1
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
2
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
3
|
Lewis SA, Sutherland A, Soldevila F, Westernberg L, Aoki M, Frazier A, Maiche S, Erlewyn-Lajeunesse M, Arshad H, Leonard S, Laubach S, Dantzer JA, Wood RA, Sette A, Seumois G, Vijayanand P, Peters B. Identification of cow milk epitopes to characterize and quantify disease-specific T cells in allergic children. J Allergy Clin Immunol 2023; 152:1196-1209. [PMID: 37604312 PMCID: PMC10846667 DOI: 10.1016/j.jaci.2023.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Cow milk (CM) allergy is the most prevalent food allergy in young children in the United States and Great Britain. Current diagnostic tests are either unreliable (IgE test and skin prick test) or resource-intensive with risks (food challenges). OBJECTIVE We sought to determine whether allergen-specific T cells in CM-allergic (CMA) patients have a distinct quality and/or quantity that could potentially be used as a diagnostic marker. METHODS Using PBMCs from 147 food-allergic pediatric subjects, we mapped T-cell responses to a set of reactive epitopes in CM that we compiled in a peptide pool. This pool induced cytokine responses in in vitro cultured cells distinguishing subjects with CMA from subjects without CMA. We further used the pool to isolate and characterize antigen-specific CD4 memory T cells using flow cytometry and single-cell RNA/TCR sequencing assays. RESULTS We detected significant changes in the transcriptional program and clonality of CM antigen-specific (CM+) T cells elicited by the pool in subjects with CMA versus subjects without CMA ex vivo. CM+ T cells from subjects with CMA had increased percentages of FOXP3+ cells over FOXP3- cells. FOXP3+ cells are often equated with regulatory T cells that have suppressive activity, but CM+ FOXP3+ cells from subjects with CMA showed significant expression of interferon-responsive genes and dysregulated chemokine receptor expression compared with subjects without CMA, suggesting that these are not conventional regulatory T cells. The CM+ FOXP3+ cells were also more clonally expanded than the FOXP3- population. We were further able to use surface markers (CD25, CD127, and CCR7) in combination with our peptide pool stimulation to quantify these CM+ FOXP3+ cells by a simple flow-cytometry assay. We show increased percentages of CM+ CD127-CD25+ cells from subjects with CMA in an independent cohort, which could be used for diagnostic purposes. Looking specifically for TH2 cells normally associated with allergic diseases, we found a small population of clonally expanded CM+ cells that were significantly increased in subjects with CMA and that had high expression of TH2 cytokines and pathogenic TH2/T follicular helper markers. CONCLUSIONS Overall, these findings suggest that there are several differences in the phenotypes of CM+ T cells with CM allergy and that the increase in CM+ FOXP3+ cells is a potential diagnostic marker of an allergic state. Such markers have promising applications in monitoring natural disease outgrowth and/or the efficacy of immunotherapy that will need to be validated in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Minori Aoki
- La Jolla Institute for Immunology, San Diego, Calif
| | | | | | - Mich Erlewyn-Lajeunesse
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Hasan Arshad
- University Hospital Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephanie Leonard
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Susan Laubach
- Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, Calif
| | - Jennifer A Dantzer
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert A Wood
- Division of Allergy and Immunology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Alessandro Sette
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | | | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif
| | - Bjoern Peters
- La Jolla Institute for Immunology, San Diego, Calif; Department of Medicine, University of California San Diego, San Diego, Calif.
| |
Collapse
|
4
|
Neto TAP, Sidney J, Grifoni A, Sette A. Correlative CD4 and CD8 T-cell immunodominance in humans and mice: Implications for preclinical testing. Cell Mol Immunol 2023; 20:1328-1338. [PMID: 37726420 PMCID: PMC10616275 DOI: 10.1038/s41423-023-01083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Antigen-specific T-cell recognition is restricted by Major Histocompatibility Complex (MHC) molecules, and differences between CD4 and CD8 immunogenicity in humans and animal species used in preclinical vaccine testing are yet to be fully understood. In this study, we addressed this matter by analyzing experimentally identified epitopes based on published data curated in the Immune Epitopes DataBase (IEDB) database. We first analyzed SARS-CoV-2 spike (S) and nucleoprotein (N), which are two common targets of the immune response and well studied in both human and mouse systems. We observed a weak but statistically significant correlation between human and H-2b mouse T-cell responses (CD8 S specific (r = 0.206, p = 1.37 × 10-13); CD4 S specific (r = 0.118, p = 2.63 × 10-5) and N specific (r = 0.179, p = 2.55 × 10-4)). Due to intrinsic differences in MHC molecules across species, we also investigated the association between the immunodominance of common Human Leukocyte Antigen (HLA) alleles for which HLA transgenic mice are available, namely, A*02:01, B*07:02, DRB1*01:01, and DRB1*04:01, and found higher significant correlations for both CD8 and CD4 (maximum r = 0.702, p = 1.36 × 10-31 and r = 0.594, p = 3.04-122, respectively). Our results further indicated that some regions are commonly immunogenic between humans and mice (either H-2b or HLA transgenic) but that others are human specific. Finally, we noted a significant correlation between CD8 and CD4 S- (r = 0.258, p = 7.33 × 1021) and N-specific (r = 0.369, p = 2.43 × 1014) responses, suggesting that discrete protein subregions can be simultaneously recognized by T cells. These findings were confirmed in other viral systems, providing general guidance for the use of murine models to test T-cell immunogenicity of viral antigens destined for human use.
Collapse
Affiliation(s)
- Tertuliano Alves Pereira Neto
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
5
|
Hartman K, Steiner G, Siegel M, Looney CM, Hickling TP, Bray-French K, Springer S, Marban-Doran C, Ducret A. Expanding the MAPPs Assay to Accommodate MHC-II Pan Receptors for Improved Predictability of Potential T Cell Epitopes. BIOLOGY 2023; 12:1265. [PMID: 37759665 PMCID: PMC10525474 DOI: 10.3390/biology12091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify biotherapeutic-derived T cell epitopes. Although studies indicate that HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to using HLA-DR as the dominant HLA II genotype due to the lack of well-characterized immunoprecipitating antibodies. Here, we address this issue by testing various commercially available clones of MHC-II pan (CR3/43, WR18, and Tü39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy improves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.
