1
|
Mousso T, Pollock SJ, Inzerillo PC, Gigliotti F, Wright TW. Protective innate immunity against Pneumocystis does not require Stat6-dependent macrophage polarization. Infect Immun 2024; 92:e0022224. [PMID: 39150267 PMCID: PMC11475768 DOI: 10.1128/iai.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Pneumocystis species are respiratory fungal pathogens that cause life-threatening opportunistic infections in immunocompromised hosts. Pneumocystis typically evade pulmonary innate immunity but are efficiently eradicated by a functional adaptive immune response. FVB/NJ mice are unique in that they display protective alveolar macrophage-dependent innate immunity against Pneumocystis, and remain resistant to infection even in the absence of CD4+ T lymphocyte function. FVB/NJ alveolar macrophages (AMs) were found to display an M2-biased phenotype at baseline, which was potentiated after stimulation with Pneumocystis, suggesting that macrophage polarization may dictate the outcome of the Pneumocystis-macrophage interaction. To determine whether Stat6, a key global regulator of M2 polarization, was required for FVB/NJ innate immunity, FVB Stat6-/- mice were generated. FVB Stat6-deficient AMs were markedly impaired in their ability to polarize to an M2 phenotype when stimulated with Th2 cytokines. However, FVB Stat6-/- mice remained highly resistant to infection, indicating that Stat6 signaling is dispensable for innate FVB/NJ resistance. Despite the loss of Stat6 signaling, primary AMs from FVB Stat6-/- mice maintained baseline expression of M2 markers, and also strongly upregulated M2-associated genes following direct stimulation with Pneumocystis. Additional FVB/NJ knockout strains were generated, but only FVB MerTK-/- mice showed a marginally increased susceptibility to Pneumocystis infection. Together, these findings demonstrate that effective FVB/NJ innate immunity against Pneumocystis does not require Stat6 signaling and suggest that alternative pathways regulate M2 bias and macrophage-mediated innate resistance in FVB/NJ mice.
Collapse
Affiliation(s)
- T. Mousso
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - S. J. Pollock
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - P. C. Inzerillo
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - F. Gigliotti
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - T. W. Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
2
|
Zhang C, Li G, Zhang F, Zhang Y, Hong S, Gao S, Liu Y, Du J, Li Y. IL-33 Facilitates Fibro-Adipogenic Progenitors to Establish the Pro-Regenerative Niche after Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405299. [PMID: 39037903 PMCID: PMC11425282 DOI: 10.1002/advs.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
3
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
4
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
5
|
Gong C, Jin Y, Wang X, Mao J, Wang D, Yu X, Chen S, Wang Y, Ma D, Fang X, Zhang K, Shu Q. Lack of S1PR2 in Macrophage Ameliorates Sepsis-associated Lung Injury through Inducing IL-33-mediated Type 2 Immunity. Am J Respir Cell Mol Biol 2024; 70:215-225. [PMID: 38061028 DOI: 10.1165/rcmb.2023-0075oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
The function of type 2 immunity and mechanisms underlying the initiation of type 2 immunity after sepsis-induced lung injury remain unclear. Sphingosine-1-phosphate receptor 2 (S1PR2) has been demonstrated to modulate type 2 immunity in the context of asthma and pulmonary fibrosis. Thus, this study aims to investigate the role of type 2 immunity and whether and how S1PR2 regulates type 2 immunity in sepsis. Peripheral type 2 immune responses in patients with sepsis and healthy control subjects were assessed. The impact of S1PR2 on type 2 immunity in patients with sepsis and in a murine model of sepsis was further investigated. The type 2 innate immune responses were significantly increased in the circulation of patients 24 hours after sepsis, which was positively related to clinical complications and negatively correlated with S1PR2 mRNA expression. Animal studies showed that genetic deletion or pharmacological inhibition of S1PR2 induced type 2 innate immunity accumulation in the post-septic lungs. Mechanistically, S1PR2 deficiency promoted macrophage-derived interleukin (IL)-33 increase and the associated type 2 response in the lung. Furthermore, S1PR2-regulated IL-33 from macrophages mitigated lung injury after sepsis in mice. In conclusion, a lack of S1PR2 modulates the type 2 immune response by upregulating IL-33 release from macrophages and alleviates sepsis-induced lung injury. Targeting S1PR2 may have potential therapeutic value for sepsis treatment.
