1
|
Koutník J, Peer S, Humer D, Sumara G, Leitges M, Baier G, Siegmund K. T cell-intrinsic PKD3 fine-tunes differentiation into CD8 + central memory T cells and CD8 single positive thymocyte development. Immunology 2024; 173:125-140. [PMID: 38798068 DOI: 10.1111/imm.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Members of the Protein kinases D (PKD) family are described as regulators of T cell responses. From the two T cell-expressed isoforms PKD2 and PKD3, so far mainly the former was thoroughly investigated and is well understood. Recently, we have investigated also PKD3 using conventional as well as conditional T cell-specific knockout models. These studies suggested PKD3 to be a T cell-extrinsic regulator of the cells' fate. However, these former model systems did not take into account possible redundancies with the highly homologous PKD2. To overcome this issue and thus properly unravel PKD3's T cell-intrinsic functions, here we additionally used a mouse model overexpressing a constitutively active isoform of PKD3 specifically in the T cell compartment. These transgenic mice showed a slightly higher proportion of central memory T cells in secondary lymphoid organs and blood. This effect could not be explained via differences upon polyclonal stimulation in vitro, however, may be connected to the observed developmental aberrances in the CD8 single positive compartment during thymic development. Lastly, the observed alterations in the CD8+ T cell compartment did not impact proper immune response upon immunization with ovalbumin or in a subcutaneous tumour model suggesting only a small to absent biological relevance. Taking together the knowledge of all our published studies on PKD3 in the T cell compartment, we now conclude that T cell-intrinsic PKD3 is a fine-tuner of central memory T cell as well as CD8 single positive thymocyte development.
Collapse
Affiliation(s)
- Jiří Koutník
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Peer
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Humer
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Michael Leitges
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Gottfried Baier
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Cheung KL, Zhao L, Sharma R, Ghosh AA, Appiah M, Sun Y, Jaganathan A, Hu Y, LeJeune A, Xu F, Han X, Wang X, Zhang F, Ren C, Walsh MJ, Xiong H, Tsankov A, Zhou MM. Class IIa HDAC4 and HDAC7 cooperatively regulate gene transcription in Th17 cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2312111121. [PMID: 38657041 PMCID: PMC11067014 DOI: 10.1073/pnas.2312111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Li Zhao
- Institute of Epigenetic Medicine of the First Hospital, Jilin University, Changchun130061, China
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Anurupa Abhijit Ghosh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Michael Appiah
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yuan Hu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alannah LeJeune
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Feihong Xu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Xinye Han
- Institute of Epigenetic Medicine of the First Hospital, Jilin University, Changchun130061, China
| | - Xueting Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Fan Zhang
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
3
|
Shetty MG, Pai P, Padavu M, Satyamoorthy K, Kampa Sundara B. Synergistic therapeutics: Co-targeting histone deacetylases and ribonucleotide reductase for enhanced cancer treatment. Eur J Med Chem 2024; 269:116324. [PMID: 38520762 DOI: 10.1016/j.ejmech.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mythili Padavu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
4
|
Yang C, Song X, Kong J, Li H, Zhan Y. Immunolocalization patterns of histone-deacetylases in salivary glands of mice during postnatal development. Acta Histochem 2024; 126:152144. [PMID: 38382218 DOI: 10.1016/j.acthis.2024.152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Histone-deacetylases (HDACs) are epigenetic modulators involved in the control of gene expression. No data are available on the expression or subcellular localization of HDACs in salivary glands. The present study aims to examine the subcellular distribution of HDACs in salivary glands during postnatal development. DESIGN The major salivary glands of C57/BL6 mice were separately removed at 10, 25, 30,60 and 90 days after birth. Hematoxylin-eosin (H&E) and immunohistochemical staining were performed for HDACs. Gene Expression of HDACs in C57BL/6. NOD-Aec1Aec2 mice salivary glands during the development of Sjögren's syndrome-like illness were also analyzed by using the gene expression datasets (GSE 15640). RESULTS In the mice salivary gland, HDACs were found to have different localization patterns at various stages of development (10, 25, 30, 60, and 90 days). Apart from HDAC6, ductal cells of salivary glands were the primary sites for HDAC localization. HDAC2, 8, 5, 10 and 11 were expressed at high levels in the salivary gland after birth while HDAC6 showed no expression during postnatal development. This suggests that these HDAC subtypes may have different roles in salivary gland function. In the context of Sjögren's syndrome-like illness, HDAC 2, 8 and 10 showed low expression while HDAC1, 6,5,3 and 11 had relatively high expression in the salivary gland. CONCLUSIONS This study has provided an important reference for understanding the spatiotemporal-specific expression of HDACs in the salivary gland. These results offer new clues for the experimenters and hold promise for developing innovative therapeutic strategies for salivary gland-related diseases.
Collapse
Affiliation(s)
- Chubo Yang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejing Song
- Harbin Institute of Technology Hospital, Harbin, China
| | - Jiaqi Kong
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huishu Li
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Wang Y, Abrol R, Mak JYW, Das Gupta K, Ramnath D, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7: a signalling hub controlling development, inflammation, metabolism and disease. FEBS J 2023; 290:2805-2832. [PMID: 35303381 PMCID: PMC10952174 DOI: 10.1111/febs.16437] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
6
|
Agosto LM, Mallory MJ, Ferretti MB, Blake D, Krick KS, Gazzara MR, Garcia BA, Lynch KW. Alternative splicing of HDAC7 regulates its interaction with 14-3-3 proteins to alter histone marks and target gene expression. Cell Rep 2023; 42:112273. [PMID: 36933216 PMCID: PMC10113009 DOI: 10.1016/j.celrep.2023.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.
Collapse
Affiliation(s)
- Laura M Agosto
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davia Blake
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keegan S Krick
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomic and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Fay CJ, Awh KC, LeBoeuf NR, Larocca CA. Harnessing the immune system in the treatment of cutaneous T cell lymphomas. Front Oncol 2023; 12:1071171. [PMID: 36713518 PMCID: PMC9878398 DOI: 10.3389/fonc.2022.1071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cutaneous T cell lymphomas are a rare subset of non-Hodgkin's lymphomas with predilection for the skin with immunosuppressive effects that drive morbidity and mortality. We are now appreciating that suppression of the immune system is an important step in the progression of disease. It should come as no surprise that therapies historically and currently being used to treat these cancers have immune modulating functions that impact disease outcomes. By understanding the immune effects of our therapies, we may better develop new agents that target the immune system and improve combinatorial treatment strategies to limit morbidity and mortality of these cancers. The immune modulating effect of therapeutic drugs in use and under development for cutaneous T cell lymphomas will be reviewed.
