1
|
Nguyen DC, Hentenaar IT, Morrison-Porter A, Solano D, Haddad NS, Castrillon C, Runnstrom MC, Lamothe PA, Andrews J, Roberts D, Lonial S, Sanz I, Lee FEH. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat Med 2024:10.1038/s41591-024-03278-y. [PMID: 39333316 DOI: 10.1038/s41591-024-03278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines are effective at protecting from severe disease, but the protective antibodies wane rapidly even though SARS-CoV-2-specific plasma cells can be found in the bone marrow (BM). Here, to explore this paradox, we enrolled 19 healthy adults at 2.5-33 months after receipt of a SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus- or SARS-CoV-2-specific antibody-secreting cells (ASCs) in long-lived plasma cell (LLPC) and non-LLPC subsets within the BM. Only influenza- and tetanus-specific ASCs were readily detected in the LLPCs, whereas SARS-CoV-2 specificities were mostly absent. The ratios of non-LLPC:LLPC for influenza, tetanus and SARS-CoV-2 were 0.61, 0.44 and 29.07, respectively. In five patients with known PCR-proven history of recent infection and vaccination, SARS-CoV-2-specific ASCs were mostly absent from the LLPCs. We show similar results with measurement for secreted antibodies from BM ASC culture supernatant. While serum IgG titers specific for influenza and tetanus correlated with IgG LLPCs, serum IgG levels for SARS-CoV-2, which waned within 3-6 months after vaccination, were associated with IgG non-LLPCs. In all, our studies suggest that rapid waning of SARS-CoV-2-specific serum antibodies could be accounted for by the absence of BM LLPCs after these mRNA vaccines.
Collapse
Affiliation(s)
- Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ian T Hentenaar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - David Solano
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Carlos Castrillon
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, US
| | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- Department of Medicine, Atlanta Veterans Affairs Healthcare System, Atlanta, GA, USA
| | - Pedro A Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Danielle Roberts
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, US
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Lee P, Kim J, Oh H, Kim CU, Jeong AY, Lee MS, Jang MS, Hong JJ, Park JE, Kim DJ. Coronavirus nucleocapsid-based vaccine provides partial protection against hetero-species coronavirus in murine models. Antiviral Res 2024; 231:105991. [PMID: 39181216 DOI: 10.1016/j.antiviral.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.
Collapse
Affiliation(s)
- Pureum Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Jihee Kim
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea
| | - Hanseul Oh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Veterinary Medicine, Cheongju, South Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ahn Young Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Princeton University, Princeton, NJ, USA
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | | | - Jung Joo Hong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| | - Jung-Eun Park
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea.
| | - Doo-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Medicine, Cheongju, South Korea; Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, South Korea.
| |
Collapse
|
3
|
Lee F, Nguyen D, Hentenaar I, Morrison-Porter A, Solano D, Haddad N, Castrillon C, Lamothe P, Andrews J, Roberts D, Lonial S, Sanz I. The Majority of SARS-CoV-2 Plasma Cells are Excluded from the Bone Marrow Long-Lived Compartment 33 Months after mRNA Vaccination. RESEARCH SQUARE 2024:rs.3.rs-3979237. [PMID: 38559048 PMCID: PMC10980156 DOI: 10.21203/rs.3.rs-3979237/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19-) and non-LLPC (CD19+) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.
Collapse
|
4
|
Nguyen DC, Hentenaar IT, Morrison-Porter A, Solano D, Haddad NS, Castrillon C, Lamothe PA, Andrews J, Roberts D, Lonial S, Sanz I, Lee FEH. The Majority of SARS-CoV-2 Plasma Cells are Excluded from the Bone Marrow Long-Lived Compartment 33 Months after mRNA Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.02.24303242. [PMID: 38496525 PMCID: PMC10942531 DOI: 10.1101/2024.03.02.24303242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.
Collapse
|
5
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
6
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
7
|
Pasoto SG, Borba EF, Formiga FFC, do Nascimento Pedrosa T, Aikawa NE, de Siqueira MAMT, Capão ASV, de Proença ACT, Fuller R, Yuki EFN, Leon EP, de Oliveira Martins VA, Lopes MH, da Silva Duarte AJ, da Silva CAA, Bonfa E. Robust immunogenicity to the H3N2 component of influenza A vaccine in primary Sjögren syndrome. Clin Rheumatol 2023; 42:2419-2425. [PMID: 37306813 DOI: 10.1007/s10067-023-06666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Influenza A (H3N2) virus is the major cause of morbidity/mortality due to seasonal influenza over 50 years. Data about the safety/immunogenicity of influenza A/Singapore (H3N2) vaccine are scarce in primary Sjögren syndrome (pSS). METHODS Twenty-one consecutive pSS patients and 42 HC (healthy control individuals) were immunized with influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus. Rates of SP (seroprotection) and SC (seroconversion), GMT (geometric mean titers), FI-GMT (factor increase in GMT), ESSDAI (EULAR Sjögren's Syndrome Disease Activity Index), and adverse events were appraised before and 4 weeks post-vaccination. RESULTS pSS and HC had similar mean age (51.2 ± 14.2 vs. 50.6 ± 12.1 years, p = 0.886). Pre-vaccination SP rates were high in pSS and HC (90.5% vs. 71.4%, p = 0.114), and GMT were higher in pSS [80.0 (52.4-160.0) vs. 40.0 (20.0-80.0), p = 0.001]. The percentage of influenza vaccination in the preceding two years was elevated and similar in pSS and HC (94.1% vs. 94.6%, p = 1.000). GMT values augmented in both groups four weeks after vaccination and persisted higher in the first group [160.0 (80.0-320.0) vs. 80.0 (40.0-80.0), p < 0.001] with equivalent FI-GMT [1.4 (1.0-2.8) vs. 1.4 (1.0-2.0), p = 0.410]. Both groups had low and similar SC rates (19.0% vs. 9.5%, p = 0.423). ESSDAI values persisted steadily during the study (p = 0.313). No serious adverse events have occurred. CONCLUSION The novel demonstration that the influenza A/Singapore (H3N2) vaccine induces a different pattern of immunogenicity from other influenza A constituents in pSS, featured by a desirable high pre- and post-vaccination immunogenicity, is in line with reported differences in immune responses between strains in trivalent vaccines and may be related to pre-existing immunity. CLINICALTRIALS gov: #NCT03540823. Key Points • This prospective study demonstrated a robust pre- and post-vaccination immunogenicity to influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus in primary Sjögren's syndrome (pSS). • This high immunogenicity pattern may be related to pre-existing immunization, or else it is related to immunogenicity differences of each strain. • This vaccine had an adequate safety profile in pSS, with no impact on disease activity.
Collapse
Affiliation(s)
- Sandra Gofinet Pasoto
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
| | - Eduardo Ferreira Borba
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Francisco Fellipe Claudino Formiga
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Tatiana do Nascimento Pedrosa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Nadia Emi Aikawa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
- Pediatric Rheumatology Unit, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | | | - Artur Silva Vidal Capão
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Ricardo Fuller
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Emily Figueiredo Neves Yuki
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Elaine Pires Leon
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Victor Adriano de Oliveira Martins
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Marta Heloisa Lopes
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Alberto José da Silva Duarte
- Clinical Laboratory Division, Department of Pathology, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Clovis Artur Almeida da Silva
- Pediatric Rheumatology Unit, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| |
Collapse
|
8
|
Shaikh SR, MacIver NJ, Beck MA. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu Rev Nutr 2022; 42:67-89. [PMID: 35995048 PMCID: PMC10880552 DOI: 10.1146/annurev-nutr-062320-115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| |
Collapse
|
9
|
Christensen SR, Martin ET, Petrie JG, Monto AS, Hensley SE. The 2009 Pandemic H1N1 Hemagglutinin Stalk Remained Antigenically Stable after Circulating in Humans for a Decade. J Virol 2022; 96:e0220021. [PMID: 35588275 PMCID: PMC9175623 DOI: 10.1128/jvi.02200-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
An H1N1 influenza virus caused a pandemic in 2009, and descendants of this virus continue to circulate seasonally in humans. Upon infection with the 2009 H1N1 pandemic strain (pH1N1), many humans produced antibodies against epitopes in the hemagglutinin (HA) stalk. HA stalk-focused antibody responses were common among pH1N1-infected individuals because HA stalk epitopes were conserved between the pH1N1 strain and previously circulating H1N1 strains. Here, we completed a series of experiments to determine if the pH1N1 HA stalk has acquired substitutions since 2009 that prevent the binding of human antibodies. We identified several amino acid substitutions that accrued in the pH1N1 HA stalk from 2009 to 2019. We completed enzyme-linked immunosorbent assays, absorption-based binding assays, and surface plasmon resonance experiments to determine if these substitutions affect antibody binding. Using sera collected from 230 humans (aged 21 to 80 years), we found that pH1N1 HA stalk substitutions that have emerged since 2009 do not affect antibody binding. Our data suggest that the HA stalk domain of pH1N1 viruses remained antigenically stable after circulating in humans for a decade. IMPORTANCE In 2009, a new pandemic H1N1 (pH1N1) virus began circulating in humans. Many individuals mounted hemagglutinin (HA) stalk-focused antibody responses upon infection with the 2009 pH1N1 strain, since the HA stalk of this virus was relatively conserved with other seasonal H1N1 strains. Here, we completed a series of studies to determine if the 2009 pH1N1 strain has undergone antigenic drift in the HA stalk domain over the past decade. We found that serum antibodies from 230 humans could not antigenically distinguish the 2009 and 2019 HA stalk. These data suggest that the HA stalk of pH1N1 has remained antigenically stable, despite the presence of high levels of HA stalk antibodies within the human population.