Collapse
Affiliation(s)
| | - Yue Jin
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Jiali Mao
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xiangyang Yu
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Shiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Yang Wang
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Children's Hospital, National Clinical Research Center for Child Health
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery
| |
Collapse
|
6
|
Ray JL, Postma B, Kendall RL, Ngo MD, Foo CX, Saunders B, Ronacher K, Gowdy KM, Holian A. Estrogen contributes to sex differences in M2a macrophages during multi-walled carbon nanotube-induced respiratory inflammation. FASEB J 2024; 38:e23350. [PMID: 38071600 PMCID: PMC10752389 DOI: 10.1096/fj.202301571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1β production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Brett Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
7
|
Wang J, Zhang ZQ, Gigliotti F, Wright TW. IFN-γ Limits Immunopathogenesis but Delays Fungal Clearance during Pneumocystis Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1397-1405. [PMID: 37721419 PMCID: PMC10635584 DOI: 10.4049/jimmunol.2300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
High levels of IFN-γ are produced in the lung during an adaptive immune response to Pneumocystis, but the effects of this prototypical Th1 cytokine on fungal clearance and immunopathogenesis have not been fully defined. Therefore, Pneumocystis-infected immunodeficient mice were immune reconstituted and administered control or anti-IFN-γ neutralizing Ab to determine how IFN-γ regulates the balance between host defense and immune-mediated lung injury. Mice treated with anti-IFN-γ demonstrated an initial worsening of Pneumocystis pneumonia-related immunopathogenesis, with greater weight loss, heightened lung inflammation, and more severe pulmonary function deficits than control mice. However, IFN-γ neutralization also enhanced macrophage phagocytosis of Pneumocystis and accelerated fungal clearance. When anti-IFN-γ-treated mice were also given IL-4 and IL-13 to promote a Th2-biased lung environment, the accelerated fungal clearance was preserved, but the severity of immunopathogenesis was reduced, and a more rapid recovery was observed. A direct suppressive effect of IFN-γ on macrophages was required but was not solely responsible for delayed fungal clearance, suggesting that IFN-γ acts through multiple mechanisms that likely include modulation of both macrophage and Th polarization. Enhanced Pneumocystis clearance in anti-IFN-γ-treated and IFN-γR-deficient mice was associated with significantly elevated IL-17+ CD4+ T cells and IL-17 protein in the lungs. Furthermore, neutralization of IL-17, but not IL-4, signaling blocked the accelerated fungal clearance observed in anti-IFN-γ-treated mice. Together, these data demonstrate that although IFN-γ delays fungal clearance by suppressing the lung Th17 response, it also serves an important regulatory role that limits immunopathogenesis and preserves pulmonary function.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
| | - Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
| | - Francis Gigliotti
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
| | - Terry W. Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry Rochester, NY 14642
| |
Collapse
|
8
|
Ueno K, Miyazaki Y. Detrimental impact of the IL-33/ST2 axis in an animal infection model with Cryptococcus neoformans. Allergol Int 2023; 72:530-536. [PMID: 37482531 DOI: 10.1016/j.alit.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are pathogenic fungi that infect the human respiratory system and cause life-threatening pulmonary cryptococcosis. The immunopathology of cryptococcosis is completely different from that of other fungal allergies. In murine cryptococcal infection models, cryptococcal cells are usually injected via nasal or intratracheal routes. After the infection, the alveolar epithelial cells are impaired and release IL-33, an IL-1 family cytokine that functions as an alarmin. This cytokine detrimentally amplifies allergic responses, and also induces a protective immune response against parasitic infection. In the pulmonary cryptococcosis model, type-II alveolar epithelial cells are the major source of IL-33, and the alveolar epithelial cells, ILC2, and Th2 cells express the IL-33 receptor (ST2). In IL-33- or ST2-deficient mice, allergy-like immune responses are attenuated after the C. neoformans infection. The numbers of ILC2 and Th2 cells and the levels of type 2 cytokines, including IL-4, IL-5, and IL-13, are decreased in the mouse lungs in both models. In association with these changes, total blood IgE, bronchus mucus production, and the number of eosinophils are decreased. Conversely, lung neutrophils and M1-type macrophages are increased. These are protective immune subsets suppressing cryptococcal growth. As a result, the lung fungal burden of IL-33- and ST2-deficient mice is decreased post-infection, and both deficient mice show significantly improved mortality. This pathogenesis varies depending on the cryptococcal and murine strains used in the animal experiments. Here, we overview and discuss the itmmunopathology of the IL-33/ST2 axis in a murine lethal cryptococcal infection model.