Collapse
|
9
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
10
|
Axisa PP, Yoshida TM, Lucca LE, Kasler HG, Lincoln MR, Pham GH, Del Priore D, Carpier JM, Lucas CL, Verdin E, Sumida TS, Hafler DA. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci Transl Med 2022; 14:eabl3651. [PMID: 36516268 DOI: 10.1126/scitranslmed.abl3651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.
Collapse
Affiliation(s)
- Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tomomi M Yoshida
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dante Del Priore
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jean-Marie Carpier
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Kulthinee S, Yano N, Zhuang S, Wang L, Zhao TC. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:471-485. [PMID: 35997393 PMCID: PMC9397025 DOI: 10.3390/pathophysiology29030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Naohiro Yano
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Lijiang Wang
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ting C. Zhao
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Surgery, Boston University Medical School, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-401-456-8266; Fax: +1-401-456-2507
| |
Collapse
|
12
|
Role of Histone Deacetylases in T-Cell Development and Function. Int J Mol Sci 2022; 23:ijms23147828. [PMID: 35887172 PMCID: PMC9320103 DOI: 10.3390/ijms23147828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes called “epigenetic erasers”. They remove the acetyl group from histones changing the condensation state of chromatin, leading to epigenetic modification of gene expression and various downstream effects. Eighteen HDACs have been identified and grouped into four classes. The role of HDACs in T-cells has been extensively studied, and it has been proven that many of them are important players in T-cell development and function. In this review, we present the current state of knowledge on the role of HDACs in the early stages of T-cell development but also in the functioning of mature lymphocytes on the periphery, including activation, cytokine production, and metabolism regulation.
Collapse
|
13
|
Bao X, Qin Y, Lu L, Zheng M. Transcriptional Regulation of Early T-Lymphocyte Development in Thymus. Front Immunol 2022; 13:884569. [PMID: 35432347 PMCID: PMC9008359 DOI: 10.3389/fimmu.2022.884569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against various pathogenic microorganisms and establishing self-antigen tolerance. They will go through several stages and checkpoints in the thymus from progenitors to mature T cells, from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of the thymus and further differentiate into distinct subsets under different environment signals to perform specific functions. Each step is regulated by various transcriptional regulators downstream of T cell receptors (TCRs) that have been extensively studied both in vivo and vitro via multiple mouse models and advanced techniques, such as single cell RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). This review will summarize the transcriptional regulators participating in the early stage of T cell development reported in the past decade, trying to figure out cascade networks in each process and provide possible research directions in the future.
Collapse
Affiliation(s)
- Xueyang Bao
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Linrong Lu
- Shanghai Immune Therapy Institute, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China.,Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Franck M, de Toro-Martín J, Varin TV, Garneau V, Pilon G, Roy D, Couture P, Couillard C, Marette A, Vohl MC. Raspberry consumption: identification of distinct immune-metabolic response profiles by whole blood transcriptome profiling. J Nutr Biochem 2022; 101:108946. [PMID: 35016998 DOI: 10.1016/j.jnutbio.2022.108946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023]
Abstract
Numerous studies have reported that diets rich in phenolic compounds are beneficial to immune-metabolic health, yet these effects are heterogeneous and the underlying mechanisms are poorly understood. To investigate the inter-individual variability of the immune-metabolic response to raspberry consumption, whole-blood RNAseq data from 24 participants receiving 280g/day of raspberries for 8 weeks were used for the identification of responsiveness subgroups by using partial least squares-discriminant analysis (PLSDA) and hierarchical clustering. Transcriptomic-based clustering regrouped participants into two distinct subgroups of 13 and 11 participants, so-called responders and non-responders, respectively. Following raspberry consumption, a significant decrease in triglycerides, cholesterol and C-reactive protein levels were found in responders, as compared to non-responders. Two major gene expression components of 100 and 220 genes were identified by sparse PLSDA as those better discriminating responders from non-responders, and functional analysis identified pathways related to cytokine production, leukocyte activation and immune response as significantly enriched with most discriminant genes. As compared to non-responders, the plasma lipidomic profile of responders was characterized by a significant decrease in triglycerides and an increase in phosphatidylcholines following raspberry consumption. Prior to the intervention, a distinct metagenomic profile was identified by PLSDA between responsiveness subgroups, and the Firmicutes-to-Bacteroidota ratio was found significantly lower in responders, as compared to non-responders. Findings point to this transcriptomic-based clustering approach as a suitable tool to identify distinct responsiveness subgroups to raspberry consumption. This approach represents a promising framework to tackle the issue of inter-individual variability in the understanding of the impact of foods on immune-metabolic health.
Collapse
Affiliation(s)
- Maximilien Franck
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Juan de Toro-Martín
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; Quebec Heart and Lung Institute (IUCPQ) Research Center, Québec, QC G1V 4G5, Canada
| | - Véronique Garneau
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; Quebec Heart and Lung Institute (IUCPQ) Research Center, Québec, QC G1V 4G5, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Québec, QC G1V 4G2, Canada
| | - Charles Couillard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; Quebec Heart and Lung Institute (IUCPQ) Research Center, Québec, QC G1V 4G5, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada; School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
15
|
Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci Rep 2021; 11:21550. [PMID: 34732767 PMCID: PMC8566462 DOI: 10.1038/s41598-021-00986-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Salt Inducible Kinases (SIKs), of which there are 3 isoforms, are established to play roles in innate immunity, metabolic control and neuronal function, but their role in adaptive immunity is unknown. To address this gap, we used a combination of SIK knockout and kinase-inactive knock-in mice. The combined loss of SIK1 and SIK2 activity did not block T cell development. Conditional knockout of SIK3 in haemopoietic cells, driven by a Vav-iCre transgene, resulted in a moderate reduction in the numbers of peripheral T cells, but normal B cell numbers. Constitutive knockout of SIK2 combined with conditional knockout of SIK3 in the haemopoietic cells resulted in a severe reduction in peripheral T cells without reducing B cell number. A similar effect was seen when SIK3 deletion was driven via CD4-Cre transgene to delete at the DP stage of T cell development. Analysis of the SIK2/3 Vav-iCre mice showed that thymocyte number was greatly reduced, but development was not blocked completely as indicated by the presence of low numbers CD4 and CD8 single positive cells. SIK2 and SIK3 were not required for rearrangement of the TCRβ locus, or for low level cell surface expression of the TCR complex on the surface of CD4/CD8 double positive thymocytes. In the absence of both SIK2 and SIK3, progression to mature single positive cells was greatly reduced, suggesting a defect in negative and/or positive selection in the thymus. In agreement with an effect on negative selection, increased apoptosis was seen in thymic TCRbeta high/CD5 positive cells from SIK2/3 knockout mice. Together, these results show an important role for SIK2 and SIK3 in thymic T cell development.