Collapse
Affiliation(s)
- Katharina Hartman
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Guido Steiner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Michel Siegel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Cary M. Looney
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Timothy P. Hickling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Katharine Bray-French
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Sebastian Springer
- School of Science, Department of Biochemistry and Cell Biology, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Céline Marban-Doran
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| |
Collapse
|
6
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Abawi A, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel TJ, Peters B, Sette A. T cell reactivity to Bordetella pertussis is highly diverse regardless of childhood vaccination. Cell Host Microbe 2023; 31:1404-1416.e4. [PMID: 37490913 PMCID: PMC10528758 DOI: 10.1016/j.chom.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
The incidence of whooping cough due to Bordetella pertussis (BP) infections has increased recently. It is believed that the shift from whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines may be contributing to this rise. While T cells are key in controlling and preventing disease, nearly all knowledge relates to antigens in aP vaccines. A whole-genome mapping of human BP-specific CD4+ T cell responses was performed in healthy vaccinated adults and revealed unexpected broad reactivity to hundreds of antigens. The overall pattern and magnitude of T cell responses to aP and non-aP vaccine antigens are similar regardless of childhood vaccination, suggesting that asymptomatic infections drive the pattern of T cell reactivity in adults. Lastly, lack of Th1/Th2 polarization to non-aP vaccine antigens suggests these antigens have the potential to counteract aP vaccination Th2 bias. These findings enhance our insights into human T cell responses to BP and identify potential targets for next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo G Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandeep Kumar Dhanda
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Luise Westernberg
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Adam Abawi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Pomés A, Arruda LK. Cockroach allergy: Understanding complex immune responses to develop novel therapies. Mol Immunol 2023; 156:157-169. [PMID: 36930991 PMCID: PMC10134214 DOI: 10.1016/j.molimm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Cockroach allergy is associated with the development of asthma. The identification of cockroach allergens, which began in the 1990 s, is an ongoing process that has led to the current listing of 20 official allergen groups in the WHO/IUIS Allergen Nomenclature database. The function and structure of some of these allergens has been determined and define their natural delivery into the environment and their allergenicity. Analysis of antigenic determinants by X-ray crystallography and rational design of site-directed mutagenesis led to the identification of IgE binding sites for the design of molecules with reduced IgE reactivity and T cell modulatory capacity. New developments in recent years include component analyses of B and T cell reactivity and a recent cockroach immunotherapy trial, CRITICAL, that will contribute to understand the immune response to cockroach and to define future directions for cockroach allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Director of Basic Research, InBio, 700 Harris Street, Charlottesville, VA 22903, USA.
| | - L Karla Arruda
- Professor of Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
8
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel T, Peters B, Sette A. Genome-wide characterization of T cell responses to Bordetella pertussis reveals broad reactivity and similar polarization irrespective of childhood vaccination profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534182. [PMID: 36993748 PMCID: PMC10055406 DOI: 10.1101/2023.03.24.534182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The incidence of whooping cough (pertussis), the respiratory disease caused by Bordetella pertussis (BP) has increased in recent years, and it is suspected that the switch from whole-cell pertussis (wP) to acellular pertussis (aP) vaccines may be a contributing factor to the rise in morbidity. While a growing body of evidence indicates that T cells play a role in the control and prevention of symptomatic disease, nearly all data on human BP-specific T cells is related to the four antigens contained in the aP vaccines, and data detailing T cell responses to additional non-aP antigens, are lacking. Here, we derived a full-genome map of human BP-specific CD4+ T cell responses using a high-throughput ex vivo Activation Induced Marker (AIM) assay, to screen a peptide library spanning over 3000 different BP ORFs. First, our data show that BP specific-CD4+ T cells are associated with a large and previously unrecognized breadth of responses, including hundreds of targets. Notably, fifteen distinct non-aP vaccine antigens were associated with reactivity comparable to that of the aP vaccine antigens. Second, the overall pattern and magnitude of CD4+ T cell reactivity to aP and non-aP vaccine antigens was similar regardless of aP vs wP childhood vaccination history, suggesting that the profile of T cell reactivity in adults is not driven by vaccination, but rather is likely driven by subsequent asymptomatic or sub-clinical infections. Finally, while aP vaccine responses were Th1/Th2 polarized as a function of childhood vaccination, CD4+ T cell responses to non-aP BP antigens vaccine responses were not, suggesting that these antigens could be used to avoid the Th2 bias associated with aP vaccination. Overall, these findings enhance our understanding of human T cell responses against BP and suggest potential targets for designing next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Emily Garrigan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Lorenzo G Quiambao
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Daniel Marrama
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Eric Wang
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Aaron Sutherland
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Tod Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| |
Collapse
|
9
|
Brito-Sierra CA, Lannan MB, Siegel RW, Malherbe LP. The HLA class-II immunopeptidomes of AAV capsids proteins. Front Immunol 2022; 13:1067399. [PMID: 36605211 PMCID: PMC9807805 DOI: 10.3389/fimmu.2022.1067399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Gene therapies are using Adeno-associated viruses (AAVs) as vectors, but immune responses against the capsids pose challenges to their efficiency and safety. Helper T cell recognition of capsid-derived peptides bound to human leukocyte antigen (HLA) class II molecules is an essential step in the AAV-specific adaptive immunity. Methods Using MHC-associated peptide proteomics, we identified the HLA-DR and HLA-DQ immunopeptidomes of the capsid proteins of three different AAV serotypes (AAV2, AAV6, and AAV9) from a panel of healthy donors selected to represent a majority of allele usage. Results The identified sequences span the capsids of all serotypes, with AAV2 having the highest peptide count. For all the serotypes, multiple promiscuous peptides were identified and displayed by both HLA-DR and -DQ. However, despite high sequence homology, there were few identical peptides among AAV2, AAV6, and AAV9 immunopeptidomes, and none were promiscuous. Discussion Results from this work represent a comprehensive immunopeptidomics research of potential CD4+ T cell epitopes and provide the basis for immunosurveillance efforts for safer and more efficient AAV-based gene therapies.
Collapse
Affiliation(s)
| | | | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
10
|
Araújo LPD, Dias MEC, Scodeler GC, Santos ADS, Soares LM, Corsetti PP, Padovan ACB, Silveira NJDF, de Almeida LA. Epitope identification of SARS-CoV-2 structural proteins using in silico approaches to obtain a conserved rational immunogenic peptide. IMMUNOINFORMATICS 2022; 7:100015. [PMID: 35721890 PMCID: PMC9188263 DOI: 10.1016/j.immuno.2022.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 10/29/2022]
|
11
|
Changes in the Sensitization Pattern to Alternaria alternata Allergens in Patients Treated with Alt a 1 Immunotherapy. J Fungi (Basel) 2021; 7:jof7110974. [PMID: 34829261 PMCID: PMC8618185 DOI: 10.3390/jof7110974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Alternaria alternata is the most important allergenic fungus, with up to 20% of allergic patients affected. The sensitization profile of patients sensitized to A. alternata and how it changes when treated with immunotherapy is not known. Our objective is to determine the allergen recognition pattern of allergic patients to A. alternata and to study its association to the parameters studied in a clinical trial recently published. Sera of 64 patients from the clinical trial of immunotherapy with native major allergen Alt a 1 were analyzed by immunoblotting; 98. 4% of the patients recognized Alt a 1. The percentage of recognition for Alt a 3, Alt a 4, and/or Alt a 6, Alt a 7, Alt a 8, Alt a 10 and/or Alt a 15 was 1.6%, 21.9%, 12.5%, 12.5%, and 12.5% respectively. Of the 64 patients, 45 (70.3%) only recognized Alt a 1 among the allergens present in the A. alternata extract. Immunotherapy with Alt a 1 desensitizes treated patients, reducing their symptoms and medication consumption through the elimination of Alt a 1 sensitization, which is no longer present in the immunoblotting of some patients. There may be gender differences in the pattern of sensitization to A. alternata allergens, among others.