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
The worldwide prevalence of asthma and allergic disorders (allergic rhinitis, atopic dermatitis, food allergy) has been steadily rising in recent decades. It is now estimated that up to 20% of the global population is afflicted by an allergic disease, with increasing incidence rates in both high- and low-income countries. The World Allergy Organization estimates that the total economic burden of asthma and allergic rhinitis alone is approximately $21 billion per year. While allergic stimuli are a complex and heterogenous class of inputs including parasites, pollens, food antigens, drugs, and metals, it has become clear that fungi are major drivers of allergic disease, with estimates that fungal sensitization occurs in 20-30% of atopic individuals and up to 80% of asthma patients. Fungi are eukaryotic microorganisms that can be found throughout the world in high abundance in both indoor and outdoor environments. Understanding how and why fungi act as triggers of allergic type 2 inflammation will be crucial for combating this important health problem. In recent years, there have been significant advances in our understanding of fungi-induced type 2 immunity, however there is still much we don't understand, including why fungi have a tendency to induce allergic reactions in the first place. Here, we will discuss how fungi trigger type 2 immune responses and posit why this response has been evolutionarily selected for induction during fungal encounter.
Collapse
Affiliation(s)
- Yufan Zheng
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric V. Dang
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Zhang ZQ, Gigliotti F, Wright TW. The Dual Benefit of Sulfasalazine on Pneumocystis Pneumonia-Related Immunopathogenesis and Antifungal Host Defense Does Not Require IL-4Rα-Dependent Macrophage Polarization. Infect Immun 2023; 91:e0049022. [PMID: 36916933 PMCID: PMC10112227 DOI: 10.1128/iai.00490-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Pneumocystis is a respiratory fungal pathogen that is among the most frequent causes of life-threatening pneumonia (PcP) in immunocompromised hosts. Alveolar macrophages play an important role in host defense against Pneumocystis, and several studies have suggested that M2 polarized macrophages have anti-Pneumocystis effector activity. Our prior work found that the immunomodulatory drug sulfasalazine (SSZ) provides a dual benefit during PcP-related immune reconstitution inflammatory syndrome (IRIS) by concurrently suppressing immunopathogenesis while also accelerating macrophage-mediated fungal clearance. The benefits of SSZ were associated with heightened Th2 cytokine production and M2 macrophage polarization. Therefore, to determine whether SSZ improves the outcome of PcP through a mechanism that requires Th2-dependent M2 polarization, RAG2-/- mice lacking interleukin 4 receptor alpha chain (IL-4Rα) on macrophage lineage cells were generated. As expected, SSZ treatment dramatically reduced the severity of PcP-related immunopathogenesis and accelerated fungal clearance in immune-reconstituted RAG2-/- mice. Similarly, SSZ treatment was also highly effective in immune-reconstituted RAG2/IL-4Rα-/- and RAG2/gamma interferon receptor (IFN-γR)-/- mice, demonstrating that neither IL-4Rα-dependent M2 nor IFN-γR-dependent M1 macrophage polarization programs were required for the beneficial effects of SSZ. Despite the fact that macrophages from RAG2/IL-4Rα-/- mice could not respond to the Th2 cytokines IL-4 and IL-13, M2-biased alveolar macrophages were identified in the lungs following SSZ treatment. These data demonstrate that not only does SSZ enhance phagocytosis and fungal clearance in the absence of macrophage IL-4Rα signaling, but also that SSZ promotes M2 macrophage polarization in an IL-4Rα-independent manner. These findings could have implications for the treatment of PcP and other diseases in which M2 polarization is beneficial.