Collapse
|
16
|
Rodrigues DA, Roe A, Griffith D, Chonghaile TN. Advances in the Design and Development of PROTAC-mediated HDAC degradation. Curr Top Med Chem 2021; 22:408-424. [PMID: 34649488 DOI: 10.2174/1568026621666211015092047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Due to developments in modern chemistry, previously undruggable targets are becoming druggable thanks to selective degradation using the ubiquitin-proteasomal degradation system. PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules designed specifically to degrade target proteins (protein of interest, POI). They are of significant interest to industry and academia as they are highly specific and can target previously undruggable target proteins from transcription factors to enzymes. More than 15 degraders are expected to be evaluated in clinical trials by the end of 2021. Herein, we describe recent advances in the design and development of PROTAC-mediated degradation of histone deacetylases (HDACs). PROTAC-mediated degradation of HDACs can offer some significant advantages over direct inhibition, such as the use of substoichiometric doses and the potential to disrupt enzyme-independent HDAC function. Herein, we discuss the potential implications of the degradation of HDACs with HDAC knockout studies and the selection of HDAC inhibitors and E3 ligase ligands for the design of the PROTACs. The potential utility of HDAC PROTACs in various disease pathologies from cancer to inflammation to neurodegeneration is driving the interest in this field.
Collapse
Affiliation(s)
- Daniel Alencar Rodrigues
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Andrew Roe
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Darren Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| |
Collapse
|
17
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021; 148:dev199754. [PMID: 34323272 PMCID: PMC8353164 DOI: 10.1242/dev.199754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C. Yanez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
20
|
Mak JYW, Wu KC, Gupta PK, Barbero S, McLaughlin MG, Lucke AJ, Tng J, Lim J, Loh Z, Sweet MJ, Reid RC, Liu L, Fairlie DP. HDAC7 Inhibition by Phenacetyl and Phenylbenzoyl Hydroxamates. J Med Chem 2021; 64:2186-2204. [PMID: 33570940 DOI: 10.1021/acs.jmedchem.0c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sheila Barbero
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maddison G McLaughlin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhixuan Loh
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Harsha Krovi S, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, Scott-Browne J, Gapin L. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat Commun 2020; 11:6238. [PMID: 33288744 PMCID: PMC7721697 DOI: 10.1038/s41467-020-20073-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Most T lymphocytes leave the thymus as naïve cells with limited functionality. However, unique populations of innate-like T cells differentiate into functionally distinct effector subsets during their development in the thymus. Here, we profiled >10,000 differentiating thymic invariant natural killer T (iNKT) cells using single-cell RNA sequencing to produce a comprehensive transcriptional landscape that highlights their maturation, function, and fate decisions at homeostasis. Our results reveal transcriptional profiles that are broadly shared between iNKT and mucosal-associated invariant T (MAIT) cells, illustrating a common core developmental program. We further unmask a mutual requirement for Hivep3, a zinc finger transcription factor and adapter protein. Hivep3 is expressed in early precursors and regulates the post-selection proliferative burst, differentiation and functions of iNKT cells. Altogether, our results highlight the common requirements for the development of innate-like T cells with a focus on how Hivep3 impacts the maturation of these lymphocytes.
Collapse
Affiliation(s)
- S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Evergrande Center for Immunologic diseases at Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Stanford Health Care, Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Scott-Browne
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
22
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
23
|
Wang Z, Zhang Y, Zhu S, Peng H, Chen Y, Cheng Z, Liu S, Luo Y, Li R, Deng M, Xu Y, Hu G, Chen L, Zhang G. A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1 - pre-B-ALL. Cell Death Dis 2020; 11:738. [PMID: 32913188 PMCID: PMC7483467 DOI: 10.1038/s41419-020-02949-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 7 (HDAC7), a member of class IIa HDACs, has been described to be an important regulator for B cell development and has a potential role in B cell acute lymphoblastic leukemia (B-ALL). CC1007, a BML-210 analog, is designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of these targets. In this study, we investigated the anticancer effects of CC1007 in breakpoint cluster region-Abelson 1 fusion gene-negative (BCR-ABL1−) pre-B-ALL cell lines and primary patient-derived BCR-ABL1− pre-B-ALL cells. CC1007 had obvious antileukemic activity toward pre-B-ALL cells in vitro and in vivo; it also significantly prolonged median survival time of pre-B-ALL-bearing mice. Interestingly, low dose of CC1007 could inhibit proliferation of BCR-ABL1− pre-B-ALL cells in a time-dependent manner not accompanied by significant cell apoptosis, but along with cross-lineage differentiation toward monocytic lineage. From a mechanistic angle, we showed that HDAC7 was overexpressed in BCR-ABL1− pre-B-ALL cells compared to normal bone marrow samples, and CC1007 could reduce the binding of HDAC7 at the promoters of monocyte–macrophage-specific genes via inhibition of HDAC7 expression and HDAC7:MEF2C interaction. These data indicated that CC1007 may be a promising agent for the treatment of BCR-ABL1− pre-B-ALL.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yongheng Chen
- Laboratory of Structural Biology, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital & State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Kwesi-Maliepaard EM, Aslam MA, Alemdehy MF, van den Brand T, McLean C, Vlaming H, van Welsem T, Korthout T, Lancini C, Hendriks S, Ahrends T, van Dinther D, den Haan JMM, Borst J, de Wit E, van Leeuwen F, Jacobs H. The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 + T cells. Proc Natl Acad Sci U S A 2020; 117:20706-20716. [PMID: 32764145 PMCID: PMC7456197 DOI: 10.1073/pnas.1920372117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.
