new therapeutic targets for which some compounds are now in clinical trials. Areas covered: A detailed review of medical databases and clinical trial registries was performed. Recent clinical trials aimed to establish disease-modification were included. Focus was assigned to RNA and DNA-based therapies aimed at lowering mutant huntingtin (mHTT) including antisense oligonucleotides (ASOs), RNA interference (RNAi), zinc finger proteins (ZFPs) and the CRISPR-Cas9 system. Modulation of mHTT and immunotherapies is also covered. Expert opinion: Targeting HD pathogenesis at its most proximal level is under intense investigation. ASOs are the only HTT-lowering strategy in clinical trials of manifest HD. Safety and efficacy of an allele specific vs. allele non-specific approach has yet to be established. Success will extend to premanifest carriers for which development of clinical and imaging biomarkers will be necessary. Scientific and technological advancement will bolster new methods of treatment delivery. Cumulative experience, collaborative research, and platforms such as ENROLL-HD will facilitate efficient and effective clinical trials.
Collapse
Affiliation(s)
- Hassaan Bashir
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
39
|
|
40
|
Denis HL, Lauruol F, Cicchetti F. Are immunotherapies for Huntington's disease a realistic option? Mol Psychiatry 2019; 24:364-377. [PMID: 29487401 DOI: 10.1038/s41380-018-0021-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Abstract
There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Florian Lauruol
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
41
|
Abstract
Current multiple sclerosis (MS) therapies are effective in reducing relapse rate, short-term measures of disability, and magnetic resonance imaging (MRI) measures of inflammation in relapsing remitting MS (RRMS), whereas in progressive/degenerative disease phases these medications are of little or no benefit. Therefore, the development of new therapies aimed at reversing neurodegeneration is of great interest. Remyelination, which is usually a spontaneous endogenous process, is achieved when myelin-producing oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs). Even though these precursor cells are abundant in MS brains, their regeneration capacity is limited. Enhancing the generation of myelin-producing cells is therefore a major focus of MS research. Here we present an overview of the different advancements in the field of remyelination, including suitable animal models for testing remyelination therapies, approved medications with a proposed role in regeneration, myelin repair treatments under investigation in clinical trials, as well as future therapeutics aimed at facilitating myelin repair.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Rainer Akkermann
- Department of Neurology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio-44195
| |
Collapse
|
42
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
43
|
Luque MCA, Galuppo MK, Capelli-Peixoto J, Stolf BS. CD100 Effects in Macrophages and Its Roles in Atherosclerosis. Front Cardiovasc Med 2018; 5:136. [PMID: 30324109 PMCID: PMC6173139 DOI: 10.3389/fcvm.2018.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
CD100 or Sema4D is a protein from the semaphorin family with important roles in the vascular, nervous and immune systems. It may be found as a membrane bound dimer or as a soluble molecule originated by proteolytic cleavage. Produced by the majority of hematopoietic cells including B and T lymphocytes, natural killer and myeloid cells, as well as endothelial cells, CD100 exerts its actions by binding to different receptors depending on the cell type and on the organism. Cell-to-cell adhesion, angiogenesis, phagocytosis, T cell priming, and antibody production are examples of the many functions of this molecule. Of note, high CD100 serum levels has been found in inflammatory as well as in infectious diseases, but the roles of the protein in the pathogenesis of these diseases has still to be clarified. Macrophages are highly heterogeneous cells present in almost all tissues, which may change their functions in response to microenvironmental conditions. They are key players in the innate and adaptive immune responses and have decisive roles in sterile conditions but also in several diseases such as atherosclerosis, autoimmunity, tumorigenesis, and antitumor responses, among others. Although it is known that macrophages express CD100 and its receptors, few studies have focused on the role of this semaphorin in this cell type or in macrophage-associated diseases. The aim of this review is to critically revise the available data about CD100 and atherosclerosis, with special emphasis on its roles in macrophages and monocytes. We will also describe the few available data on treatments with anti-CD100 antibodies in different diseases. We hope that this review stimulates future studies on the effects of such an important molecule in a cell type with decisive roles in inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Maria C A Luque
- Heart Institute, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
44
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
45
|
Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41:711-724. [DOI: 10.1007/s12272-018-1051-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