Collapse
Affiliation(s)
- Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Terry W. Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
11
|
Wang Z, Ma Q, Jiang J, Yang X, Zhang E, Tao Y, Hu H, Huang M, Ji N, Zhang M. A comparative study of IL-33 and its receptor ST2 in a C57BL/6 J mouse model of pulmonary Cryptococcus neoformans infection. Med Microbiol Immunol 2023; 212:53-63. [PMID: 36367554 DOI: 10.1007/s00430-022-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33-/- and ST2-/- infected mice. However, mucus production was decreased in IL-33-/- infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33-/- infected mice but not ST2-/- infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33-/- and ST2-/- mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofan Yang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huidi Hu
- Department of Pathology, Nanjing Chest Hospital, Nanjing, 210029, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
12
|
Banday MM, Rao SB, Shankar S, Khanday MA, Finan J, O'Neill E, Coppolino A, Seyfang A, Kumar A, Rinewalt DE, Goldberg HJ, Woolley A, Mallidi HR, Visner G, Gaggar A, Patel KN, Sharma NS. IL-33 mediates Pseudomonas induced airway fibrogenesis and is associated with CLAD. J Heart Lung Transplant 2023; 42:53-63. [PMID: 37014805 PMCID: PMC10260236 DOI: 10.1016/j.healun.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long term outcomes of lung transplantation are impacted by the occurrence of chronic lung allograft dysfunction (CLAD). Recent evidence suggests a role for the lung microbiome in the occurrence of CLAD, but the exact mechanisms are not well defined. We hypothesize that the lung microbiome inhibits epithelial autophagic clearance of pro-fibrotic proteins in an IL-33 dependent manner, thereby augmenting fibrogenesis and risk for CLAD. METHODS Autopsy derived CLAD and non-CLAD lungs were collected. IL-33, P62 and LC3 immunofluorescence was performed and assessed using confocal microscopy. Pseudomonas aeruginosa (PsA), Streptococcus Pneumoniae (SP), Prevotella Melaninogenica (PM), recombinant IL-33 or PsA-lipopolysaccharide was co-cultured with primary human bronchial epithelial cells (PBEC) and lung fibroblasts in the presence or absence of IL-33 blockade. Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate IL-33 expression, autophagy, cytokines and fibroblast differentiation markers. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of Beclin-1. RESULTS Human CLAD lungs demonstrated markedly increased expression of IL-33 and reduced basal autophagy compared to non-CLAD lungs. Exposure of co-cultured PBECs to PsA, SP induced IL-33, and inhibited PBEC autophagy, while PM elicited no significant response. Further, PsA exposure increased myofibroblast differentiation and collagen formation. IL-33 blockade in these co-cultures recovered Beclin-1, cellular autophagy and attenuated myofibroblast activation in a Beclin-1 dependent manner. CONCLUSION CLAD is associated with increased airway IL-33 expression and reduced basal autophagy. PsA induces a fibrogenic response by inhibiting airway epithelial autophagy in an IL-33 dependent manner.