Collapse
Affiliation(s)
| | - Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Chelsea McLean
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Cesare Lancini
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tomasz Ahrends
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
| |
Collapse
|
25
|
Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, Correnti CE, Lüthi U, Friedli O, Freigang S, Al Sayed MF, Bührer ED, Amrein MA, Schürch CM, Radpour R, Riether C, Ochsenbein AF. TNIK signaling imprints CD8 + T cell memory formation early after priming. Nat Commun 2020; 11:1632. [PMID: 32242021 PMCID: PMC7118140 DOI: 10.1038/s41467-020-15413-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of β-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells. Coordinate expression of multiple factors play critical roles in the regulation between effector and memory CD8+ T cell differentiation. Here the authors show upon acute viral infection TNIK is critically required as a regulator of effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Program in Immunology, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Magdalena Hinterbrandner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Olivier Friedli
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Mohamad F Al Sayed
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Elias D Bührer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Michael A Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Christian M Schürch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland. .,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
26
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
27
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
28
|
Distinct Disease Phenotype of Ulcerative Colitis in Patients With Coincident Primary Sclerosing Cholangitis: Evidence From a Large Retrospective Study With Matched Cohorts. Dis Colon Rectum 2019; 62:1494-1504. [PMID: 31725582 DOI: 10.1097/dcr.0000000000001496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis is a classical extraintestinal manifestation in patients with ulcerative colitis. However, the impact of primary sclerosing cholangitis on the disease course is incompletely understood. OBJECTIVE This study aimed to assess the impact of primary sclerosing cholangitis on disease phenotype and its course in patients with ulcerative colitis. DESIGN This is a retrospective study with 3:1 matched cohorts. SETTINGS Tertiary care center's electronic database was used for data analysis from 2000 and 2018. PATIENTS Of 782 patients with ulcerative colitis, 77 patients who had coincident primary sclerosing cholangitis were included. MAIN OUTCOME MEASURES The primary outcomes evaluated were disease characteristics including colonic disease activity, temporal change of disease course, colorectal neoplasia, and colectomy rates. RESULTS Disease activity during acute flares, assessed by the complete Mayo score, was significantly lower in patients with primary sclerosing cholangitis (6.2 vs 7.3; p < 0.001). In addition, disease activity in patients with primary sclerosing cholangitis was decreased, especially within the first 10 years after disease onset, and biological therapy with anti-tumor necrosis factor and anti-integrin agents was commenced less frequently (22% vs 35%; p = 0.043) and later (10-year risk: 17.4% vs 27.8%; p = 0.034). Patients with primary sclerosing cholangitis were younger at colitis diagnosis (23.3 vs 29.3 years; p < 0.001) and had more extensive disease (75% vs 46%; p < 0.001). Colorectal cancer was more frequently detected in patients with coincident primary sclerosing cholangitis (6/77 vs 16/705; p = 0.016). Colectomy rates did not differ between both groups (14.3% vs 14.5%; p = 0.56). In contrast, patients with ulcerative colitis had to undergo surgery more frequently because of therapy-refractant inflammation, whereas surgery due to neoplasia development was increased in patients with coincident primary sclerosing cholangitis (p = 0.013). LIMITATIONS The study was limited by its retrospective design. CONCLUSION Patients who have ulcerative colitis with coincident primary sclerosing cholangitis develop a distinct disease course characterized by an earlier disease onset and lower disease activity, but more frequent extensive disease manifestation and higher risk for colorectal cancer. See Video Abstract at http://links.lww.com/DCR/B45. FENOTIPO DE ENFERMEDAD DISTINTIVO DE LA COLITIS ULCERATIVA EN PACIENTES CON COLANGITIS ESCLEROSANTE PRIMARIA CONCOMITANTE: EVIDENCIA DE UN ESTUDIO RETROSPECTIVO GRANDE CON COHORTES EMPAREJADAS: La colangitis esclerosante primaria es una manifestación extraintestinal clásica en pacientes con colitis ulcerativa. Sin embargo, el impacto de la colangitis esclerosante primaria en el curso de la enfermedad no es comprendido completamente.Evaluar el impacto de la colangitis esclerosante primaria en el fenotipo y curso de la enfermedad en pacientes con colitis ulcerativa.Este es un estudio retrospectivo con cohortes emparejadas 3:1.La base de datos electrónica de un centro de atención terciaria se utilizó para el análisis de datos de 2000 a 2018.782 pacientes con colitis ulcerativa, 77 padecían colangitis esclerosante primaria concomitante y fueron incluidos.Se evaluaron las características de la enfermedad, incluida la actividad de enfermedad colónica, el cambio temporal del curso de la enfermedad, la neoplasia colorrectal y las tasas de colectomía.La actividad de la enfermedad durante los brotes agudos, evaluada por la puntuación completa de Mayo, fue significativamente menor en pacientes con colangitis esclerosante primaria (6.2 vs 7.3; p < 0.001). Además, la actividad de la enfermedad en pacientes con colangitis esclerosante primaria se redujo especialmente en los primeros 10 años después del inicio de la enfermedad, y la terapia biológica con agentes anti-TNF y anti-integrina se inició con menos frecuencia (22% vs 35%; p = 0.043) y más tarde (riesgo a 10 años: 17.4% vs 27.8%; p = 0.034). Los pacientes con colangitis esclerosante primaria eran más jóvenes en el momento del diagnóstico de colitis (23.3 vs 29.3 años; p < 0.001) y tenían enfermedad más extensa (75% vs 46%; p < 0.001). El cáncer colorrectal se detectó con mayor frecuencia en pacientes con colangitis esclerosante primaria concomitante (6/77 vs 16/705; p = 0.016). Las tasas de colectomía no fueron diferentes entre ambos grupos (14.3% vs 14.5%; p = 0.56). En contraste, los pacientes con colitis ulcerativa tuvieron que someterse a cirugía con mayor frecuencia debido a inflamación refractaria a la terapia, mientras que el desarrollo de neoplasia se incrementó en pacientes con colangitis esclerosante primaria concomitante (p = 0.013).El estudio estuvo limitado por su diseño retrospectivo.Los pacientes con colitis ulcerativa con colangitis esclerosante primaria concomitante desarrollan un curso de enfermedad distintivo caracterizado por un inicio temprano de la enfermedad y una menor actividad de la enfermedad, pero con manifestación de enfermedad extensa más frecuente y un mayor riesgo de cáncer colorrectal. Vea el resumen en video en http://links.lww.com/DCR/B45.
Collapse
|
29
|
Yerinde C, Siegmund B, Glauben R, Weidinger C. Metabolic Control of Epigenetics and Its Role in CD8 + T Cell Differentiation and Function. Front Immunol 2019; 10:2718. [PMID: 31849941 PMCID: PMC6901948 DOI: 10.3389/fimmu.2019.02718] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic programs that control posttranslational modifications of histone proteins and DNA itself tightly regulate transcriptional networks determining the identity and function of CD8+ T cells. Chromatin-modifying enzymes such as histone acetyltransferases and deacetylases, represent key molecular determinants of the epigenetic imprinting of CD8+ T cells. The functions of these enzymes highly depend on the availability of key products of cellular metabolism pathways such as acetyl-CoA, NAD (Nicotinamide adenine dinucleotide) and SEM (S-adenosylmethionine), suggesting that there is a close crosstalk between the metabolic and the epigenetic regulation of CD8+ T cells. In this review, we will discuss the metabolic regulation of CD8+ T cell epigenetics during activation and differentiation. We will furthermore summarize how metabolic signals from the tumor microenvironment (TME) shape the epigenetic landscape of CD8+ T cells to better understand the mechanism underlying CD8+ T cell exhaustion in anti-tumor and anti-viral immunity, which might help to overcome limitations of current CD8+ T cell-based therapies.