Collapse
|
12
|
Ramchandani R, Hossenbaccus L, Ellis AK. Immunoregulatory T cell epitope peptides for the treatment of allergic disease. Immunotherapy 2021; 13:1283-1291. [PMID: 34558985 DOI: 10.2217/imt-2021-0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allergic diseases are type 2 inflammatory reactions with an increasing worldwide prevalence, making the search for new therapeutic options pertinent. Allergen immunotherapy is the only disease-modifying approach for allergic rhinitis, though it can result in systemic reactions. Recently, peptide immunotherapy (PIT), involving T-cell epitope peptides that bind to major histocompatibility complexes, have been developed. It is speculated that they can induce T helper cell type 2 anergy, Treg cell upregulation or immune deviation. Promising results in cat dander, honeybee venom, Japanese cedar pollen, grass pollens, ragweed and house dust mite clinical trials have shown safety, efficacy and tolerability to PIT. Hence, PIT may hold the potential to change the treatment algorithm for allergic rhinitis.
Collapse
Affiliation(s)
- Rashi Ramchandani
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| | - Lubnaa Hossenbaccus
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| | - Anne K Ellis
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| |
Collapse
|
13
|
Spergel AKR, Sever ML, Johnson J, Gill MA, Schulten V, Frazier A, Kercsmar CM, Lovinsky-Desir S, Searing DA, Sette A, Shao B, Teach SJ, Gern JE, Busse WW, Togias A, Wood RA, Liu AH. Development of nasal allergen challenge with cockroach in children with asthma. Pediatr Allergy Immunol 2021; 32:971-979. [PMID: 33606312 PMCID: PMC8503840 DOI: 10.1111/pai.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nasal allergen challenge (NAC) could be a means to assess indication and/or an outcome of allergen-specific therapies, particularly for perennial allergens. NACs are not commonly conducted in children with asthma, and cockroach NACs are not well established. This study's objective was to identify a range of German cockroach extract doses that induce nasal symptoms and to assess the safety of cockroach NAC in children with asthma. METHODS Ten adults (18-37 years) followed by 25 children (8-14 years) with well-controlled, persistent asthma and cockroach sensitization underwent NAC with diluent followed by up to 8 escalating doses of cockroach extract (0.00381-11.9 µg/mL Bla g 1). NAC outcome was determined by Total Nasal Symptom Score (TNSS) and/or sneeze score. Cockroach allergen-induced T-cell activation and IL-5 production were measured in peripheral blood mononuclear cells. RESULTS 67% (6/9) of adults and 68% (17/25) of children had a positive NAC at a median response dose of 0.120 µg/mL [IQR 0.0380-0.379 µg/mL] of Bla g 1. Additionally, three children responded to diluent alone and did not receive any cockroach extract. Overall, 32% (11/34) were positive with sneezes alone, 15% (5/34) with TNSS alone, and 21% (7/34) with both criteria. At baseline, NAC responders had higher cockroach-specific IgE (P = .03), lower cockroach-specific IgG/IgE ratios (children, P = .002), and increased cockroach-specific IL-5-producing T lymphocytes (P = .045). The NAC was well tolerated. CONCLUSION We report the methodology of NAC development for children with persistent asthma and cockroach sensitization. This NAC could be considered a tool to confirm clinically relevant sensitization and to assess responses in therapeutic studies.
Collapse
Affiliation(s)
| | | | | | - Michelle A Gill
- Departments of Pediatrics, Internal Medicine, and Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Carolyn M Kercsmar
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Stephanie Lovinsky-Desir
- Department of Pediatrics, Division of Pulmonary Medicine, Columbia University Irving Medical Center, New York, NY
| | - Dan A. Searing
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Baomei Shao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - James E. Gern
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - William W. Busse
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew H. Liu
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
14
|
Yachnin BJ, Mulligan VK, Khare SD, Bailey-Kellogg C. MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform. J Chem Inf Model 2021; 61:2368-2382. [PMID: 33900750 PMCID: PMC8225355 DOI: 10.1021/acs.jcim.1c00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As non-"self" macromolecules, biotherapeutics can trigger an immune response that can reduce drug efficacy, require patients to be taken off therapy, or even cause life-threatening reactions. To enable the flexible and facile design of protein biotherapeutics while reducing the prevalence of T-cell epitopes that drive immune recognition, we have integrated into the Rosetta protein design suite a new scoring term that allows design protocols to account for predicted or experimentally identified epitopes in the optimized objective function. This flexible scoring term can be used in any Rosetta design trajectory, can be targeted to specific regions of a protein, and can be readily extended to work with a variety of epitope predictors. By performing extensive design runs with varied design parameter choices for three case study proteins as well as a larger diverse benchmark, we show that the incorporation of this scoring term enables the effective exploration of an alternative, deimmunized sequence space to discover diverse proteins that are potentially highly deimmunized while retaining physical and chemical qualities similar to those yielded by equivalent nondeimmunizing sequence design protocols.
Collapse
Affiliation(s)
- Brahm J. Yachnin
- Department of Chemistry and Chemical Biology and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Vikram Khipple Mulligan
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | |
Collapse
|
15
|
Yu ED, Westernberg L, Grifoni A, Frazier A, Sutherland A, Wang E, Peters B, da Silva Antunes R, Sette A. B cells modulate mouse allergen-specific T cells in nonallergic laboratory animal-care workers. JCI Insight 2021; 6:145199. [PMID: 33616085 PMCID: PMC7934936 DOI: 10.1172/jci.insight.145199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms of allergen-specific immune modulation in nonallergic individuals is key to recapitulate immune tolerance and to develop novel allergy treatments. Herein, we characterized mouse-specific T cell responses in nonallergic laboratory animal-care workers before and after reexposure to mice. PBMCs were collected and stimulated with developed peptide pools identified from high-molecular-weight fractions of mouse allergen extracts. Sizable CD4 T cell responses were noted and were temporarily decreased in most subjects upon reexposure, with the magnitude of decrease positively correlated with time of reexposure but not the duration of the break. Interestingly, the suppression was specific to mouse allergens without affecting responses of bystander antigens. Further, PBMC fractioning studies illustrated that the modulation is unlikely from T cells, while B cell depletion and exchange reversed the suppression of responses, suggesting that B cells may be the key modulators. Increased levels of regulatory cytokines (IL-10 and TGF-β1) in the cell culture supernatant and plasma mouse-specific IgG4 were also observed after reexposure, consistent with B cell–mediated modulation mechanisms. Overall, these results suggest that nonallergic status is achieved by an active, time-related, allergen-specific, B cell-dependent regulatory process upon reexposure, the mechanisms of which should be detailed by further molecular studies.