Collapse
Affiliation(s)
- Mudassir M Banday
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Shruthi Shankar
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | | | - Jon Finan
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Edward O'Neill
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Antonio Coppolino
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Seyfang
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Archit Kumar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel E Rinewalt
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hilary J Goldberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ann Woolley
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hari Reddy Mallidi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary Visner
- Boston Children's Hospital. Harvard Medical School
| | | | - Kapil N Patel
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Nirmal S Sharma
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Boston VA Medical Center.
| |
Collapse
|
13
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
14
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
16
|
The M2a Macrophage Phenotype Accompanies Pulmonary Granuloma Resolution in Mmp12 Knock-Out Mice Instilled with Multiwall Carbon Nanotubes. Int J Mol Sci 2021; 22:ijms222011019. [PMID: 34681679 PMCID: PMC8537143 DOI: 10.3390/ijms222011019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Sarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12. When Mmp12 knock-out (KO) mice were instilled with MWCNT, granuloma formation occurred 10 days post-instillation but subsequently resolved at 60 days. Thus, we concluded that MMP12 was essential to granuloma persistence. The aim of the current study was to identify potential mechanisms of granuloma resolution in Mmp12KO mice. Strikingly, an M2 macrophage phenotype was present in Mmp12KO but not in C57Bl/6 mice. Between 10 and 60 days, macrophage populations in MWCNT-instilled Mmp12KO mice demonstrated an M2c to M2a phenotypic shift, with elevations in levels of IL-13, an M2 subtype-regulating factor. Furthermore, the M2 inducer, Apolipoprotein E (ApoE), and Matrix Metalloproteinase-14 (MMP14), a promoter of collagen degradation, were upregulated in 60-day MWCNT-instilled Mmp12KO mice. In conclusion, alveolar macrophages express two M2 phenotypes in Mmp12KO mice: M2c at 10 days when granulomas form, and M2a at 60 days when granulomas are resolving. Findings suggest that granuloma resolution in 60-day Mmp12KO mice requires an M2a macrophage phenotype.
Collapse
|
17
|
Bias of the Immune Response to Pneumocystis murina Does Not Alter the Ability of Neonatal Mice to Clear the Infection. J Fungi (Basel) 2021; 7:jof7100827. [PMID: 34682248 PMCID: PMC8537783 DOI: 10.3390/jof7100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Newborn mice are unable to clear Pneumocystis (PC) infection with the same efficiency as adults due, in part, to their inability to develop a robust immune response to infection until three weeks of age. It is known that infants tend develop a Th2 skewed response to antigen so we sought to determine whether a biased cytokine response altered the clearance of PC infection in neonatal mice. P. murina infection in neonatal mice resulted in increased IL-4 expression by CD4 T cells and myeloid cells, augmented IL-13 secretion within the airways and increased arginase activity in the airways, indicative of Th2-type responses. P. murina-infected IL-4Rα-/- neonates had a shift towards Th1 cytokine production and increased numbers of CD4 and CD8 T cells within the lung as well as elevated levels of P. murina-specific IgG. IFNγ-/- and IL-23 p19-/- mice had altered CD4-T cell-dependent cytokine and cell responses. Though we could alter the T helper cell environment in neonatal knockout mice, there was no loss in the ability of these pups to clear infection. It is possible that the Th2 phenotype normally seen in neonatal mice protects the developing lung from pro-inflammatory immune responses without compromising host defense against P. murina.