Collapse
Affiliation(s)
- Shannon R. Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Joshua G. Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Linderman SL, Ellebedy AH, Davis C, Eberhardt CS, Antia R, Ahmed R, Zarnitsyna VI. Influenza Immunization in the Context of Preexisting Immunity. Cold Spring Harb Perspect Med 2021; 11:a040964. [PMID: 32988981 PMCID: PMC8559541 DOI: 10.1101/cshperspect.a040964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although we develop influenza immunity from an early age, it is insufficient to prevent future infection with antigenically novel strains. One proposed way to generate long-term protective immunity against a broad range of influenza virus strains is to boost responses to the conserved epitopes on the hemagglutinin, the major surface glycoprotein on the influenza virus. Influenza-specific humoral immunity comprises a large fraction of the overall immune memory in humans, and it has been long recognized that preexisting immunity to influenza shapes the response to subsequent influenza infections and vaccinations. However, the mechanisms by which preexisting immunity modulates the response to influenza vaccination are still not completely understood. Using a set of mathematical models, we explore several hypotheses that may contribute to diminished boosting of antibodies to conserved epitopes after repeated vaccinations.
Collapse
Affiliation(s)
- Susanne L Linderman
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Carl Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Centre for Vaccinology and Department of Pediatrics, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Veronika I Zarnitsyna
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Vandoorn E, Leroux-Roels I, Leroux-Roels G, Parys A, Vincent A, Van Reeth K. Detection of H1 Swine Influenza A Virus Antibodies in Human Serum Samples by Age Group 1. Emerg Infect Dis 2021; 26:2118-2128. [PMID: 32818398 PMCID: PMC7454048 DOI: 10.3201/eid2609.191796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most H1 influenza A viruses (IAVs) of swine are derived from past human viruses. As human population immunity against these IAVs gradually decreases, the risk of reintroduction to humans increases. We examined 549 serum samples from persons 0-97 years of age collected in Belgium during 2017-2018 for hemagglutination inhibiting and virus neutralizing antibodies against 7 major H1 swine IAV (swIAV) clades and 3 human progenitor IAVs. Seroprevalence (titers >40) rates were >50% for classical swine and European human-like swIAVs, >24% for North American human-like δ1a and Asian avian-like swIAVs, and <10% for North American human-like δ1b and European avian-like swIAVs, but rates were age-dependent. Antibody titers against human-like swIAVs and supposed human precursor IAVs correlated with correlation coefficients of 0.30-0.86. Our serologic findings suggest that European avian-like, clade 1C.2.1, and North American human-like δ1b, clade 1B.2.2.2, H1 swIAVs pose the highest pandemic risk.
Collapse
|
12
|
Sachak-Patwa R, Byrne HM, Thompson RN. Accounting for cross-immunity can improve forecast accuracy during influenza epidemics. Epidemics 2020; 34:100432. [PMID: 33360870 DOI: 10.1016/j.epidem.2020.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Previous exposure to influenza viruses confers cross-immunity against future infections with related strains. However, this is not always accounted for explicitly in mathematical models used for forecasting during influenza outbreaks. We show that, if an influenza outbreak is due to a strain that is similar to one that has emerged previously, then accounting for cross-immunity explicitly can improve the accuracy of real-time forecasts. To do this, we consider two infectious disease outbreak forecasting models. In the first (the "1-group model"), all individuals are assumed to be identical and cross-immunity is not accounted for. In the second (the "2-group model"), individuals who have previously been infected by a related strain are assumed to be less likely to experience severe disease, and therefore recover more quickly, than immunologically naive individuals. We fit both models to estimated case notification data (including symptomatic individuals as well as laboratory-confirmed cases) from Japan from the 2009 H1N1 influenza pandemic, and then generate synthetic data for a future outbreak by assuming that the 2-group model represents the epidemiology of influenza infections more accurately. We use the 1-group model (as well as the 2-group model for comparison) to generate forecasts that would be obtained in real-time as the future outbreak is ongoing, using parameter values estimated from the 2009 epidemic as informative priors, motivated by the fact that without using prior information from 2009, the forecasts are highly uncertain. In the scenario that we consider, the 1-group model only produces accurate outbreak forecasts once the peak of the epidemic has passed, even when the values of important epidemiological parameters such as the lengths of the mean incubation and infectious periods are known exactly. As a result, it is necessary to use the more epidemiologically realistic 2-group model to generate accurate forecasts. Accounting for cross-immunity driven by exposures in previous outbreaks explicitly is expected to improve the accuracy of epidemiological modelling forecasts during influenza outbreaks.
Collapse
Affiliation(s)
- Rahil Sachak-Patwa
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Robin N Thompson
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Christ Church, University of Oxford, St Aldates, Oxford, OX1 1DP, UK; Present address: Mathematics Institute, University of Warwick, Zeeman Building, Coventry, CV4 7AL, UK
| |
Collapse
|
13
|
Dugan HL, Guthmiller JJ, Arevalo P, Huang M, Chen YQ, Neu KE, Henry C, Zheng NY, Lan LYL, Tepora ME, Stovicek O, Bitar D, Palm AKE, Stamper CT, Changrob S, Utset HA, Coughlan L, Krammer F, Cobey S, Wilson PC. Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Sci Transl Med 2020; 12:eabd3601. [PMID: 33298562 PMCID: PMC8115023 DOI: 10.1126/scitranslmed.abd3601] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Humans are repeatedly exposed to variants of influenza virus throughout their lifetime. As a result, preexisting influenza-specific memory B cells can dominate the response after infection or vaccination. Memory B cells recalled by adulthood exposure are largely reactive to conserved viral epitopes present in childhood strains, posing unclear consequences on the ability of B cells to adapt to and neutralize newly emerged strains. We sought to investigate the impact of preexisting immunity on generation of protective antibody responses to conserved viral epitopes upon influenza virus infection and vaccination in humans. We accomplished this by characterizing monoclonal antibodies (mAbs) from plasmablasts, which are predominantly derived from preexisting memory B cells. We found that, whereas some influenza infection-induced mAbs bound conserved and neutralizing epitopes on the hemagglutinin (HA) stalk domain or neuraminidase, most of the mAbs elicited by infection targeted non-neutralizing epitopes on nucleoprotein and other unknown antigens. Furthermore, most infection-induced mAbs had equal or stronger affinity to childhood strains, indicating recall of memory B cells from childhood exposures. Vaccination-induced mAbs were similarly induced from past exposures and exhibited substantial breadth of viral binding, although, in contrast to infection-induced mAbs, they targeted neutralizing HA head epitopes. Last, cocktails of infection-induced mAbs displayed reduced protective ability in mice compared to vaccination-induced mAbs. These findings reveal that both preexisting immunity and exposure type shape protective antibody responses to conserved influenza virus epitopes in humans. Natural infection largely recalls cross-reactive memory B cells against non-neutralizing epitopes, whereas vaccination harnesses preexisting immunity to target protective HA epitopes.