Collapse
Affiliation(s)
- Esther Dawen Yu
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Alba Grifoni
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - April Frazier
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Eric Wang
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Pomés A, Schulten V, Glesner J, da Silva Antunes R, Sutherland A, Bacharier LB, Beigelman A, Busse P, Frazier A, Sette A. IgE and T Cell Reactivity to a Comprehensive Panel of Cockroach Allergens in Relation to Disease. Front Immunol 2021; 11:621700. [PMID: 33643303 PMCID: PMC7902920 DOI: 10.3389/fimmu.2020.621700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023] Open
Abstract
IgE sensitization to cockroach allergens is associated with development of allergic diseases, such as asthma. To understand the relevance of different cockroach allergens for diagnosis and immunotherapy, a comprehensive analysis of IgE antibody levels and T cell reactivity to an expanded set of cockroach allergens and their relationship to disease was performed in a cohort of USA cockroach sensitized patients. IgE antibody levels to recombinant chitinase and hemocyanin were measured for 23 subjects by custom-made ImmunoCAPs and compared with IgE levels to eight cockroach allergens we previously reported for the same cohort. Ex vivo T cell activation (Ox40/PDL-1 expression) of PBMCs stimulated with peptide pools derived from 11 German cockroach proteins, including nine official cockroach allergens, plus chitinase and vitellogenin, was determined by flow cytometry. IgE prevalences to chitinase (17%) and hemocyanin (44%) were comparable to values for the other eight allergens that we previously reported (21-57%). Hemocyanin (Bla g 3), was a major allergen (one to which more than 50% of patients with an allergy to its source react) for a sub-group of 15 highly cockroach-sensitized subjects (IgE > 3.5 kUA/L: 53%). Chitinase was officially named as new allergen Bla g 12. Cockroach-specific IgE levels in plasma showed excellent correlation with the sum of 10 allergen-specific IgE (r = 0.94, p < 0.001). T cell reactivity to 11 proteins was highly variable among subjects, the highest being for vitellogenin, followed by Bla g 3. The main finding was that cockroach allergen-specific IgE and T cell reactivity patterns were unique per subject, and lacked immunodominant allergens and correlation with clinical phenotype/disease severity in the studied cohort. Knowing the subject-specific B/T cell reactivity profiles to a comprehensive panel of cockroach allergens will contribute to diagnosis of cockroach allergy and will be important for planning and assessing allergen immunotherapy outcomes, according to the allergen content in therapeutic cockroach extracts.
Collapse
Affiliation(s)
- Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Véronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Jill Glesner
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Tel Aviv, Israel
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. CELL REPORTS MEDICINE 2021; 2:100204. [PMID: 33521695 PMCID: PMC7837622 DOI: 10.1016/j.xcrm.2021.100204] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens and precisely measure virus-specific CD4+ and CD8+ T cells, we study epitope-specific T cell responses of 99 convalescent coronavirus disease 2019 (COVID-19) cases. The SARS-CoV-2 proteome is probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of human leukocyte antigen (HLA) alleles for class II responses. For HLA class I, we study an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identify several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance are observed, which differ for CD4+ T cells, CD8+ T cells, and antibodies. The class I and class II epitopes are combined into epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4+ and CD8+ T cells.
Collapse
|
18
|
Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, Mateus J, da Silva Antunes R, Moore E, Rubiro P, Methot N, Phillips E, Mallal S, Frazier A, Rawlings SA, Greenbaum JA, Peters B, Smith DM, Crotty S, Weiskopf D, Grifoni A, Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33330869 DOI: 10.1101/2020.12.08.416750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens, and precisely measure virus-specific CD4 + and CD8 + T cells, we studied epitope-specific T cell responses of approximately 100 convalescent COVID-19 cases. The SARS-CoV-2 proteome was probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of HLA alleles for class II responses. For HLA class I, we studied an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identified several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance were observed, which differed for CD4 + T cells, CD8 + T cells, and antibodies. The class I and class II epitopes were combined into new epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4 + and CD8 + T cells.
Collapse
|
19
|
Identification and Characterization of CD4 + T Cell Epitopes after Shingrix Vaccination. J Virol 2020; 94:JVI.01641-20. [PMID: 32999027 DOI: 10.1128/jvi.01641-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infections with varicella-zoster virus (VZV) are associated with a range of clinical manifestations. Primary infection with VZV causes chicken pox. The virus remains latent in neurons, and it can reactivate later in life, causing herpes zoster (HZ). Two different vaccines have been developed to prevent HZ; one is based on a live attenuated VZV strain (Zostavax), and the other is based on adjuvanted gE recombinant protein (Shingrix). While Zostavax efficacy wanes with age, Shingrix protection retains its efficacy in elderly subjects (individuals 80 years of age and older). In this context, it is of much interest to understand if there is a role for T cell immunity in the differential clinical outcome and if there is a correlate of protection between T cell immunity and Shingrix efficacy. In this study, we characterized the Shingrix-specific ex vivo CD4 T cell responses in the context of natural exposure and HZ vaccination using pools of predicted epitopes. We show that T cell reactivity following natural infection and Zostavax vaccination dominantly targets nonstructural (NS) proteins, while Shingrix vaccination redirects dominant reactivity to target gE. We mapped the gE-specific responses following Shingrix vaccination to 89 different gE epitopes, 34 of which accounted for 80% of the response. Using antigen presentation assays and single HLA molecule-transfected lines, we experimentally determined HLA restrictions for 94 different donor/peptide combinations. Finally, we used our results as a training set to assess strategies to predict restrictions based on measured or predicted HLA binding and the corresponding HLA types of the responding subjects.IMPORTANCE Understanding the T cell profile associated with the protection observed in elderly vaccinees following Shingrix vaccination is relevant to the general definition of correlates of vaccine efficacy. Our study enables these future studies by clarifying the patterns of immunodominance associated with Shingrix vaccination, as opposed to natural infection or Zostavax vaccination. Identification of epitopes recognized by Shingrix-induced CD4 T cells and their associated HLA restrictions enables the generation of tetrameric staining reagents and, more broadly, the capability to characterize the specificity, magnitude, and phenotype of VZV-specific T cells.
Collapse
|
20
|
Koşaloğlu-Yalçın Z, Sidney J, Chronister W, Peters B, Sette A. Comparison of HLA ligand elution data and binding predictions reveals varying prediction performance for the multiple motifs recognized by HLA-DQ2.5. Immunology 2020; 162:235-247. [PMID: 33064841 PMCID: PMC7808151 DOI: 10.1111/imm.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Binding prediction tools are commonly used to identify peptides presented on MHC class II molecules. Recently, a wealth of data in the form of naturally eluted ligands has become available and discrepancies between ligand elution data and binding predictions have been reported. Quantitative metrics for such comparisons are currently lacking. In this study, we assessed how efficiently MHC class II binding predictions can identify naturally eluted peptides, and investigated instances with discrepancies between the two methods in detail. We found that, in general, MHC class II eluted ligands are predicted to bind to their reported restriction element with high affinity. But, for several studies reporting an increased number of ligands that were not predicted to bind, we found that the reported MHC restriction was ambiguous. Additional analyses determined that most of the ligands predicted to not bind, are predicted to bind other co‐expressed MHC class II molecules. For selected alleles, we addressed discrepancies between elution data and binding predictions by experimental measurements and found that predicted and measured affinities correlate well. For DQA1*05:01/DQB1*02:01 (DQ2.5) however, binding predictions did miss several peptides that were determined experimentally to be binders. For these peptides and several known DQ2.5 binders, we determined key residues for conferring DQ2.5 binding capacity, which revealed that DQ2.5 utilizes two different binding motifs, of which only one is predicted effectively. These findings have important implications for the interpretation of ligand elution data and for the improvement of MHC class II binding predictions.