46
|
Yamashita K, Kinoshita M, Miyamoto K, Namba A, Shimizu M, Koda T, Sugimoto T, Mori Y, Yoshioka Y, Nakatsuji Y, Kumanogoh A, Kusunoki S, Mochizuki H, Okuno T. Cerebrospinal fluid mitochondrial DNA in neuromyelitis optica spectrum disorder. J Neuroinflammation 2018; 15:125. [PMID: 29703264 PMCID: PMC5924507 DOI: 10.1186/s12974-018-1162-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system. Although complement-dependent astrocyte damage mediated by anti-aquaporin 4 autoantibody (AQP4-Ab) is well acknowledged to be the core of NMOSD pathogenesis, additional inflammatory cascades may contribute to the establishment of lesion formation. Thus, in this study, we investigated the possible pathogenic role of immune-reactive mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) of NMOSD patients. Methods Using quantitative polymerase chain reaction, we measured extracellular mtDNA levels in CSF of NMOSD patients positive for AQP4-Ab. Patients with multiple sclerosis or other neurological diseases were examined as controls. Pre- and post-treatment extracellular mtDNA levels were also compared in the NMOSD group. Extracellular mtDNA release from human astrocytes was analyzed in vitro utilizing NMOSD sera, and interleukin (IL)-1β production was measured in supernatants of mixed glial cells stimulated with DNA fraction of CSF derived from NMOSD patients. Furthermore, specific innate immune pathways mediating the IL-1β production by mtDNA were investigated in peripheral blood mononuclear cells with selective inhibitors of Toll-like receptor 9 (TLR9) and NOD-like receptor protein 3 (NLRP3) inflammasomes. Results Extracellular mtDNA level was specifically elevated in acute phase of NMOSD CSF. In vitro studies provided the evidence that mtDNA is released from human astrocytes by NMOSD sera. In addition, DNA fraction isolated from NMOSD CSF promoted secretion of IL-1β from mixed glial cells. Selective inhibition of TLR9 and NLRP3 inflammasomes revealed that mtDNA-mediated IL-1β production depends on specific innate immune pathways. Conclusion Extracellular mtDNA is specifically elevated in the CSF of patients with acute phase NMOSD, and mtDNA released by AQP4-Ab-mediated cellular damage elicits the innate immune cascades via TLR9 and NLRP3 inflammasomes pathways. Our study highlights mtDNA-mediated innate immune pathways as a novel therapeutic target for future treatment of NMOSD patients. Electronic supplementary material The online version of this article (10.1186/s12974-018-1162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.,Department of Neurology, Osaka General Medical Center, Osaka, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Akiko Namba
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Toru Koda
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoyuki Sugimoto
- Department of Mathematics and Computer Science, Kagoshima University Graduate School of Science and Technology, Kagoshima, Japan
| | - Yuki Mori
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Yoshichika Yoshioka
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Toyama University, Toyama, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.
| |
Collapse
|
47
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
48
|
Angelopoulou E, Piperi C. Emerging role of plexins signaling in glioma progression and therapy. Cancer Lett 2018; 414:81-87. [DOI: 10.1016/j.canlet.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
|
49
|
Zhou YF, Li YN, Jin HJ, Wu JH, He QW, Wang XX, Lei H, Hu B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J 2018; 32:2181-2196. [PMID: 29242274 DOI: 10.1096/fj.201700786rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory process in stroke is the major contributor to blood-brain barrier (BBB) breakdown. Previous studies indicated that semaphorin 4D (Sema4D), an axon guidance molecule, initiated inflammatory microglial activation and disrupted endothelial function in the CNS. However, whether Sema4D disrupts BBB integrity after stroke remains unclear. To study the effect of Sema4D on BBB disruption in stroke, rats were subjected to transient middle cerebral artery occlusion and targeted injection of lentivirus-mediated clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene disruption of PlexinB1. We found that Sema4D synchronously increased with BBB permeability and accumulated in the perivascular area after stroke. Suppressing Sema4D/PlexinB1 signaling in the periinfarct cortex significantly decreased BBB permeability as detected by MRI and fibrin deposition, and thereby improved stroke outcome. In vitro, we confirmed that Sema4D disrupted BBB integrity and endothelial tight junctions. Moreover, we found that Sema4D induced pericytes to acquire a CD11b-positive phenotype and express proinflammatory cytokines. In addition, Sema4D inhibited AUF1-induced proinflammatory mRNA decay effect. Taken together, our data provides evidence that Sema4D disrupts BBB integrity and promotes an inflammatory response by binding to PlexinB1 in pericytes after transient middle cerebral artery occlusion. Our study indicates that Sema4D may be a novel therapeutic target for treatment in the acute phase of stroke.-Zhou, Y.-F., Li, Y.-N., Jin, H.-J., Wu, J.-H., He, Q.-W., Wang, X.-X., Lei, H., Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|