Collapse
Affiliation(s)
- Cansu Yerinde
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carl Weidinger
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
30
|
Asfaha Y, Schrenk C, Alves Avelar LA, Hamacher A, Pflieger M, Kassack MU, Kurz T. Recent advances in class IIa histone deacetylases research. Bioorg Med Chem 2019; 27:115087. [PMID: 31561937 DOI: 10.1016/j.bmc.2019.115087] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian Schrenk
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leandro A Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Nijhuis L, Peeters JGC, Vastert SJ, van Loosdregt J. Restoring T Cell Tolerance, Exploring the Potential of Histone Deacetylase Inhibitors for the Treatment of Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:151. [PMID: 30792714 PMCID: PMC6374297 DOI: 10.3389/fimmu.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Juvenile Idiopathic Arthritis (JIA) is characterized by a loss of immune tolerance. Here, the balance between the activity of effector T (Teff) cells and regulatory T (Treg) cells is disturbed resulting in chronic inflammation in the joints. Presently, therapeutic strategies are predominantly aimed at suppressing immune activation and pro-inflammatory effector mechanisms, ignoring the opportunity to also promote tolerance by boosting the regulatory side of the immune balance. Histone deacetylases (HDACs) can deacetylate both histone and non-histone proteins and have been demonstrated to modulate epigenetic regulation as well as cellular signaling in various cell types. Importantly, HDACs are potent regulators of both Teff cell and Treg cell function and can thus be regarded as attractive therapeutic targets in chronic inflammatory arthritis. HDAC inhibitors (HDACi) have proven therapeutic potential in the cancer field, and are presently being explored for their potential in the treatment of autoimmune diseases. Specific HDACi have already been demonstrated to reduce the secretion of pro-inflammatory cytokines by Teff cells, and promote Treg numbers and suppressive capacity in vitro and in vivo. In this review, we outline the role of the different classes of HDACs in both Teff cell and Treg cell function. Furthermore, we will review the effect of different HDACi on T cell tolerance and explore their potential as a therapeutic strategy for the treatment of oligoarticular and polyarticular JIA.
Collapse
Affiliation(s)
- Lotte Nijhuis
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Janneke G C Peeters
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
32
|
Mitrovič M, Patsopoulos NA, Beecham AH, Dankowski T, Goris A, Dubois B, D’hooghe MB, Lemmens R, Van Damme P, Søndergaard HB, Sellebjerg F, Sorensen PS, Ullum H, Thørner LW, Werge T, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusik S, Gourraud PA, Andlauer TF, Pongratz V, Buck D, Gasperi C, Bayas A, Heesen C, Kümpfel T, Linker R, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Wiendl H, Wildemann B, Zettl U, Ziemann U, Tumani H, Gold R, Grummel V, Hemmer B, Knier B, Lill CM, Luessi F, Dardiotis E, Agliardi C, Barizzone N, Mascia E, Bernardinelli L, Comi G, Cusi D, Esposito F, Ferrè L, Comi C, Galimberti D, Leone MA, Sorosina M, Mescheriakova J, Hintzen R, van Duijn C, Teunissen CE, Bos SD, Myhr KM, Celius EG, Lie BA, Spurkland A, Comabella M, Montalban X, Alfredsson L, Stridh P, Hillert J, Jagodic M, Piehl F, Jelčić I, Martin R, Sospedra M, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Neville M, Santaniello A, Caillier SJ, Calabresi PA, Cree BA, Cross A, Davis MF, Haines JL, de Bakker PI, Delgado S, Dembele M, Edwards K, Fitzgerald KC, Hakonarson H, Konidari I, Lathi E, Manrique CP, Pericak-Vance MA, Piccio L, Schaefer C, McCabe C, Weiner H, Goldstein J, Olsson T, Hadjigeorgiou G, Taylor B, Tajouri L, Charlesworth J, Booth DR, Harbo HF, Ivinson AJ, Hauser SL, Compston A, Stewart G, Zipp F, Barcellos LF, Baranzini SE, Martinelli-Boneschi F, D’Alfonso S, Ziegler A, Oturai A, McCauley JL, Sawcer SJ, Oksenberg JR, De Jager PL, Kockum I, Hafler DA, Cotsapas C. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018; 175:1679-1687.e7. [PMID: 30343897 PMCID: PMC6269166 DOI: 10.1016/j.cell.2018.09.049] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis is a complex neurological disease, with ∼20% of risk heritability attributable to common genetic variants, including >230 identified by genome-wide association studies. Multiple strands of evidence suggest that much of the remaining heritability is also due to additive effects of common variants rather than epistasis between these variants or mutations exclusive to individual families. Here, we show in 68,379 cases and controls that up to 5% of this heritability is explained by low-frequency variation in gene coding sequence. We identify four novel genes driving MS risk independently of common-variant signals, highlighting key pathogenic roles for regulatory T cell homeostasis and regulation, IFNγ biology, and NFκB signaling. As low-frequency variants do not show substantial linkage disequilibrium with other variants, and as coding variants are more interpretable and experimentally tractable than non-coding variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS.