Collapse
Affiliation(s)
| | - John Sidney
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020; 370:89-94. [PMID: 32753554 PMCID: PMC7574914 DOI: 10.1126/science.abd3871] [Citation(s) in RCA: 825] [Impact Index Per Article: 206.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.
Collapse
Affiliation(s)
- Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zoe C Burger
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Marshall Lammers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alena J Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
24
|
Mazor R, Pastan I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front Immunol 2020; 11:1261. [PMID: 32695104 PMCID: PMC7333791 DOI: 10.3389/fimmu.2020.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotoxins are cytolytic fusion proteins developed for cancer therapy, composed of an antibody fragment that binds to a cancer cell and a protein toxin fragment that kills the cell. Pseudomonas exotoxin A (PE) is a potent toxin that is used for the killing moiety in many immunotoxins. Moxetumomab Pasudotox (Lumoxiti) contains an anti-CD22 Fv and a 38 kDa portion of PE. Lumoxiti was discovered in the Laboratory of Molecular Biology at the U.S. National Cancer Institute and co-developed with Medimmune/AstraZeneca to treat hairy cell leukemia. In 2018 Lumoxiti was approved by the US Food and Drug Administration for the treatment of drug-resistant Hairy Cell Leukemia. Due to the bacterial origin of the killing moiety, immunotoxins containing PE are highly immunogenic in patients with normal immune systems, but less immunogenic in patients with hematologic malignancies, whose immune systems are often compromised. LMB-100 is a de-immunized variant of the toxin with a humanized antibody that targets mesothelin and a PE toxin that was rationally designed for diminished reactivity with antibodies and B cell receptors. It is now being evaluated in clinical trials for the treatment of mesothelioma and pancreatic cancer and is showing somewhat diminished immunogenicity compared to its un modified parental counterpart. Here we review the immunogenicity of the original and de-immunized PE immunotoxins in mice and patients, the development of anti-drug antibodies (ADAs), their impact on drug availability and their effect on clinical efficacy. Efforts to mitigate the immunogenicity of immunotoxins and its impact on immunogenicity will be described including rational design to identify, remove, or suppress B cell or T cell epitopes, and combination of immunotoxins with immune modulating drugs.
Collapse
Affiliation(s)
- Ronit Mazor
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Abstract
Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.
Collapse
Affiliation(s)
- Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 Buenos Aires, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
26
|
Gong JJ, Margolis DJ, Monos DS. Predictive in silico binding algorithms reveal HLA specificities and autoallergen peptides associated with atopic dermatitis. Arch Dermatol Res 2020; 312:647-656. [PMID: 32152724 DOI: 10.1007/s00403-020-02059-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a skin disease that results from a combination of skin barrier dysfunction and immune dysregulation. The immune dysregulation is often associated with IgE sensitivity. There is also evidence that autoallergens Hom s 1, 2, 3, and 4 play a role in AD; it is possible that patients with specific HLA subtypes are predisposed to autoreactivity due to increased presentation of autoallergen peptides. The goal of our study was to use in silico epitope prediction platforms as an approach to identify HLA subtypes that may preferentially bind autoallergen peptides and are thus candidates for further study. Considering the previously described association of DRB1 alleles with AD and progression of disease, emphasis was placed on DRB1. Certain DRB1 alleles (08:04, 11:01, and 11:04) were identified by both algorithms to bind a significant percent of the generated autoallergen peptides. Conversely, autoallergen core peptide sequences FRQLSHRFH and IRAKLRLQA (Hom s 1), IRKSKNILF (Hom s 2), FKWVPVTDS and MAAIEKVRK (Hom s 3), and FRYFATLKV (Hom s 4) were predicted to bind many DRB1 alleles and, thus, may play a role in the pathogenesis of AD. Our findings provide candidate DRB1 alleles and autoallergen epitopes that will guide future studies exploring the relationship between DRB1 subtype and autoreactivity in AD. A similar approach can be used for any antigen that has been associated with an IgE response and AD.
Collapse
Affiliation(s)
- Jan J Gong
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Margolis
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dimitrios S Monos
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Smith MR, Bugada LF, Wen F. Rapid microsphere-assisted peptide screening (MAPS) of promiscuous MHCII-binding peptides in Zika virus envelope protein. AIChE J 2020; 66:e16697. [PMID: 33343002 PMCID: PMC7747769 DOI: 10.1002/aic.16697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
Abstract
Despite promising developments in computational tools, peptide-class II MHC (MHCII) binding predictors continue to lag behind their peptide-class I MHC counterparts. Consequently, peptide-MHCII binding is often evaluated experimentally using competitive binding assays, which tend to sacrifice throughput for quantitative binding detail. Here, we developed a high-throughput semiquantitative peptide-MHCII screening strategy termed microsphere-assisted peptide screening (MAPS) that aims to balance the accuracy of competitive binding assays with the throughput of computational tools. Using MAPS, we screened a peptide library from Zika virus envelope (E) protein for binding to four common MHCII alleles (DR1, DR4, DR7, DR15). Interestingly, MAPS revealed a significant overlap between peptides that promiscuously bind multiple MHCII alleles and antibody neutralization sites. This overlap was also observed for rotavirus outer capsid glycoprotein VP7, suggesting a deeper relationship between B cell and CD4+ T cell specificity which can facilitate the design of broadly protective vaccines to Zika and other viruses.