Collapse
Affiliation(s)
- Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jenna J Guthmiller
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Philip Arevalo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Karlynn E Neu
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Linda Yu-Ling Lan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Micah E Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Olivia Stovicek
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Dalia Bitar
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | | | - Siriruk Changrob
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Henry A Utset
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Patrick C Wilson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Lakshmi Priyadarsini S, Suresh M. Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2020. [DOI: 10.1080/20479700.2020.1755804] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - M. Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
15
|
Skarlupka AL, Ross TM. Immune Imprinting in the Influenza Ferret Model. Vaccines (Basel) 2020; 8:vaccines8020173. [PMID: 32276530 PMCID: PMC7348859 DOI: 10.3390/vaccines8020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
The initial exposure to influenza virus usually occurs during childhood. This imprinting has long-lasting effects on the immune responses to subsequent infections and vaccinations. Animal models that are used to investigate influenza pathogenesis and vaccination do recapitulate the pre-immune history in the human population. The establishment of influenza pre-immune ferret models is necessary for understanding infection and transmission and for designing efficacious vaccines.
Collapse
Affiliation(s)
- Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-9708
| |
Collapse
|
16
|
Ramírez-Salinas GL, García-Machorro J, Rojas-Hernández S, Campos-Rodríguez R, de Oca ACM, Gomez MM, Luciano R, Zimic M, Correa-Basurto J. Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies. Arch Virol 2020; 165:891-911. [PMID: 32060794 PMCID: PMC7222995 DOI: 10.1007/s00705-020-04537-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/11/2019] [Indexed: 02/01/2023]
Abstract
Pandemics caused by influenza A virus (IAV) are responsible for the deaths of millions of humans around the world. One of these pandemics occurred in Mexico in 2009. Despite the impact of IAV on human health, there is no effective vaccine. Gene mutations and translocation of genome segments of different IAV subtypes infecting a single host cell make the development of a universal vaccine difficult. The design of immunogenic peptides using bioinformatics tools could be an interesting strategy to increase the success of vaccines. In this work, we used the predicted amino acid sequences of the neuraminidase (NA) and hemagglutinin (HA) proteins of different IAV subtypes to perform multiple alignments, epitope predictions, molecular dynamics simulations, and experimental validation. Peptide selection was based on the following criteria: promiscuity, protein surface exposure, and the degree of conservation among different medically relevant IAV strains. These peptides were tested using immunological assays to test their ability to induce production of antibodies against IAV. We immunized rabbits and mice and measured the levels of IgG and IgA antibodies in serum samples and nasal washes. Rabbit antibodies against the peptides P11 and P14 (both of which are hybrids of NA and HA) recognized HA from both group 1 (H1, H2, and H5) and group 2 (H3 and H7) IAV and also recognized the purified NA protein from the viral stock (influenza A Puerto Rico/916/34). IgG antibodies from rabbits immunized with P11 and P14 were capable of recognizing viral particles and inhibited virus hemagglutination. Additionally, intranasal immunization of mice with P11 and P14 induced specific IgG and IgA antibodies in serum and nasal mucosa, respectively. Interestingly, the IgG antibodies were found to have neutralizing capability. In conclusion, the peptides designed through in silico studies were validated in experimental assays.
Collapse
Affiliation(s)
- G Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Jazmín García-Machorro
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México.
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Rafael Campos-Rodríguez
- Laboratorio de Bioquímica. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Arturo Contis-Montes de Oca
- Laboratorio de Inmunología celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Miguel Medina Gomez
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Rocío Luciano
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México.
| |
Collapse
|
17
|
Jash A, Zhou YW, Gerardo DK, Ripperger TJ, Parikh BA, Piersma S, Jamwal DR, Kiela PR, Boon ACM, Yokoyama WM, Hsieh CS, Bhattacharya D. ZBTB32 restrains antibody responses to murine cytomegalovirus infections, but not other repetitive challenges. Sci Rep 2019; 9:15257. [PMID: 31649328 PMCID: PMC6813321 DOI: 10.1038/s41598-019-51860-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
ZBTB32 is a transcription factor that is highly expressed by a subset of memory B cells and restrains the magnitude and duration of recall responses against hapten-protein conjugates. To define physiological contexts in which ZBTB32 acts, we assessed responses by Zbtb32-/- mice or bone marrow chimeras against a panel of chronic and acute challenges. Mixed bone marrow chimeras were established in which all B cells were derived from either Zbtb32-/- mice or control littermates. Chronic infection of Zbtb32-/- chimeras with murine cytomegalovirus led to nearly 20-fold higher antigen-specific IgG2b levels relative to controls by week 9 post-infection, despite similar viral loads. In contrast, IgA responses and specificities in the intestine, where memory B cells are repeatedly stimulated by commensal bacteria, were similar between Zbtb32-/- mice and control littermates. Finally, an infection and heterologous booster vaccination model revealed no role for ZBTB32 in restraining primary or recall antibody responses against influenza viruses. Thus, ZBTB32 does not limit recall responses to a number of physiological acute challenges, but does restrict antibody levels during chronic viral infections that periodically engage memory B cells. This restriction might selectively prevent recall responses against chronic infections from progressively overwhelming other antibody specificities.
Collapse
Affiliation(s)
- Arijita Jash
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - You W Zhou
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Diana K Gerardo
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Sytse Piersma
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Deepa R Jamwal
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Wayne M Yokoyama
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Chyi S Hsieh
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America.,Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States of America. .,Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
18
|
Tinsley A, Navabi S, Williams ED, Liu G, Kong L, Coates MD, Clarke K. Increased Risk of Influenza and Influenza-Related Complications Among 140,480 Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:369-376. [PMID: 30020478 DOI: 10.1093/ibd/izy243] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diseases of immune dysregulation are associated with an increased risk of viral infections, some of which may be preventable. To date, there are very limited data on the incidence and risk of influenza and related complications in patients with inflammatory bowel disease (IBD). Furthermore, the impact of immunosuppressive medications on that risk is unclear. Therefore, the aim of this study was to estimate the incidence and severity of influenza infections in IBD patients. In addition, we looked specifically at the effect of medications on influenza risk. METHODS Using the MarketScan Database (January 2008 to December 2011), we conducted a retrospective cohort study to estimate the incidence of influenza and risk of related complications in IBD patients compared with those without IBD. We employed a nested case-control study design to evaluate the potential independent effect of IBD medications on influenza risk. RESULTS A total of 140,480 patients with IBD and non-IBD controls were studied. There were 2963 patients with influenza compared with 1941 non-IBD subjects. Inflammatory bowel disease patients had an increased influenza risk compared with those without IBD (incidence rate ratio, 1.54; 95% confidence interval [CI], 1.49-1.63). A higher rate of hospitalizations (162/2994 [5.4%] vs 36/1941 [1.85%]; P < 0.001) was noted. Systemic corticosteroids were found to be independently associated with influenza (odds ratio, 1.22; 95% CI, 1.08-1.38). CONCLUSIONS Inflammatory bowel disease patients had an increased risk of influenza compared with those without IBD and were more likely to require hospitalization. Steroids were the only medication class independently associated with flu risk.
Collapse
Affiliation(s)
- Andrew Tinsley
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Seyedehsan Navabi
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Emmanuelle D Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Guodong Liu
- Department of Public Health, College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Lan Kong
- Department of Public Health, College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Matthew D Coates
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Kofi Clarke
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
19
|
Chuah CXP, Lim RL, Chen MIC. Investigating the Legacy of the 1918 Influenza Pandemic in Age-Related Seroepidemiology and Immune Responses to Subsequent Influenza A(H1N1) Viruses Through a Structural Equation Model. Am J Epidemiol 2018; 187:2530-2540. [PMID: 30165573 PMCID: PMC6269251 DOI: 10.1093/aje/kwy192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
A(H1N1) strains of Influenzavirus were responsible for 2 pandemics in the last 100 years. Because infections experienced early in life may have a long-lasting influence on future immune response against other influenza strains, we drew on previously collected seroincidence data from Singapore (n = 2,554; June-October 2009) to investigate whether the 1918 pandemic influenza virus and its early descendants produced an age-related signature in immune responses against the A/California/7/2009(H1N1)pdm09 virus of 2009. Hemagglutination inhibition assays revealed a J-shaped relationship; the oldest birth cohort (born in 1911-1926) had the highest titers, followed by the youngest (born in 1987-1992). Differential response by vaccination history was also observed, with seasonal influenza vaccine being associated with higher titers mainly in the oldest birth cohort. On the assumption that antibody titers are a correlate of protection, structural equation modeling predicted that a titer-mediated effect by the vaccine could, on its own, account for a negative association with seroconversion equivalent to a risk reduction of 23% (relative risk = 0.77, 95% confidence interval: 0.60, 0.99) in the oldest birth cohort. A subset of 503 samples tested against the A/Brisbane/59/2007(H1N1) and A/Puerto Rico/8/1934(H1N1) strains also revealed different age-related antibody profiles. The effectiveness of seasonal influenza vaccines against future pandemic strains could thus be age-dependent and related to early-life exposures.