Collapse
|
33
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
34
|
Kaletsch A, Pinkerneil M, Hoffmann MJ, Jaguva Vasudevan AA, Wang C, Hansen FK, Wiek C, Hanenberg H, Gertzen C, Gohlke H, Kassack MU, Kurz T, Schulz WA, Niegisch G. Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clin Epigenetics 2018; 10:100. [PMID: 30064501 PMCID: PMC6069857 DOI: 10.1186/s13148-018-0531-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/09/2018] [Indexed: 11/22/2022] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) are promising anti-cancer drugs that could also be employed for urothelial carcinoma (UC) therapy. It is unclear, however, whether inhibition of all 11 zinc-dependent HDACs or of individual enzymes is more efficacious and specific. Here, we investigated the novel HDACi 19i (LMK235) with presumed preferential activity against class IIA HDAC4/5 in comparison to the pan-HDACi vorinostat (SAHA) and the HDAC4-specific HDACi TMP269 in UC cell lines with basal expression of HDAC4 and characterized two HDAC4-overexpressing UC cell lines. Methods Cytotoxic concentrations 50% (CC50s) for HDACi were determined by MTT assay and high-content analysis-based fluorescent live/dead assay in UC cell lines with different expression of HDAC4 and as well as in normal urothelial cell cultures, HBLAK and HEK-293 cell lines. Effects of HDACis were analyzed by flow cytometry; molecular changes were followed by qRT-PCR and Western blots. UC lines overexpressing HDAC4 were established by lentiviral transduction. Inhibitor activity profiles of HDACi were obtained by current state in vitro assays, and docking analysis was performed using an updated crystal structure of HDAC4. Results In UC cell lines, 19i CC50s ranged around 1 μM; control lines were similarly or less sensitive. Like SAHA, 19i increased the G2/M-fraction, disturbed mitosis, and elicited apoptosis or in some cells senescence. Thymidylate synthase expression was diminished, and p21CIP1 was induced; global histone acetylation and α-tubulin acetylation also increased. In most cell lines, 19i as well as SAHA induced HDAC5 and HDAC4 mRNAs while rather repressing HDAC7. UC cell lines overexpressing HDAC4 were not significantly less sensitive to 19i. Reevaluation of the in vitro HDAC isoenzyme activity inhibition profile of 19i and its docking to HDAC4 using current assays suggested rather low activity against class IIA HDACs. The specific class IIA HDAC inhibitor TMP269 impeded proliferation of UC cell lines only at concentrations > 10 μM. Conclusions Anti-neoplastic effects of 19i on UC cells appear to be exerted by targeting class I HDACs. In fact, HDAC4 may rather impede UC growth. Our results suggest that targeting of class IIA HDACs 4/5 may not be optimal for UC therapy. Moreover, our investigation provides further evidence for cross-regulation of class IIA HDACs by class I HDACs. Electronic supplementary material The online version of this article (10.1186/s13148-018-0531-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aline Kaletsch
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Maria Pinkerneil
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Ananda A Jaguva Vasudevan
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Chenyin Wang
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Finn K Hansen
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Gertzen
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
35
|
|
36
|
Kasler HG, Lee IS, Lim HW, Verdin E. Histone Deacetylase 7 mediates tissue-specific autoimmunity via control of innate effector function in invariant Natural Killer T Cells. eLife 2018; 7:e32109. [PMID: 29664401 PMCID: PMC5943034 DOI: 10.7554/elife.32109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
We report that Histone Deacetylase 7 (HDAC7) controls the thymic effector programming of Natural Killer T (NKT) cells, and that interference with this function contributes to tissue-specific autoimmunity. Gain of HDAC7 function in thymocytes blocks both negative selection and NKT development, and diverts Vα14/Jα18 TCR transgenic thymocytes into a Tconv-like lineage. Conversely, HDAC7 deletion promotes thymocyte apoptosis and causes expansion of innate-effector cells. Investigating the mechanisms involved, we found that HDAC7 binds PLZF and modulates PLZF-dependent transcription. Moreover, HDAC7 and many of its transcriptional targets are human risk loci for IBD and PSC, autoimmune diseases that strikingly resemble the disease we observe in HDAC7 gain-of-function in mice. Importantly, reconstitution of iNKT cells in these mice mitigated their disease, suggesting that the combined defects in negative selection and iNKT cells due to altered HDAC7 function can cause tissue-restricted autoimmunity, a finding that may explain the association between HDAC7 and hepatobiliary autoimmunity.
Collapse
Affiliation(s)
- Herbert G Kasler
- Gladstone Institute of Virology and ImmunologySan FranciscoUnited States
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Intelly S Lee
- Gladstone Institute of Virology and ImmunologySan FranciscoUnited States
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Hyung W Lim
- Gladstone Institute of Virology and ImmunologySan FranciscoUnited States
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Eric Verdin
- Gladstone Institute of Virology and ImmunologySan FranciscoUnited States
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
- Buck Institute for Research on AgingNovatoUnited States
| |
Collapse
|
37
|
Zhang J, He Z, Sen S, Wang F, Zhang Q, Sun Z. TCF-1 Inhibits IL-17 Gene Expression To Restrain Th17 Immunity in a Stage-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2018; 200:3397-3406. [PMID: 29632143 DOI: 10.4049/jimmunol.1800193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
T cell factor 1 (TCF-1) is expressed in both developing and mature T cells and has been shown to restrain mature T cell-mediated Th17 responses by inhibiting IL-17 expression. However, it is not clear when TCF-1 is required in vivo to restrain the magnitude of peripheral Th17 responses and what the molecular mechanisms responsible for TCF-1-regulated IL-17 gene expression are. In this study, we showed that conditional deletion of TCF-1 at the early but not later CD4+CD8+ double-positive stage in mice enhanced Th17 differentiation and aggravated experimental autoimmune encephalomyelitis, which correlates with abnormally high IL-17 expression. Expression of TCF-1 in TCF-1-deficient thymocytes but not TCF-1-deficient Th17 cells inhibited IL-17 expression. TCF-1 binds to IL-17 promoter regions, and deletion of two TCF-1 binding sites relieves TCF-1-mediated inhibition of IL-17 promoter activity. Lastly, wild-type TCF-1, but not a TCF-1 mutant that has no intrinsic histone deacetylase activity, was able to inhibit IL-17 expression in TCF-1 deficient mouse thymocytes. Thus, our study demonstrates the requirement of TCF-1 in vivo at stages earlier than double-positive cells to restrain peripheral Th17 immunity by directly binding and inhibiting IL-17 promoter in its intrinsic histone deacetylase-dependent manner.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010.,Irell and Manella Graduate School of Biological Sciences at City of Hope, Duarte, CA 91010; and
| | - Zhiheng He
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Subha Sen
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Fei Wang
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Zuoming Sun
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010;
| |
Collapse
|
38
|
T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 2017; 130:146-155. [PMID: 28550044 DOI: 10.1182/blood-2016-08-731505] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Histone acetylation and the families of enzymes responsible for controlling these epigenetic marks have been implicated in regulating T-cell maturation and phenotype. Here, we demonstrate a previously undefined role of histone deacetylase 11 (HDAC11) in regulating T-cell effector functions. Using EGFP-HDAC11 transgenic reporter mice, we found that HDAC11 expression was lower in effector relative to naive and central memory T-cell populations, and activation of resting T cells resulted in its decreased expression. Experiments using HDAC11 knockout (KO) mice revealed that T cells from these mice displayed enhanced proliferation, proinflammatory cytokine production, and effector molecule expression. In addition, HDAC11KO T cells had increased expression of Eomesodermin (Eomes) and TBX21 (Tbet), transcription factors previously shown to regulate inflammatory cytokine and effector molecule production. Conversely, overexpression of HDAC11 resulted in decreased expression of these genes. Chromatin immunoprecipitation showed the presence of HDAC11 at the Eomes and Tbet gene promoters in resting T cells, where it rapidly disassociated following T-cell activation. In vivo, HDAC11KO T cells were refractory to tolerance induction. HDAC11KO T cells also mediated accelerated onset of acute graft-versus-host disease (GVHD) in a murine model, characterized by increased proliferation of T cells and expression of interferon-γ, tumor necrosis factor, and EOMES. In addition, adoptive transfer of HDAC11KO T cells resulted in significantly reduced tumor burden in a murine B-cell lymphoma model. Taken together, these data demonstrate a previously unknown role of HDAC11 as a negative epigenetic regulator of T-cell effector phenotype and function.