Collapse
Affiliation(s)
- Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Heide J, Wildner NH, Ackermann C, Wittner M, Marget M, Sette A, Sidney J, Jacobs T, Schulze Zur Wiesch J. Detection of EXP1-Specific CD4+ T Cell Responses Directed Against a Broad Range of Epitopes Including Two Promiscuous MHC Class II Binders During Acute Plasmodium falciparum Malaria. Front Immunol 2020; 10:3037. [PMID: 32038611 PMCID: PMC6993587 DOI: 10.3389/fimmu.2019.03037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background: T cells are thought to play a major role in conferring immunity against malaria. This study aimed to comprehensively define the breadth and specificity of the Plasmodium falciparum (P. falciparum)-specific CD4+ T cell response directed against the exported protein 1 (EXP1) in a cohort of patients diagnosed with acute malaria. Methods: Peripheral blood mononuclear cells of 44 patients acutely infected with P. falciparum, and of one patient infected with P. vivax, were stimulated and cultured in vitro with an overlapping set of 31 P. falciparum-specific 13-17-mer peptides covering the entire EXP1 sequence. EXP1-specific T cell responses were analyzed by ELISPOT and intracellular cytokine staining for interferon-γ production after re-stimulation with individual peptides. For further characterization of the epitopes, in silico and in vitro human leukocyte antigen (HLA) binding studies and fine mapping assays were performed. Results: We detected one or more EXP1-specific CD4+ T cell responses (mean: 1.09, range 0–5) in 47% (21/45) of our patients. Responses were directed against 15 of the 31 EXP1 peptides. Peptides EXP1-P13 (aa60-74) and P15 (aa70-85) were detected by 18% (n = 8) and 27% (n = 12) of the 45 patients screened. The optimal length, as well as the corresponding most likely HLA-restriction, of each of these two peptides was assessed. Interestingly, we also identified one CD4+ T cell response against peptide EXP1-P15 in a patient who was infected with P. vivax but not falciparum. Conclusions: This first detailed characterization of novel EXP1-specific T cell epitopes provides important information for future analysis with major histocompatibility complex-multimer technology as well as for immunomonitoring and vaccine design.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nils H Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Matthias Marget
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
30
|
Pomés A, Schulten V. Cross-reactivity in allergy: A double-edged sword. Allergy 2020; 75:9-11. [PMID: 31325165 PMCID: PMC6952562 DOI: 10.1111/all.13993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, USA
| | | |
Collapse
|
31
|
Grifoni A, Moore E, Voic H, Sidney J, Phillips E, Jadi R, Mallal S, De Silva AD, De Silva AM, Peters B, Weiskopf D, Sette A. Characterization of Magnitude and Antigen Specificity of HLA-DP, DQ, and DRB3/4/5 Restricted DENV-Specific CD4+ T Cell Responses. Front Immunol 2019; 10:1568. [PMID: 31333679 PMCID: PMC6624677 DOI: 10.3389/fimmu.2019.01568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Dengue Virus (DENV) associated disease is a major public health problem. Assessment of HLA class II restricted DENV-specific responses is relevant for immunopathology and definition of correlates of protection. While previous studies characterized responses restricted by the HLA-DRB1 locus, the responses associated with other class II loci have not been characterized to date. Accordingly, we mapped HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4 T cell epitopes in PBMCs derived from the DENV endemic region Sri Lanka. Methods: We studied 12 DP, DQ, and DRB3/4/5 alleles that are commonly expressed and provide worldwide coverage >82% for each of the loci analyzed and >99% when combined. CD4+ T cells purified by negative selection were stimulated with pools of HLA-predicted binders for 2 weeks with autologous APC. Epitope reactive T cells were enumerated using IFNγ ELISPOT assay. This strategy was previously applied to identify DRB1 restricted epitopes. In parallel, membrane expression levels of HLA-DR, DP, and DQ proteins was assessed using flow cytometry. Results: Epitopes were identified for all DP, DQ, and DRB3/4/5 allelic variants albeit with magnitudes significantly lower than the ones previously observed for the DRB1 locus. This was in line with lower membrane expression of HLA-DP and DQ molecules on the PBMCs tested, as compared to HLA-DR. Significant differences between loci were observed in antigen immunodominance. Capsid responses were dominant for DRB1/3/4/5 and DP alleles but negligible for the DQ alleles. NS3 responses were dominant in the case of DRB1/3/4/5 and DQ but absent in the case of DP. NS1 responses were prominent in the case of the DP alleles, but negligible in the case of DR and DQ. In terms of epitope specificity, repertoire was largely overlapping between DRB1 and DRB3/4/5, while DP and DQ loci recognized largely distinct epitope sets. Conclusion: The HLA-DP, DQ, and DRB3/4/5 loci mediate DENV-CD4 specific immune responses of lower magnitude as compared to HLA-DRB1, consistent with their lower levels of expression. The responses are associated with distinct and characteristic patterns of immunodominance, and variable epitope overlap across loci.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eugene Moore
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hannah Voic
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Ramesh Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Genetech Research Institute, Colombo, Sri Lanka
| | - Aravinda M De Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
32
|
Chen M, Sutherland A, Birrueta G, Laubach S, Leonard S, Peters B, Schulten V. Analysis of Allergen-Specific T Cell and IgE Reactivity to Different Preparations of Cow's Milk-Containing Food Extracts. Cells 2019; 8:E667. [PMID: 31269726 PMCID: PMC6679079 DOI: 10.3390/cells8070667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND cow's milk allergy (CM) is among the most common food allergies in young children and is often outgrown by adulthood. Prior to developing a tolerance to CM, a majority of CM-allergic children may tolerate extensively-heated CM. This study aims to characterize the IgE- and T cell-reactivity to unheated CM and the progressively more heated CM-containing foods. METHODS CM-containing food extracts from muffin, baked cheese, custard and raw, pasteurized CM commercial extract were tested for skin prick test reactivity, IgE binding and T cell reactivity as assessed by IL-5 and IFNγ production. RESULTS the skin prick test (SPT) reactivity was significantly decreased to muffin extract compared to raw, pasteurized CM. Both IgE- and T-cell reactivity were readily detectable against food extracts from all forms of CM. Western blot analysis of IgE reactivity revealed variability between extracts that was protein-specific. T cell-reactivity was detected against all four extracts with no significant difference in IL-5 or IFNγ production between them. CONCLUSION our data indicate that despite reduced clinical reactivity, extracts from heated CM-containing foods retain immunogenicity when tested in vitro, particularly at the T cell level.
Collapse
Affiliation(s)
- Meng Chen
- Division of Pediatric Allergy & Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92123, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Susan Laubach
- Division of Pediatric Allergy & Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92123, USA
| | - Stephanie Leonard
- Division of Pediatric Allergy & Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92123, USA
| | - Bjoern Peters
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
33
|
Lindestam Arlehamn CS, Pham J, Alcalay RN, Frazier A, Shorr E, Carpenter C, Sidney J, Dhanwani R, Agin-Liebes J, Garretti F, Amara AW, Standaert DG, Phillips EJ, Mallal SA, Peters B, Sulzer D, Sette A. Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:84-92. [PMID: 31085590 PMCID: PMC6581570 DOI: 10.4049/jimmunol.1801506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Tau protein is found to be aggregated and hyperphosphorylated (p-tau) in many neurologic disorders, including Parkinson disease (PD) and related parkinsonisms, Alzheimer disease, traumatic brain injury, and even in normal aging. Although not known to produce autoimmune responses, we hypothesized that the appearance of aggregated tau and p-tau with disease could activate the immune system. We thus compared T cell responses to tau and p-tau-derived peptides between PD patients, age-matched healthy controls, and young healthy controls (<35 y old; who are less likely to have high levels of tau aggregates). All groups exhibited CD4+ T cell responses to tau-derived peptides, which were associated with secretion of IFN-γ, IL-5, and/or IL-4. The PD and control participants exhibited a similar magnitude and breadth of responses. Some tau-derived epitopes, consisting of both unmodified and p-tau residues, were more highly represented in PD participants. These results were verified in an independent set of PD and control donors (either age-matched or young controls). Thus, T cells recognizing tau epitopes escape central and peripheral tolerance in relatively high numbers, and the magnitude and nature of these responses are not modulated by age or PD disease.