Collapse
Affiliation(s)
- Cheryl X P Chuah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Rachel L Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Mark I C Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| |
Collapse
|
20
|
Xie H, Li L, Ye Z, Li X, Plant EP, Zoueva O, Zhao Y, Jing X, Lin Z, Kawano T, Chiang MJ, Finch CL, Kosikova M, Zhang A, Zhu Y, Wan XF. Differential Effects of Prior Influenza Exposures on H3N2 Cross-reactivity of Human Postvaccination Sera. Clin Infect Dis 2018; 65:259-267. [PMID: 28369230 DOI: 10.1093/cid/cix269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
Background Effectiveness of seasonal influenza vaccines mainly depends upon how well vaccine strains represent circulating viruses; mismatched strains can lead to reduced protection. Humans have complex influenza exposure histories that increase with age, which may lead to different postvaccination responses to emerging influenza variants. Recent observational studies also suggest that prior vaccination may influence the performance of current seasonal vaccines. Methods To elucidate the effects of age and influenza preexposures on cross-reactivity of vaccination-induced human antibodies, we generated antigenic maps based on postvaccination hemagglutination inhibition titers against representative H3 variants circulating during the 2015-2016, 2014-2015, and 2012-2013 influenza seasons. Results Antigenic maps determined using sera from subjects 18-64 and ≥65 years of age correlated well with each other but poorly with those determined using sera from children. Antigenic maps derived from human postvaccination sera with H1 influenza preexposure also correlated poorly with those derived from sera with neither H1 nor type B influenza preexposure, and the correlation lessened considerably over time. In contrast, antigenic maps derived from human postvaccination sera with only type B influenza preexposure consistently showed good correlation with those derived from sera with neither H1 nor type B influenza preexposure. Conclusions Our results suggest an age-specific difference in human postvaccination responses. Our findings also suggest that prior exposure to H1 or type B influenza may differentially affect cross-reactivity of vaccination-induced H3-specific hemagglutination inhibition antibody responses, and consequently might affect vaccine effectiveness. Our study highlights the need to study the impact of prior exposure on influenza vaccine performance.
Collapse
Affiliation(s)
- Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Zhiping Ye
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xing Li
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Ewan P Plant
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Olga Zoueva
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Yangqing Zhao
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xianghong Jing
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Zhengshi Lin
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Toshiaki Kawano
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Meng-Jung Chiang
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Courtney L Finch
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Anding Zhang
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Yanhong Zhu
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
21
|
Kumar A, Meldgaard TS, Bertholet S. Novel Platforms for the Development of a Universal Influenza Vaccine. Front Immunol 2018; 9:600. [PMID: 29628926 PMCID: PMC5877485 DOI: 10.3389/fimmu.2018.00600] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.
Collapse
Affiliation(s)
- Arun Kumar
- GSK, Research and Development Center, Siena, Italy.,Linköping University, Linköping, Sweden
| | - Trine Sundebo Meldgaard
- GSK, Research and Development Center, Siena, Italy.,DTU Nanotech, Technical University of Denmark, Copenhagen, Denmark
| | - Sylvie Bertholet
- GSK, Research and Development Center, Siena, Italy.,GSK, Research and Development Center, Rockville, MD, United States
| |
Collapse
|
22
|
Epidemiology of viral respiratory infections in Australian working-age adults (20–64 years): 2010–2013. Epidemiol Infect 2018; 146:619-626. [DOI: 10.1017/s0950268818000286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractAcute respiratory infections cause significant morbidity and mortality accounting for 5.8 million deaths worldwide. In Australia, influenza-like illness (ILI), defined as cough, fever and fatigue is a common presentation in general practice and results in reduced productivity and lost working days. Little is known about the epidemiology of ILI in working-age adults. Using data from the ASPREN influenza surveillance network in Australia (2010–2013) we found that working-age adults made up 45.2% of all ILI notifications with 55% of samples positive for at least one respiratory virus. Viruses most commonly detected in our study included influenza A (20.6%), rhinovirus (18.6%), influenza B (6.2%), human meta-pneumovirus (3.4%), respiratory syncytial virus (3.1%), para-influenza virus (2.6%) and adenovirus (1.3%). We also demonstrated that influenza A is the predominant virus that increases ILI (by 1.2% per month for every positive influenza A case) in working-age adults during autumn–winter months while other viruses are active throughout the year. Understanding the epidemiology of viral respiratory infections through a year will help clinicians make informed decisions about testing, antibiotic and antiviral prescribing and when the beginning of the ‘flu season’ can be more confidently predicted.
Collapse
|
23
|
Anderson CS, McCall PR, Stern HA, Yang H, Topham DJ. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics 2018; 19:51. [PMID: 29433425 PMCID: PMC5809904 DOI: 10.1186/s12859-018-2042-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The ease at which influenza virus sequence data can be used to estimate antigenic relationships between strains and the existence of databases containing sequence data for hundreds of thousands influenza strains make sequence-based antigenic distance estimates an attractive approach to researchers. Antigenic mismatch between circulating strains and vaccine strains results in significantly decreased vaccine effectiveness. Furthermore, antigenic relatedness between the vaccine strain and the strains an individual was originally primed with can affect the cross-reactivity of the antibody response. Thus, understanding the antigenic relationships between influenza viruses that have circulated is important to both vaccinologists and immunologists. RESULTS Here we develop a method of mapping antigenic relationships between influenza virus stains using a sequence-based antigenic distance approach (SBM). We used a modified version of the p-all-epitope sequence-based antigenic distance calculation, which determines the antigenic relatedness between strains using influenza hemagglutinin (HA) genetic coding sequence data and provide experimental validation of the p-all-epitope calculation. We calculated the antigenic distance between 4838 H1N1 viruses isolated from infected humans between 1918 and 2016. We demonstrate, for the first time, that sequence-based antigenic distances of H1N1 Influenza viruses can be accurately represented in 2-dimenstional antigenic cartography using classic multidimensional scaling. Additionally, the model correctly predicted decreases in cross-reactive antibody levels with 87% accuracy and was highly reproducible with even when small numbers of sequences were used. CONCLUSION This work provides a highly accurate and precise bioinformatics tool that can be used to assess immune risk as well as design optimized vaccination strategies. SBM accurately estimated the antigenic relationship between strains using HA sequence data. Antigenic maps of H1N1 virus strains reveal that strains cluster antigenically similar to what has been reported for H3N2 viruses. Furthermore, we demonstrated that genetic variation differs across antigenic sites and discuss the implications.