Collapse
|
39
|
Myers DR, Lau T, Markegard E, Lim HW, Kasler H, Zhu M, Barczak A, Huizar JP, Zikherman J, Erle DJ, Zhang W, Verdin E, Roose JP. Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells. Cell Rep 2017; 19:1558-1571. [PMID: 28538176 PMCID: PMC5587137 DOI: 10.1016/j.celrep.2017.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tannia Lau
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan Markegard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Herbert Kasler
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea Barczak
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John P Huizar
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Raeesi V, Ehsani A, Torshizi RV, Sargolzaei M, Masoudi AA, Dideban R. Genome-wide association study of cell-mediated immune response in chicken. J Anim Breed Genet 2017; 134:405-411. [PMID: 28295717 DOI: 10.1111/jbg.12265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/02/2017] [Indexed: 02/03/2023]
Abstract
Cell-mediated immunity (CMI) causes the intracellular destruction of the antigen or elimination of the host cell to make animals resistant against exogenous antigens and cancers. In this study, a genome-wide association study (GWAS) was carried out to identify genomic regions associated with CMI in chicken using chicken 60k high-density single nucleotide polymorphism (SNP) array. Genomic relationships were taken into account to adjust for population structure. In order to account for multiple testing, chromosome-wise false discovery rate was controlled at 5% and 10% levels. Moreover, a comparison of the power of fixed and mixed linear models based on genomic inflation factor was carried out. Mixed linear model (MLM) had better inflation rate, and therefore the results from MLM were used for subsequent analysis. Three significantly associated SNPs (FDR < 0.05) on chromosome 24 and linkage group E22C19W28_E50C23, and three suggestively associated SNPs (FDR < 0.1) on chromosome 1, 5 and 16 were identified. Pathway analysis showed that two biological pathways, which are related to immune response, were strongly associated with the candidate genes surrounding identified SNPs, and their influences were mostly on antigen processing and presentation, and cellular structure.
Collapse
Affiliation(s)
- V Raeesi
- Department of Animal Science, Tarbiat Modares University, Tehran, Iran
| | - A Ehsani
- Department of Animal Science, Tarbiat Modares University, Tehran, Iran
| | - R V Torshizi
- Department of Animal Science, Tarbiat Modares University, Tehran, Iran
| | - M Sargolzaei
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.,Semex Alliance, Guelph, ON, Canada
| | - A A Masoudi
- Department of Animal Science, Tarbiat Modares University, Tehran, Iran
| | - R Dideban
- Department of Animal Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
Newman DM, Voss AK, Thomas T, Allan RS. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 2016; 101:887-892. [PMID: 27733580 DOI: 10.1189/jlb.1ma0816-338r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αβ thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.
Collapse
Affiliation(s)
- Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene 2016; 36:1707-1720. [PMID: 27694895 PMCID: PMC5364039 DOI: 10.1038/onc.2016.337] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
Tumours are comprised of a highly heterogeneous population of cells, of which only a small subset of stem-like cells possess the ability to regenerate tumours in vivo. These cancer stem cells (CSCs) represent a significant clinical challenge as they are resistant to conventional cancer therapies and play essential roles in metastasis and tumour relapse. Despite this realization and great interest in CSCs, it has been difficult to develop CSC-targeted treatments due to our limited understanding of CSC biology. Here, we present evidence that specific histone deacetylases (HDACs) play essential roles in the CSC phenotype. Utilizing a novel CSC model, we discovered that the HDACs, HDAC1 and HDAC7, are specifically over-expressed in CSCs when compared to non-stem-tumour-cells (nsTCs). Furthermore, we determine that HDAC1 and HDAC7 are necessary to maintain CSCs, and that over-expression of HDAC7 is sufficient to augment the CSC phenotype. We also demonstrate that clinically available HDAC inhibitors (HDACi) targeting HDAC1 and HDAC7 can be used to preferentially target CSCs. These results provide actionable insights that can be rapidly translated into CSC-specific therapies.
Collapse
|
43
|
Protein kinase D regulates positive selection of CD4 + thymocytes through phosphorylation of SHP-1. Nat Commun 2016; 7:12756. [PMID: 27670070 PMCID: PMC5052653 DOI: 10.1038/ncomms12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. The three isoforms of protein kinase D (PKD) have important but often redundant roles in cell signalling. Here the authors show, by generating PKD2/3 double-deficient mice, that PKD is essential for TCR signalling in thymocytes, and identify SHP-1 as a PKD target critical for development of CD4+ T cells.
Collapse
|
44
|
Expression of Twist2 is controlled by T-cell receptor signaling and determines the survival and death of thymocytes. Cell Death Differ 2016; 23:1804-1814. [PMID: 27391798 DOI: 10.1038/cdd.2016.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Self-reactive thymocytes are eliminated by negative selection, whereas competent thymocytes survive by positive selection. The strength of the T-cell receptor (TCR) signal determines the fate of thymocytes undergoing either positive or negative selection. The TCR signal strength is relatively higher in negative selection than in positive selection and induces pro-apoptotic molecules such as Nur77 and Nor-1, which are members of the orphan nuclear receptor family, that then cause TCR-mediated apoptosis. However, at the molecular level, it remains unclear how positive or negative selection is distinguished based on the TCR signal. We found that the expression of Twist2 is differentially regulated in positively and negatively selected thymocytes. In particular, TCR signal strength that elicits positive selection induces Twist2 expression via the Ca2+-Cacineurin-NFATc3 pathway, whereas strength of the TCR signal that results in negative selection abolishes NFATc3-dependent Twist2 induction via specific activation of the JNK pathway. Using Twist2-deficient and Twist2 transgenic mice, we also found that Twist2 determines thymocyte sensitivity to TCR-mediated apoptosis by regulating the expression of Nur77 and Nor-1. Twist2 partially retains histone deacetylase 7 (HDAC7) in the nucleus and recruits it to the Nur77 promoter region to repress Nur77 in positively selected thymocytes. Thus our results suggest a molecular mechanism of how thymocytes interpret the strength of the TCR signal and how TCR sensitivity is controlled during thymic selection.