Collapse
Affiliation(s)
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Evan Shorr
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Julian Agin-Liebes
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Francesca Garretti
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Elizabeth J Phillips
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Simon A Mallal
- Vanderbilt University School of Medicine, Nashville, TN 37235
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; and
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
34
|
Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 2019; 20:241. [PMID: 31092185 PMCID: PMC6521430 DOI: 10.1186/s12859-019-2864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Repertoire sequencing is enabling deep explorations into the cellular immune response, including the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility complex (MHC)-presented epitopes from putative antigens, and thus encode the determinants of recognition. Results We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3 repertoires by antigen specificity, and distinguishing general pathologies. Conclusion We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely to share specificities. Electronic supplementary material The online version of this article (10.1186/s12859-019-2864-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neerja Thakkar
- Department of Computer Science, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
35
|
Characterization and epitope identification of the T cell response in non-allergic individuals exposed to mouse allergen. World Allergy Organ J 2019; 12:100026. [PMID: 31044023 PMCID: PMC6479169 DOI: 10.1016/j.waojou.2019.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background Exposure to airborne allergens is a frequent trigger of respiratory allergy and asthma in atopic individuals. While allergic patients suffer hypersensitivity reactions to these allergens, non-allergic individuals do not exhibit clinical symptoms despite environmental exposure to these ubiquitous allergen sources. The aim of this study was to characterize T cell responses in non-allergic laboratory workers, who are heavily exposed to mice allergens (Exposed Non-Allergics, ENA) and compare this data to previously published T cell responses measured in mouse (MO)-allergic patients. METHODS: Peripheral mononuclear cells (PBMC) from ENA subjects were expanded for 2 weeks in vitro with mouse urine extract and screened for IFNγ and IL-5 cytokine production in response to mouse antigen-derived peptides by ELISPOT. Ex vivo T cell reactivity in the ENA cohort was performed after 6hr stimulation with peptide pools by intracellular staining of CD154. Results Vigorous responses were detected, associated with 147 epitopes derived from 16 mouse antigens. As expected, responses in ENA subjects were somewhat lower than those observed in MO-allergics for both responder frequency and overall response magnitude. While responses in allergics were polarized towards IL-5 production and associated with low IFNγ production, ENA responses were not polarized. The composition of targeted antigens and epitopes was overall similar between the two cohorts, with the majority of T cell reactivity directed against Mus m 1 and other major urinary proteins. However, kappa-casein precursor and odorant binding protein Ib were more abundantly recognized in MO-allergics compared to ENA subjects. Additionally, T cell responses against oligopeptides derived from the low molecular weight fraction of mouse urine were also assessed. Interestingly, no difference in the response frequency, magnitude or polarization between MO-allergic and ENA individuals was observed. Finally, assessment of ex vivo T cell activation also revealed T cell reactivity in the ENA cohort, with a non-significant trend for lower responses compared to MO-allergics. Conclusion Exposure to mouse induces potent T cell responses in non-allergic individuals, targeting similar epitopes as seen in allergic patients.
Collapse
|
36
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Moore E, Grifoni A, Weiskopf D, Schulten V, Arlehamn CSL, Angelo M, Pham J, Leary S, Sidney J, Broide D, Frazier A, Phillips E, Mallal S, Mack SJ, Sette A. Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA. Hum Immunol 2018; 79:821-822. [PMID: 30278218 DOI: 10.1016/j.humimm.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 496 healthy adult donors from San Diego, California, to characterize allele frequencies in support of studies of T cell responses to common allergens. Deviations from Hardy Weinberg proportions were detected at each locus except A and C. Several alleles were found in more than 15% of individuals, including the class II alleles DPB1∗02:01, DPB1∗04:01, DQA1∗01:02, DQA1∗05:01, DQB1∗03:01, and the class I allele A∗02:01. Genotype data will be available in the Allele Frequencies Net Database (AFND 3562).
Collapse
Affiliation(s)
- Eugene Moore
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Veronique Schulten
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | | - Michael Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia; Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven J Mack
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Paul S, Karosiene E, Dhanda SK, Jurtz V, Edwards L, Nielsen M, Sette A, Peters B. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands. Front Immunol 2018; 9:1795. [PMID: 30127785 PMCID: PMC6087742 DOI: 10.3389/fimmu.2018.01795] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Vanessa Jurtz
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
39
|
Azoury ME, Filì L, Bechara R, Scornet N, de Chaisemartin L, Weaver RJ, Claude N, Maillere B, Parronchi P, Joseph D, Pallardy M. Identification of T-cell epitopes from benzylpenicillin conjugated to human serum albumin and implication in penicillin allergy. Allergy 2018; 73:1662-1672. [PMID: 29355985 DOI: 10.1111/all.13418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND There is in vitro evidence that T cells from allergic patients react to benzylpenicillin-human serum albumin (BP-HSA) bioconjugates. Our group has recently shown the existence of naïve CD4+ T cells recognizing BP-HSA in healthy donors. However, BP-haptenated peptides from HSA participating in the immunization of allergic patients have never been identified. The purpose of the present study is to identify immunodominant BP-haptenated peptides from HSA involved in immunization of patients to BP and to refine the frequency calculation of naïve CD4+ T cells recognizing BP. METHODS Co-cultures were established with CD4+ T cells from non-allergic donors and mature autologous dendritic cells (DCs) loaded with BP-HSA or BP-haptenated peptides from HSA. The CD4+ T-cell response specific for BP-HSA or for individual BP-haptenated peptides was measured using an interferon-γ (IFN-γ) ELISpot assay. The frequency of BP-specific CD4+ T cells was then calculated using the Poisson distribution. BP-HSA and BP-haptenated peptides recognition by allergic patients was evaluated on peripheral blood mononuclear cells (PBMCs) using a lymphocyte transformation test (LTT). RESULTS Results showed that BP-HSA and BP-haptenated peptides were recognized by naïve T cells from 15/16 and 13/14 tested healthy donors, respectively. Most donors responded to 3 peptides with BP covalently bound on lysines 159, 212, and 525. Two of these benzylpenicilloylated peptides (lysines 159 and 525) were also found to induce PBMCs proliferation in patients with allergic reaction to penicillins. CONCLUSION This study identifies and characterizes for the first time the BP-haptenated peptides from HSA involved in the immunization of patients to penicillins.