Collapse
Affiliation(s)
- Christopher S. Anderson
- New York Influenza Center of Excellence at David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Patrick R. McCall
- New York Influenza Center of Excellence at David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Harry A. Stern
- Center for Integrated Research Computing, University of Rochester, Rochester, NY USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - David J. Topham
- New York Influenza Center of Excellence at David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| |
Collapse
|
24
|
Lv J, Ren ZY, Zhang YY, Liu YE, Gao J, Yao K, Feng D, Li ZY, Feng X, Liu YX, Jia N. Study on age-dependent pre-existing 2009 pandemic influenza virus T and B cell responses from Chinese population. BMC Infect Dis 2017; 17:136. [PMID: 28187750 PMCID: PMC5301333 DOI: 10.1186/s12879-017-2215-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/20/2017] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The outbreak of the 2009 H1N1 influenza pandemic (H1N1pdm) affected thousands of people in Mexico and the United States, and spread rapidly throughout the world from April 2009 to July 2010. To explore the age-specific prevalence of seroprotection against H1N1pdm infection, we estimated pre-existing humoral and cellular immunities of residents in Northern China against H1N1pdm and seasonal H1N1 virus in an age-dependent manner. METHODS Anonymous serum samples were collected from 1425 to 1434 adult healthy individuals before and after the pandemic outbreak, and then grouped by birth year 1913-1990. The antibody titers of H1N1pdm and seasonal H1N1 were determined using microneutralization (MN) assays, and the proportion of seropositive was estimated based on the year of birth. Separately, another 63 blood samples were collected in 2006 and prepared for analysis of virus specific memory B and IFN-γ+ T cells using the ELISpot assays. RESULTS The prevalence of pre-existing H1N1pdm-specific sero-antibodies in the elderly population (>60 years old) was 7.8%. The younger group, aged 19 to 60 years, exhibited a significant increase in seropositivity for H1N1pdm after the pandemic (4.9% before pandemic and 18.9% after pandemic, p < 0.05). The prevalence of H1N1pdm specific MBCs before the pandemic in the elderly (>60 years) and younger populations (<60 years) was 38% (8/21) and 48% (20/42), respectively (p = 0.6). The IFN-γ+ T cell responses to the pandemic and seasonal viruses were significantly lower in the elder group than those in the younger group (<60 years) (p < 0.05). CONCLUSIONS Pre-existing serum antibodies and memory B cells against H1N1pdm were low in all age group, whereas diminished memory T cell responses to this virus were observed in the elderly population both before and after the pandemic.
Collapse
Affiliation(s)
- Jin Lv
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China
| | - Zhen-Yong Ren
- Beijing Center for Disease Prevention and Control, Beijing, 100013, People's Republic of China
| | - Ying-Ying Zhang
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China
| | - Yun-E Liu
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China
| | - Jun Gao
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China
| | - Kun Yao
- National Development and Reform Commission Hospital, Beijing, People's Republic of China
| | - Dan Feng
- Chinese PLA General Hospital, 28 Fu-Xing Road, Hai-Dian District, Beijing, 10853, People's Republic of China
| | - Zhen-Yuan Li
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China
| | - Xin Feng
- The General Hospital of PLA Rocket Force, 16 Xin Jie Kou Wai Street, Hai-Dian District, Beijing, 100088, People's Republic of China.
| | - Yun-Xi Liu
- Chinese PLA General Hospital, 28 Fu-Xing Road, Hai-Dian District, Beijing, 10853, People's Republic of China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
25
|
Bohannon C, Powers R, Satyabhama L, Cui A, Tipton C, Michaeli M, Skountzou I, Mittler RS, Kleinstein SH, Mehr R, Lee FEY, Sanz I, Jacob J. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat Commun 2016; 7:11826. [PMID: 27270306 PMCID: PMC4899631 DOI: 10.1038/ncomms11826] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/03/2016] [Indexed: 01/10/2023] Open
Abstract
Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells—with T-cell help—undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge. Long-lived IgG plasma cells develop in germinal centres and then home to the bone marrow and persist for a lifetime. Here the authors identify long-lived IgM plasma cells in the murine spleen, which carry IgH mutations but can develop independently of germinal centres, and confer protective antiviral immunity.
Collapse
Affiliation(s)
- Caitlin Bohannon
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road Atlanta, Georgia 30329, USA
| | - Ryan Powers
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road Atlanta, Georgia 30329, USA
| | | | - Ang Cui
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 74085, USA
| | - Christopher Tipton
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, Georgia 30329, USA
| | - Miri Michaeli
- Computational Immunology Lab, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ioanna Skountzou
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road Atlanta, Georgia 30329, USA
| | - Robert S Mittler
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road Atlanta, Georgia 30329, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 74085, USA.,Department of Pathology, Yale University School of Medicine, Yale University, New Haven, Connecticut 74085, USA.,Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, Connecticut 74085, USA
| | - Ramit Mehr
- Computational Immunology Lab, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Frances Eun-Yun Lee
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, Georgia 30329, USA
| | - Ignacio Sanz
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, Georgia 30329, USA
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road Atlanta, Georgia 30329, USA
| |
Collapse
|
26
|
Vassilieva EV, Kalluri H, McAllister D, Taherbhai MT, Esser ES, Pewin WP, Pulit-Penaloza JA, Prausnitz MR, Compans RW, Skountzou I. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Deliv Transl Res 2016; 5:360-71. [PMID: 25895053 DOI: 10.1007/s13346-015-0228-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prevention of seasonal influenza epidemics and pandemics relies on widespread vaccination coverage to induce protective immunity. In addition to a good antigenic match with the circulating viruses, the effectiveness of individual strains represented in the trivalent vaccines depends on their immunogenicity. In this study, we evaluated the immunogenicity of H1N1, H3N2, and B seasonal influenza virus vaccine strains delivered individually with a novel dissolving microneedle patch and the stability of this formulation during storage at 25 °C. Our data demonstrate that all strains retained their antigenic activity after incorporation in the dissolving patches as measured by single radial diffusion (SRID) assay and immune responses to vaccination in BALB/c mice. After a single immunization, all three antigens delivered with microneedle patches induced superior neutralizing antibody titers compared to intramuscular immunization. Cutaneous antigen delivery was especially beneficial for the less immunogenic B strain. Mice immunized with dissolving microneedle patches encapsulating influenza A/Brisbane/59/07 (H1N1) vaccine were fully protected against lethal challenge by homologous mouse-adapted influenza virus. All vaccine components retained activity during storage at room temperature for at least 3 months as measured in vitro by SRID assay and in vivo by mouse immunization studies. Our data demonstrate that dissolving microneedle patches are a promising advance for influenza cutaneous vaccination due to improved immune responses using less immunogenic influenza antigens and enhanced stability.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Background Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly non-neutralizing antibodies may assist in reducing disease but have not been well characterized. Methods We measured internalization of opsonized, influenza protein-coated fluorescent beads and live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following IAV infection of humans and macaques. Results We found that both sera from healthy adults and IVIG preparations had broad ADP to multiple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected human sera mediated phagocytosis of both homologous and heterologous IAVs. Further, the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro. Conclusion We conclude that IAV infections in humans and macaques leads to the development of influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans to multiple IAV infections likely leads to the development of ADP that is cross-reactive to strains not previously encountered. Further analyses of the protective capacity of broadly reactive influenza-specific ADP is warranted.
Collapse
|
28
|
DeDiego ML, Anderson CS, Yang H, Holden-Wiltse J, Fitzgerald T, Treanor JJ, Topham DJ. Directed selection of influenza virus produces antigenic variants that match circulating human virus isolates and escape from vaccine-mediated immune protection. Immunology 2016; 148:160-73. [PMID: 26854888 PMCID: PMC4863573 DOI: 10.1111/imm.12594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/27/2022] Open
Abstract
Influenza vaccination does not provide 100% protection from infection, partly due to antigenic drift of the haemagglutinin (HA) protein. Low serum antibody titres increase the risk of infection. To determine whether there were additional correlates of risk, we examined the relationship between human serum immunity and antigenic variation in seasonal H3N2 influenza viruses. Seasonal H3N2 vaccine strains grown in the presence of heterogeneous human or mono‐specific ferret antisera selected variants with mutations in the HA antigenic sites. Surprisingly, circulating strains infecting human subjects in the same seasons displayed mutations in the same positions, although only in one case did the change correspond to the same amino acid. Serum antibody titres were lower against both the in vitro selected and clinical isolates compared with the vaccine strains, suggesting that the mutations are relevant to vaccine failure. Antibody titres were also significantly lower in sera from infected subjects than in non‐infected subjects, suggesting relatively poor responses to vaccination in the infected subjects. Collectively, the data suggest that risk from influenza infection is a result of poor response to vaccination, as well as encounter with drifted seasonal influenza virus antigenic variants. The results also show that directed selection under human immune pressure could reveal antigenic variants relevant to real‐world drifted viruses, helping in annual vaccine re‐formulation.