Collapse
|
45
|
Cao W, Guo J, Wen X, Miao L, Lin F, Xu G, Ma R, Yin S, Hui Z, Chen T, Guo S, Chen W, Huang Y, Liu Y, Wang J, Wei L, Wang L. CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation. Nat Commun 2016; 7:11687. [PMID: 27210293 PMCID: PMC4879243 DOI: 10.1038/ncomms11687] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
T-cell development in the thymus is largely controlled by an epigenetic program, involving in both DNA methylation and histone modifications. Previous studies have identified Cxxc1 as a regulator of both cytosine methylation and histone 3 lysine 4 trimethylation (H3K4me3). However, it is unknown whether Cxxc1 plays a role in thymocyte development. Here we show that T-cell development in the thymus is severely impaired in Cxxc1-deficient mice. Furthermore, we identify genome-wide Cxxc1-binding sites and H3K4me3 modification sites in wild-type and Cxxc1-deficient thymocytes. Our results demonstrate that Cxxc1 directly controls the expression of key genes important for thymocyte survival such as RORγt and for T-cell receptor signalling including Zap70 and CD8, through maintaining the appropriate H3K4me3 on their promoters. Importantly, we show that RORγt, a direct target of Cxxc1, can rescue the survival defects in Cxxc1-deficient thymocytes. Our data strongly support a critical role of Cxxc1 in thymocyte development.
Collapse
Affiliation(s)
- Wenqiang Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Miao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Feng Lin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanxin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruoyu Ma
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shengxia Yin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaoyuan Hui
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Chen
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| | - Yingying Huang
- Core Facilities, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
46
|
Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips FC, Maina PK, Qi HH, Liu C, Zhu J, Pope RM, Musselman CA, Zeng C, Peng W, Xue HH. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol 2016; 17:695-703. [PMID: 27111144 PMCID: PMC4873337 DOI: 10.1038/ni.3456] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
The CD4+ and CD8+ T cell dichotomy is essential for effective cellular immunity. How the individual T cell identity is established remains poorly understood. Here we show that the high mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4+ lineage-associated genes including Cd4, Foxp3 and Rorc in CD8+ T cells. Tcf1- and Lef1-deficient CD8+ T cells exhibit histone hyperacetylation, which is ascribed to an unexpected intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutating five conserved amino acids in the Tcf1 HDAC domain diminishes the HDAC activity and the ability to suppress CD4+ lineage genes in CD8+ T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Yunjie Zhao
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Farrah C Phillips
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Abstract
A role of genetics in primary sclerosing cholangitis (PSC) development is now firmly established. A total of 16 risk genes have been reported at highly robust ("genome-wide") significance levels, and ongoing efforts suggest that the list will ultimately be considerably longer. Importantly, this genetic risk pool so far accounts for less than 10 % of an estimated overall PSC susceptibility. The relative importance of genetic versus environmental factors (including gene-gene and gene-environment interactions) in remaining aspects of PSC pathogenesis is unknown, and other study designs than genome-wide association studies are needed to explore these aspects. For some of the loci, e.g. HLA and FUT2, distinct interacting environmental factors may exist, and working from the genetic associations may prove one valid path for determining the specific nature of environmental triggers. So far the biological implications for PSC risk genes are typically merely hypothesized based on previously published literature, and there is therefore a strong need for dedicated translational studies to determine their roles within the specific disease context of PSC. Apparently, most risk loci seem to involve in a subset of biological pathways for which genetic associations exist in a multitude of immune-mediated diseases, accounting for both inflammatory bowel disease as well as prototypical autoimmunity. In the present article, we will survey the current knowledge on PSC genetics with a particular emphasis on the pathophysiological insight potentially gained from genetic risk loci involving in this profound immunogenetic pleiotropy.
Collapse
|
48
|
Parra M. Class IIa HDACs - new insights into their functions in physiology and pathology. FEBS J 2015; 282:1736-44. [PMID: 25244360 DOI: 10.1111/febs.13061] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
HDAC4, 5, 7 and 9 constitute the class IIa histone deacetylases (HDACs) within the large family of protein deacetylases. Class IIa HDACs have unique features that distinguish them from other HDACs. They contain an N-terminal domain that is required for their interaction with tissue-specific transcription factors and recruitment to their target genes. The N-terminal domain on class IIa HDACs also bears conserved serine residues that undergo signal-dependent phosphorylation, which brings about nuclear export of the enzymes and de-repression of their targets. One of the most important aspects of class IIa HDACs is their expression in specific tissues and organs within the organism, where they have crucial roles in development and differentiation processes. This review brings up to date our knowledge of the physiological and pathological functions of class IIa HDACs, focusing in particular on the most recent discoveries from in vivo studies of mouse model systems.
Collapse
Affiliation(s)
- Maribel Parra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|
49
|
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 2015; 6:184-213. [PMID: 26124919 PMCID: PMC4482241 DOI: 10.18632/genesandcancer.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.
Collapse
Affiliation(s)
- Leila Haery
- Department of Biology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
50
|
Butler PL, Staruschenko A, Snyder PM. Acetylation stimulates the epithelial sodium channel by reducing its ubiquitination and degradation. J Biol Chem 2015; 290:12497-503. [PMID: 25787079 DOI: 10.1074/jbc.m114.635540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 12/29/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) functions as a pathway for Na(+) absorption in the kidney and lung, where it is crucial for Na(+) homeostasis and blood pressure regulation. ENaC is regulated in part through signaling pathways that control the ubiquitination state of ENaC lysines. A defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. Here we determined that α-, β-, and γENaC are also substrates for lysine acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, enhanced ENaC acetylation and increased ENaC abundance in the total cell lysate and at the cell surface. Moreover, TSA increased ENaC current in Fischer rat thyroid and kidney collecting duct epithelia. We found that HDAC7 is expressed in the kidney collecting duct, supporting a potential role for this histone deacetylase in ENaC regulation. HDAC7 overexpression reduced ENaC abundance and ENaC current, whereas ENaC abundance and current were increased by silencing of HDAC7. ENaC and HDAC7 form a complex, as detected by coimmunoprecipitation. We observed a reciprocal relationship between acetylation and ubiquitination; TSA reduced ENaC ubiquitination, whereas HDAC7 increased ubiquitination. By reducing ENaC ubiquitination, TSA decreased the rate of ENaC degradation. Thus, acetylation increases epithelial Na(+) absorption by antagonizing ENaC ubiquitination. This stabilizes ENaC, and hence, increases its abundance at the cell surface.
Collapse
Affiliation(s)
- Phillip L Butler
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | | | - Peter M Snyder
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, the Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa 52246, and
| |
Collapse
|