Collapse
Affiliation(s)
- M. E. Azoury
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - L. Filì
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - R. Bechara
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - N. Scornet
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - L. de Chaisemartin
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
- Hopital Bichat; Laboratoire d'Immunologie; APHP; Paris France
| | - R. J. Weaver
- Institut de Recherches Internationales Servier; Suresnes France
| | - N. Claude
- Institut de Recherches Internationales Servier; Suresnes France
| | | | - P. Parronchi
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - D. Joseph
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - M. Pallardy
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|
40
|
Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A. Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 2018; 9:1369. [PMID: 29963059 PMCID: PMC6010533 DOI: 10.3389/fimmu.2018.01369] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an “immunogenicity score.” We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
41
|
Mazor R, King EM, Pastan I. Strategies to Reduce the Immunogenicity of Recombinant Immunotoxins. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1736-1743. [PMID: 29870741 DOI: 10.1016/j.ajpath.2018.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) are genetically engineered proteins being developed to treat cancer. They are composed of an Fv that targets a cancer antigen and a fragment of a bacterial toxin that kills tumor cells. Because the toxin is a foreign protein, it is immunogenic. The clinical success of RITs in patients with a normal immune system is limited by their immunogenicity. In this review, we discuss our progress in therapeutic protein deimmunization and the balancing act between immunogenicity and therapeutic potency. One approach is to prevent the activation of B cells by mapping and elimination of B-cell epitopes. A second approach is to prevent helper T-cell activation by interfering with major histocompatibility complex II presentation or T-cell recognition. Immunizing mice with RITs that were deimmunized by elimination of the murine B- or T-cell epitopes showed that both approaches are effective. Another approach to control immunogenicity is to modify the host immune system. Nanoparticles containing synthetic vaccine particles encapsulating rapamycin can induce immune tolerance and prevent anti-drug antibody formation. This treatment restores RIT anti-tumor activity that is otherwise neutralized because of immunogenicity.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily M King
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
42
|
Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes. PLoS One 2018; 13:e0196551. [PMID: 29734356 PMCID: PMC5937769 DOI: 10.1371/journal.pone.0196551] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens) were retrieved from the Immune Epitope Database (IEDB). Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens) or increased (inflammatory; e.g. Dengue and West Nile viruses) likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen epitopes, and lack of these sequences might conversely be associated with increased likelihood of T cell reactivity against the cockroach epitopes. Taken together this study suggests that microbiome sequence similarity influences immune reactivity to homologous epitopes encoded by pathogens, allergens and auto-antigens.
Collapse
|
43
|
da Silva Antunes R, Pham J, McMurtrey C, Hildebrand WH, Phillips E, Mallal S, Sidney J, Busse P, Peters B, Schulten V, Sette A. Urinary Peptides As a Novel Source of T Cell Allergen Epitopes. Front Immunol 2018; 9:886. [PMID: 29755469 PMCID: PMC5932195 DOI: 10.3389/fimmu.2018.00886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day in vitro stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further ex vivo analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly ex vivo in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy.
Collapse
Affiliation(s)
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Curtis McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, OK, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, OK, United States
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Véronique Schulten
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego School of Medicine, La Jolla, CA, United States
| |
Collapse
|
44
|
Schulten V, Westernberg L, Birrueta G, Sidney J, Paul S, Busse P, Peters B, Sette A. Allergen and Epitope Targets of Mouse-Specific T Cell Responses in Allergy and Asthma. Front Immunol 2018; 9:235. [PMID: 29487600 PMCID: PMC5816932 DOI: 10.3389/fimmu.2018.00235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Mouse allergy has become increasingly common, mainly affecting laboratory workers and inner-city households. To date, only one major allergen, namely Mus m 1, has been described. We sought to identify T cell targets in mouse allergic patients. PBMC from allergic donors were expanded with either murine urine or epithelial extract and subsequently screened for cytokine production (IL-5 and IFNγ) in response to overlapping peptides spanning the entire Mus m 1 sequence, peptides from various Mus m 1 isoforms [major urinary proteins (MUPs)], peptides from mouse orthologs of known allergens from other mammalian species and peptides from proteins identified by immunoproteomic analysis of IgE/IgG immunoblots of mouse urine and epithelial extracts. This approach let to the identification of 106 non-redundant T cell epitopes derived from 35 antigens. Three major T cell-activating regions were defined in Mus m 1 alone. Moreover, our data show that immunodominant epitopes were largely shared between Mus m 1 and other MUPs even from different species, suggesting that sequence conservation in different allergens is a determinant for immunodominance. We further identified several novel mouse T cell antigens based on their homology to known mammalian allergens. Analysis of cohort-specific T cell responses revealed that rhinitis and asthmatic patients recognized different epitope repertoires. Epitopes defined herein can be formulated into an epitope "megapool" used to diagnose mouse allergy and study mouse-specific T cell responses directly ex vivo. This analysis of T cell epitopes provides a good basis for future studies to increase our understanding of the immunopathology associated with MO-allergy and asthma.
Collapse
Affiliation(s)
- Véronique Schulten
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Luise Westernberg
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Giovanni Birrueta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Lindestam Arlehamn CS, Paul S, Chun Wang EH, de Jong A, Christiano AM, Sette A. Large-Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata. J Investig Dermatol Symp Proc 2018; 19:S54-S56. [PMID: 29273108 DOI: 10.1016/j.jisp.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
46
|
Mazor R, Onda M, Park D, Addissie S, Xiang L, Zhang J, Hassan R, Pastan I. Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity. Oncotarget 2017; 7:29916-26. [PMID: 27167198 PMCID: PMC5058652 DOI: 10.18632/oncotarget.9171] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022] Open
Abstract
Recombinant immunotoxins (RITs) are genetically engineered proteins being developed to treat cancer. They are composed of an Fv that targets a cancer antigen and a portion of a protein toxin. Their clinical success is limited by their immunogenicity. Our goal is to produce a new RIT that targets mesothelin and is non-immunogenic by combining mutations that decrease B- and T-cell epitopes. Starting with an immunotoxin that has B-cell epitopes suppressed, we added mutations step-wise that suppress T-cell epitopes. The final protein (LMB-T14) has greatly reduced antigenicity as assessed by binding to human anti-sera and a greatly decreased ability to activate helper T-cells evaluated in a T-cell activation assay. It is very cytotoxic to mesothelioma cells from patients, and to cancer cell lines. LMB-T14 produces complete remissions of a mesothelin expressing cancer (A431/H9) xenograft. The approach used here can be used to de-immunize other therapeutic foreign proteins.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,New Business Development Department, Medytox Inc., Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Selamawit Addissie
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jingli Zhang
- Thoracic and GI Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raffit Hassan
- Thoracic and GI Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform 2017; 18:467-478. [PMID: 27016393 DOI: 10.1093/bib/bbw025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.
Collapse
|
48
|
Dhanda SK, Grifoni A, Pham J, Vaughan K, Sidney J, Peters B, Sette A. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology 2017; 153:118-132. [PMID: 28833085 DOI: 10.1111/imm.12816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Kerrie Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
49
|
Paul S, Arlehamn CSL, Schulten V, Westernberg L, Sidney J, Peters B, Sette A. Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes. BMC Immunol 2017; 18:20. [PMID: 28681704 PMCID: PMC5499093 DOI: 10.1186/s12865-017-0204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Results Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher’s exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew’s correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Conclusions Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA.
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Veronique Schulten
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA, 92037, USA
| |
Collapse
|
50
|
Abstract
Genetic studies have shown the association of Parkinson's disease with alleles of the major histocompatibility complex. Here we show that a defined set of peptides that are derived from α-synuclein, a protein aggregated in Parkinson's disease, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in patients with Parkinson's disease. These responses may explain the association of Parkinson's disease with specific major histocompatibility complex alleles.
Collapse
|