Collapse
Affiliation(s)
- Marta L DeDiego
- David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher S Anderson
- David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - Theresa Fitzgerald
- Department of Medicine, Infectious Disease Unit, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - John J Treanor
- Department of Medicine, Infectious Disease Unit, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| | - David J Topham
- David Smith Center for Immunology and Vaccine Biology, Department of Microbiology and Immunology, New York Influenza Center of Excellence at the University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
29
|
Wiesen J, Joshi D, Guzman JA, Duggal A. Critical illness associated with 2013-2014 influenza A (H1N1): Postpandemic characteristics, presentation and outcomes. Indian J Crit Care Med 2016; 19:636-41. [PMID: 26730113 PMCID: PMC4687171 DOI: 10.4103/0972-5229.169328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: The United States experienced a postpandemic outbreak of H1N1 influenza in 2013–2014. Unlike the pandemic in 2009 clinical course and outcomes associated with critical illness in this postpandemic outbreak has been only sparsely described. Methods: We conducted a retrospective analysis of all patients admitted to the Medical Intensive Care Unit with H1N1 influenza infection in 2009–2010 (pandemic) and 2013–2014 (postpandemic). Results: Patients admitted in the postpandemic period were older (55 ± 13 vs. 45 ± 12, P = 0.002), and had a higher incidence of underlying pulmonary (17 vs. 7, P = 0.0007) and cardiac (16 vs. 8, P = 0.005) disease. Mechanical ventilation was initiated in most patients in both groups (27 vs. 21, P = 1.00). The PaO2/FiO2 ratio was significantly higher in the pandemic group on days 1 (216 vs. 81, P = 0.0009), 3 (202 ± 99 vs. 100 ± 46, P = 0.002) and 7 (199 ± 103 vs. 113 ± 44, P = 0.019) but by day 14 no difference was seen between the groups. Rescue therapies were used in more patients in the postpandemic period (48% vs. 20%, P = 0.028), including more frequent use of prone ventilation (10 vs. 3, P = 0.015), inhaled vasodilator therapy (11 vs. 4, P = 0.015) and extracorporeal membrane oxygenation (ECMO) (4 vs. 2, P = NS). No significant differences in mortality were seen between the two cohorts. Conclusions: Compared to the 2009–2010 pandemic, the 2013–2014 H1N1 strain affected older patients with more underlying co-morbid cardio-pulmonary diseases. The patients had worse oxygenation indices and rescue modalities such as prone ventilation, inhaled epoprostenol and ECMO, were used more consistently as compared to the 2009 pandemic.
Collapse
Affiliation(s)
- Jonathan Wiesen
- Department of Pulmonary Critical Care, Cleveland Clinic, Respiratory Institute, Cleveland, Ohio, USA
| | - Dhruv Joshi
- Department of Pulmonary Critical Care, Cleveland Clinic, Respiratory Institute, Cleveland, Ohio, USA
| | - Jorge A Guzman
- Department of Pulmonary Critical Care, Cleveland Clinic, Respiratory Institute, Cleveland, Ohio, USA
| | - Abhijit Duggal
- Department of Pulmonary Critical Care, Cleveland Clinic, Respiratory Institute, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Gaspard P, Mosnier A, Stoll-Keller F, Roth C, Larocca S, Bertrand X. Influenza prevention in nursing homes: Great significance of seasonal variability and spatio-temporal pattern. Presse Med 2015; 44:e311-9. [DOI: 10.1016/j.lpm.2015.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/27/2015] [Accepted: 04/16/2015] [Indexed: 10/22/2022] Open
|
31
|
Qiu Y, De Hert K, Van Reeth K. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza. Vet Res 2015; 46:105. [PMID: 26404790 PMCID: PMC4581489 DOI: 10.1186/s13567-015-0236-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.
Collapse
Affiliation(s)
- Yu Qiu
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Karl De Hert
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
32
|
Cobey S, Wilson P, Matsen FA. The evolution within us. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140235. [PMID: 26194749 PMCID: PMC4528412 DOI: 10.1098/rstb.2014.0235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 01/05/2023] Open
Abstract
The B-cell immune response is a remarkable evolutionary system found in jawed vertebrates. B-cell receptors, the membrane-bound form of antibodies, are capable of evolving high affinity to almost any foreign protein. High germline diversity and rapid evolution upon encounter with antigen explain the general adaptability of B-cell populations, but the dynamics of repertoires are less well understood. These dynamics are scientifically and clinically important. After highlighting the remarkable characteristics of naive and experienced B-cell repertoires, especially biased usage of genes encoding the B-cell receptors, we contrast methods of sequence analysis and their attempts to explain patterns of B-cell evolution. These phylogenetic approaches are currently unlinked to explicit models of B-cell competition, which analyse repertoire evolution at the level of phenotype, the affinities and specificities to particular antigenic sites. The models, in turn, suggest how chance, infection history and other factors contribute to different patterns of immunodominance and protection between people. Challenges in rational vaccine design, specifically vaccines to induce broadly neutralizing antibodies to HIV, underscore critical gaps in our understanding of B cells' evolutionary and ecological dynamics.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Patrick Wilson
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA Committee on Immunology, University of Chicago, Chicago, IL 60637, USA Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Qiu Y, Muller CP, Van Reeth K. Lower seroreactivity to European than to North American H3N2 swine influenza viruses in humans, Luxembourg, 2010. Euro Surveill 2015; 20:25-33. [DOI: 10.2807/1560-7917.es2015.20.13.21078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seroreactivity to H3N2 swine influenza viruses (SIVs) was evaluated in serum samples collected from 843 people aged 0 to 100 years in 2010 in Luxembourg. Sera were analysed by haemagglutination inhibition (HI) and virus neutralisation (VN) assays targeting a European H3N2 SIV, a North American H3N2 variant of swine origin (H3N2v) and human seasonal H3N2 viruses isolated in 1975, 1995 and 2005. HI antibodies (titre?≥?10) against European H3N2 SIV were almost exclusively detected in those born before 1990, of whom 70% were seropositive. HI antibodies against H3N2v were predominantly found in those born before 2000, with 86% seropositive. Titres against the North American H3N2v were higher than against the European H3N2 SIV. VN patterns were similar, but with higher rates and titres. We also demonstrated lower seroreactivity to European H3N2 SIV than to North American H3N2v virus. Finally, we found a strong correlation between HI titres against the European H3N2 SIV and H3N2v and their respective human ancestors, A/Victoria/3/75 and A/Nanchang/933/95. This finding and the minimal contacts between humans and pigs in Luxembourg suggest that anti-SIV antibodies in human serum samples reflect serological cross-reactivity with historical human H3N2 viruses. Our findings help assess the pandemic risk of H3N2 SIV.
Collapse
Affiliation(s)
- Y Qiu
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C P Muller
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg
| | - K Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
34
|
Emerging Influenza Strains in the Last Two Decades: A Threat of a New Pandemic? Vaccines (Basel) 2015; 3:172-85. [PMID: 26344952 PMCID: PMC4494236 DOI: 10.3390/vaccines3010172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
In the last 20 years, novel non-seasonal influenza viruses have emerged, most of which have originated from birds. Despite their apparent inability to cause pandemics, with the exception of H1N1 swine influenza virus, these viruses still constitute a constant threat to public health. While general concern has decreased after the peak of the H5N1 virus, in recent years several novel reassorted influenza viruses (e.g., H7N9, H9N2, H10N8) have jumped the host-species barrier and are under surveillance by the scientific community and public health systems. It is still unclear whether these viruses can actually cause pandemics or just isolated episodes. The purpose of this review is to provide an overview of old and novel potential pandemic strains of recent decades.
Collapse
|
35
|
Carter DM, Bloom CE, Kirchenbaum GA, Tsvetnitsky V, Isakova-Sivak I, Rudenko L, Ross TM. Cross-protection against H7N9 influenza strains using a live-attenuated H7N3 virus vaccine. Vaccine 2015; 33:108-16. [PMID: 25448100 DOI: 10.1016/j.vaccine.2014.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/18/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023]
Abstract
In 2013, avian H7N9 influenza viruses were detected infecting people in China resulting in high mortality. Influenza H7 vaccines that provide cross-protection against these new viruses are needed until specific H7N9 vaccines are ready to market. In this study, an available H7N3 cold-adapted, temperature sensitive, live attenuated influenza vaccine (LAIV) elicited protective immune responses in ferrets against H7N9 viruses. The H7N3 LAIV administered alone (by intranasal or subcutaneous administration) or in a prime-boost strategy using inactivated H7N9 virus resulted in high HAI titers and protected 100% of the animals against H7N9 challenge. Naïve ferrets passively administered immune serum from H7N3 LAIV infected animals were also protected. In contrast, recombinant HA protein or inactivated viruses did not protect ferrets against challenge and elicited lower antibody titers. Thus, the H7N3 LAIV vaccine was immunogenic in healthy seronegative ferrets and protected these ferrets against the newly emerged H7N9 avian influenza virus.
Collapse
Affiliation(s)
- Donald M Carter
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Chalise E Bloom
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | | | | | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ted M Ross
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA.
| |
Collapse
|
36
|
Yang J, Li W, Long Y, Song S, Liu J, Zhang X, Wang X, Jiang S, Liao G. Reliability of pseudotyped influenza viral particles in neutralizing antibody detection. PLoS One 2014; 9:e113629. [PMID: 25436460 PMCID: PMC4249968 DOI: 10.1371/journal.pone.0113629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Current influenza control strategies require an active surveillance system. Pseudotyped viral particles (pp) together with the evaluation of pre-existing immunity in a population might satisfy this requirement. However, the reliability of using pp in neutralizing antibody (nAb) detection are undefined. Methodology/Principal Findings Pseudotyped particles of A(H1N1)pmd09 (A/California/7/2009) and HPAI H5N1 (A/Anhui/1/2005), as well as their reassortants, were generated. The reliability of using these pp in nAb detection were compared concurrently with the corresponding viruses by a hemagglutination inhibition test, as well as ELISA-, cytopathic effect-, and fluorescence-based microneutralization assays. In the qualitative detection on nAbs, the pp and their corresponding viruses were in complete agreement, with an R2 value equal to or near 1 in two different populations. In the quantitative detection on nAbs, although the geometric mean titers (95% confidence interval) differed between the pp and viruses, no significant difference was observed. Furthermore, humoral immunity against the reassortants was evaluated; our results indicated strong consistency between the nAbs against reassortant pp and those against naïve pp harboring the same hemagglutinin. Conclusion/Significance The pp displayed high reliability in influenza virus nAb detection. The use of reassortant pp is a safe and convenient strategy for characterizing emerging influenza viruses and surveying the disease burden.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Viral/immunology
- Cells, Cultured
- Dogs
- HEK293 Cells
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Middle Aged
- Reassortant Viruses/immunology
- Virion/immunology
- Young Adult
Collapse
Affiliation(s)
- Jinghui Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Weidong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| | - Yunfeng Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Shaohui Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoguang Wang
- Minhang District Center for Disease Control and Prevention, Shanghai, China
- * E-mail: (GL); (WL); (XW)
| | - Shude Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| |
Collapse
|
37
|
Epitope-based approaches to a universal influenza vaccine. J Autoimmun 2014; 54:15-20. [DOI: 10.1016/j.jaut.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
|
38
|
Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013-2014 influenza season. Proc Natl Acad Sci U S A 2014; 111:15798-803. [PMID: 25331901 DOI: 10.1073/pnas.1409171111] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza viruses typically cause the most severe disease in children and elderly individuals. However, H1N1 viruses disproportionately affected middle-aged adults during the 2013-2014 influenza season. Although H1N1 viruses recently acquired several mutations in the hemagglutinin (HA) glycoprotein, classic serological tests used by surveillance laboratories indicate that these mutations do not change antigenic properties of the virus. Here, we show that one of these mutations is located in a region of HA targeted by antibodies elicited in many middle-aged adults. We find that over 42% of individuals born between 1965 and 1979 possess antibodies that recognize this region of HA. Our findings offer a possible antigenic explanation of why middle-aged adults were highly susceptible to H1N1 viruses during the 2013-2014 influenza season. Our data further suggest that a drifted H1N1 strain should be included in future influenza vaccines to potentially reduce morbidity and mortality in this age group.
Collapse
|
39
|
Li J, Arévalo MT, Chen Y, Chen S, Zeng M. T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine. Int J Infect Dis 2014; 27:37-43. [PMID: 25172265 DOI: 10.1016/j.ijid.2014.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/24/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. METHODS BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. RESULTS LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. CONCLUSIONS These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Maria T Arévalo
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Yanping Chen
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Shan Chen
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Mingtao Zeng
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
40
|
van de Sandt CE, Kreijtz JHCM, Geelhoed-Mieras MM, Vogelzang-van Trierum SE, Nieuwkoop NJ, van de Vijver DAMC, Fouchier RAM, Osterhaus ADME, Morein B, Rimmelzwaan GF. Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine. Vaccine 2014; 32:5614-23. [PMID: 25140929 DOI: 10.1016/j.vaccine.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Vaccines used against seasonal influenza are poorly effective against influenza A viruses of novel subtypes that may have pandemic potential. Furthermore, pre(pandemic) influenza vaccines are poorly immunogenic, which can be overcome by the use of adjuvants. A limited number of adjuvants has been approved for use in humans, however there is a need for alternative safe and effective adjuvants that can enhance the immunogenicity of influenza vaccines and that promote the induction of broad-protective T cell responses. Here we evaluated a novel nanoparticle, G3, as an adjuvant for a seasonal trivalent inactivated influenza vaccine in a mouse model. The G3 adjuvant was formulated with or without steviol glycosides (DT, for diterpenoid). The use of both formulations enhanced the virus-specific antibody response to all three vaccine strains considerably. The adjuvants were well tolerated without any signs of discomfort. To assess the protective potential of the vaccine-induced immune responses, an antigenically distinct influenza virus strain, A/Puerto Rico/8/34 (A/PR/8/34), was used for challenge infection. The vaccine-induced antibodies did not cross-react with strain A/PR/8/34 in HI and VN assays. However, mice immunized with the G3/DT-adjuvanted vaccine were partially protected against A/PR/8/34 infection, which correlated with the induction of anamnestic virus-specific CD8(+) T cell responses that were not observed with the use of G3 without DT. Both formulations induced maturation of human dendritic cells and promoted antigen presentation to a similar extent. In conclusion, G3/DT is a promising adjuvant formulation that not only potentiates the antibody response induced by influenza vaccines, but also induces T cell immunity which could afford broader protection against antigenically distinct influenza viruses.
Collapse
Affiliation(s)
| | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | - Nella J Nieuwkoop
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; ViroClinics Biosciences BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Bror Morein
- Infectious Diseases Department of Medical Sciences, Uppsala University, MoreinX, Dag Hammarskjöldsväg 34 A, 751 83 Uppsala, Sweden
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; ViroClinics Biosciences BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:737-46. [PMID: 24648486 DOI: 10.1128/cvi.00790-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.
Collapse
|
42
|
van de Sandt CE, Kreijtz JHCM, de Mutsert G, Geelhoed-Mieras MM, Hillaire MLB, Vogelzang-van Trierum SE, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88:1684-93. [PMID: 24257602 PMCID: PMC3911609 DOI: 10.1128/jvi.02843-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023] Open
Abstract
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- China/epidemiology
- Cross Protection
- Cross Reactions
- Disease Outbreaks
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Interferon-gamma/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Seasons
- Sequence Alignment
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron A. M. Fouchier
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| | - Guus F. Rimmelzwaan
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE, Tumpey TM, García-Sastre A. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 2013; 5:187ra70. [PMID: 23720581 DOI: 10.1126/scitranslmed.3005996] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the global spread of the 2009 pandemic H1N1 (pH1N1) influenza virus, there are increasing worries about evolution through antigenic drift. One way previous seasonal H1N1 and H3N2 influenza strains have evolved over time is by acquiring additional glycosylations in the globular head of their hemagglutinin (HA) proteins; these glycosylations have been believed to shield antigenically relevant regions from antibody immune responses. We added additional HA glycosylation sites to influenza A/Netherlands/602/2009 recombinant (rpH1N1) viruses, reflecting their temporal appearance in previous seasonal H1N1 viruses. Additional glycosylations resulted in substantially attenuated infection in mice and ferrets, whereas deleting HA glycosylation sites from a pre-pandemic virus resulted in increased pathogenicity in mice. We then more directly investigated the interactions of HA glycosylations and antibody responses through mutational analysis. We found that the polyclonal antibody response elicited by wild-type rpH1N1 HA was likely directed against an immunodominant region, which could be shielded by glycosylation at position 144. However, rpH1N1 HA glycosylated at position 144 elicited a broader polyclonal response able to cross-neutralize all wild-type and glycosylation mutant pH1N1 viruses. Moreover, mice infected with a recent seasonal virus in which glycosylation sites were removed elicited antibodies that protected against challenge with the antigenically distant pH1N1 virus. Thus, acquisition of glycosylation sites in the HA of H1N1 human influenza viruses affected not only their pathogenicity and ability to escape from polyclonal antibodies elicited by previous influenza virus strains but also their ability to induce cross-reactive antibodies against drifted antigenic variants.
Collapse
Affiliation(s)
- Rafael A Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Milner JJ, Sheridan PA, Karlsson EA, Schultz-Cherry S, Shi Q, Beck MA. Diet-induced obese mice exhibit altered heterologous immunity during a secondary 2009 pandemic H1N1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2474-85. [PMID: 23904168 PMCID: PMC3756476 DOI: 10.4049/jimmunol.1202429] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the 2009 pandemic H1N1 influenza A virus (pH1N1) outbreak, obese individuals were at greater risk for morbidity and mortality from pandemic infection. However, the mechanisms contributing to greater infection severity in obese individuals remain unclear. Although most individuals lacked pre-existing, neutralizing Ab protection to the novel pH1N1 virus, heterologous defenses conferred from exposure to circulating strains or vaccination have been shown to impart protection against pH1N1 infection in humans and mice. Because obese humans and mice have impaired memory T cell and Ab responses following influenza vaccination or infection, we investigated the impact of obesity on heterologous protection from pH1N1 infection using a mouse model of diet-induced obesity. Lean and obese mice were infected with influenza A/Puerto Rico/8/34 (PR8) and 5 wk later challenged with a lethal dose of heterologous pH1N1. Cross-neutralizing Ab protection was absent in this model, but obese mice exhibited a significantly lower level of nonneutralizing, cross-reactive pH1N1 nucleoprotein Abs following the primary PR8 infection. Further, obese mice had elevated viral titers, greater lung inflammation and lung damage, and more cytotoxic memory CD8(+) T cells in the lung airways. Although obese mice had more regulatory T cells (Tregs) in the lung airways than did lean controls during the pH1N1 challenge, Tregs isolated from obese mice were 40% less suppressive than Tregs isolated from lean mice. In sum, excessive inflammatory responses to pH1N1 infection, potentially owing to greater viral burden and impaired Treg function, may be a novel mechanism by which obesity contributes to greater pH1N1 severity.
Collapse
Affiliation(s)
- J. Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Sheridan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik A. Karlsson
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Age distribution of cases caused by different influenza viruses. THE LANCET. INFECTIOUS DISEASES 2013; 13:646-7. [PMID: 23886322 PMCID: PMC7128308 DOI: 10.1016/s1473-3099(13)70181-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
46
|
Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, Liu Q, Carter DM, Wrammert J, Esposito S, Principi N, Plotkin JB, Ross TM, Ahmed R, Wilson PC, Hensley SE. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. ACTA ACUST UNITED AC 2013; 210:1493-500. [PMID: 23857983 PMCID: PMC3727314 DOI: 10.1084/jem.20130212] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The specificity of H1N1 antibody responses can be shifted to epitopes near the HA receptor–binding domain after sequential infections with viral strains that share homology in this region. Human antibody responses against the 2009 pandemic H1N1 (pH1N1) virus are predominantly directed against conserved epitopes in the stalk and receptor-binding domain of the hemagglutinin (HA) protein. This is in stark contrast to pH1N1 antibody responses generated in ferrets, which are focused on the variable Sa antigenic site of HA. Here, we show that most humans born between 1983 and 1996 elicited pH1N1 antibody responses that are directed against an epitope near the HA receptor–binding domain. Importantly, most individuals born before 1983 or after 1996 did not elicit pH1N1 antibodies to this HA epitope. The HAs of most seasonal H1N1 (sH1N1) viruses that circulated between 1983 and 1996 possess a critical K133 amino acid in this HA epitope, whereas this amino acid is either mutated or deleted in most sH1N1 viruses circulating before 1983 or after 1996. We sequentially infected ferrets with a 1991 sH1N1 virus and then a pH1N1 virus. Sera isolated from these animals were directed against the HA epitope involving amino acid K133. These data suggest that the specificity of pH1N1 antibody responses can be shifted to epitopes near the HA receptor–binding domain after sequential infections with sH1N1 and pH1N1 viruses that share homology in this region.
Collapse
Affiliation(s)
- Yang Li
- Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jegaskanda S, Laurie KL, Amarasena TH, Winnall WR, Kramski M, De Rose R, Barr IG, Brooks AG, Reading PC, Kent SJ. Age-associated cross-reactive antibody-dependent cellular cytotoxicity toward 2009 pandemic influenza A virus subtype H1N1. J Infect Dis 2013; 208:1051-61. [PMID: 23812238 DOI: 10.1093/infdis/jit294] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Capolunghi F, Rosado MM, Sinibaldi M, Aranburu A, Carsetti R. Why do we need IgM memory B cells? Immunol Lett 2013; 152:114-20. [PMID: 23660557 DOI: 10.1016/j.imlet.2013.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Immunological memory is our reservoir of ready-to-use antibodies and memory B cells. Because of immunological memory a secondary infection will be very light or not occur at all. Antibodies and cells, generated in the germinal center in response to the first encounter with antigen, are highly specific, remain in the organism virtually forever and are mostly of IgG isotype. Long lived plasma cells homing to the bone marrow ensure the constant production of protective antibodies, whereas switched memory B cells proliferate and differentiate in response to secondary challenge. IgM memory B cells represent our first-line defense against infections. They are generated by a T-cell independent mechanism probably triggered by Toll-like receptor-9. They produce natural antibodies with anti-bacterial specificity and the spleen is indispensable for their maintenance. We will review the characteristics and functions of IgM memory B cells that explain their importance in the immediate protection from pathogens. IgM memory B cells, similar to mouse B-1a B cells, may be a remnant of a primitive immune system that developed in the spleen of cartilaginous fish and persisted throughout evolution notwithstanding the sophisticated tools of the adaptive immune system.
Collapse
Affiliation(s)
- Federica Capolunghi
- Department of Laboratories, Children Hospital Bambino Gesù (IRCCS), Piazza S.Onofrio 4, 00165 Rome, Italy
| | | | | | | | | |
Collapse
|
49
|
Sage LK, Fox JM, Tompkins SM, Tripp RA. Subsisting H1N1 influenza memory responses are insufficient to protect from pandemic H1N1 influenza challenge in C57BL/6 mice. J Gen Virol 2013; 94:1701-1711. [PMID: 23580424 DOI: 10.1099/vir.0.049494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2009 swine-origin pandemic H1N1 (pH1N1) influenza virus transmitted and caused disease in many individuals immune to pre-2009 H1N1 influenza virus. Whilst extensive studies on antibody-mediated pH1N1 cross-reactivity have been described, few studies have focused on influenza-specific memory T-cells. To address this, the immune response in pre-2009 H1N1 influenza-immune mice was evaluated after pH1N1 challenge and disease pathogenesis was determined. The results show that despite homology shared between pre-2009 H1N1 and pH1N1 strains, the effector memory T-cell response to pre-2009 H1N1 was generally ineffective, a finding that correlated with lung virus persistence. Additionally, pH1N1 challenge generated T-cells reactive to new pH1N1 epitopes. These studies highlight the importance of vaccinating against immunodominant T-cell epitopes to provide for a more effective strategy to control influenza virus through heterosubtypic immunity.
Collapse
Affiliation(s)
- Leo K Sage
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Julie M Fox
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Stephen M Tompkins
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Ralph A Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| |
Collapse
|
50
|
Bragstad K, Vinner L, Hansen MS, Nielsen J, Fomsgaard A. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 2013; 31:2281-8. [PMID: 23499598 DOI: 10.1016/j.vaccine.2013.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve.
Collapse
Affiliation(s)
- Karoline Bragstad
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | | | | | | | | |
Collapse
|