Collapse
|
18
|
Charpentier E, Ménard S, Marques C, Berry A, Iriart X. Immune Response in Pneumocystis Infections According to the Host Immune System Status. J Fungi (Basel) 2021; 7:jof7080625. [PMID: 34436164 PMCID: PMC8399367 DOI: 10.3390/jof7080625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The host immune response is critical in Pneumocystis pneumonia (PCP). Immunocompetent hosts can eliminate the fungus without symptoms, while immunodeficient hosts develop PCP with an unsuitable excessive inflammatory response leading to lung damage. From studies based on rodent models or clinical studies, this review aimed to better understand the pathophysiology of Pneumocystis infection by analysing the role of immune cells, mostly lymphocytes, according to the immune status of the infected host. Hence, this review first describes the immune physiological response in infected immunocompetent hosts that are able to eliminate the fungus. The objective of the second part is to identify the immune elements required for the control of the fungus, focusing on specific immune deficiencies. Finally, the third part concentrates on the effect of the different immune elements in immunocompromised subjects during PCP, to better understand which cells are detrimental, and which, on the contrary, are beneficial once the disease has started. This work highlights that the immune response associated with a favourable outcome of the infection may differ according to the immune status of the host. In the case of immunocompetency, a close communication between B cells and TCD4 within tertiary lymphocyte structures appears critical to activate M2 macrophages without much inflammation. Conversely, in the case of immunodeficiency, a pro-inflammatory response including Th1 CD4, cytotoxic CD8, NK cells, and IFNγ release seems beneficial for M1 macrophage activation, despite the impact of inflammation on lung tissue.
Collapse
Affiliation(s)
- Eléna Charpentier
- Department of Parasitology-Mycology, Toulouse University Hospital, 31059 Toulouse, France;
- Infinity, Inserm, CNRS, University of Toulouse III, 31024 Toulouse, France; (S.M.); (C.M.)
- Correspondence: (E.C.); (X.I.)
| | - Sandie Ménard
- Infinity, Inserm, CNRS, University of Toulouse III, 31024 Toulouse, France; (S.M.); (C.M.)
| | - Catherine Marques
- Infinity, Inserm, CNRS, University of Toulouse III, 31024 Toulouse, France; (S.M.); (C.M.)
| | - Antoine Berry
- Department of Parasitology-Mycology, Toulouse University Hospital, 31059 Toulouse, France;
- Infinity, Inserm, CNRS, University of Toulouse III, 31024 Toulouse, France; (S.M.); (C.M.)
| | - Xavier Iriart
- Department of Parasitology-Mycology, Toulouse University Hospital, 31059 Toulouse, France;
- Infinity, Inserm, CNRS, University of Toulouse III, 31024 Toulouse, France; (S.M.); (C.M.)
- Correspondence: (E.C.); (X.I.)
| |
Collapse
|
19
|
Gingerich AD, Norris KA, Mousa JJ. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens 2021; 10:pathogens10020236. [PMID: 33669726 PMCID: PMC7921922 DOI: 10.3390/pathogens10020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
For individuals who are immunocompromised, the opportunistic fungal pathogen Pneumocystis jirovecii is capable of causing life-threatening pneumonia as the causative agent of Pneumocystis pneumonia (PCP). PCP remains an acquired immunodeficiency disease (AIDS)-defining illness in the era of antiretroviral therapy. In addition, a rise in non-human immunodeficiency virus (HIV)-associated PCP has been observed due to increased usage of immunosuppressive and immunomodulating therapies. With the persistence of HIV-related PCP cases and associated morbidity and mortality, as well as difficult to diagnose non-HIV-related PCP cases, an improvement over current treatment and prevention standards is warranted. Current therapeutic strategies have primarily focused on the administration of trimethoprim-sulfamethoxazole, which is effective at disease prevention. However, current treatments are inadequate for treatment of PCP and prevention of PCP-related death, as evidenced by consistently high mortality rates for those hospitalized with PCP. There are no vaccines in clinical trials for the prevention of PCP, and significant obstacles exist that have slowed development, including host range specificity, and the inability to culture Pneumocystis spp. in vitro. In this review, we overview the immune response to Pneumocystis spp., and discuss current progress on novel vaccines and therapies currently in the preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Karen A. Norris
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
20
|
Zharichenko N, Njoku DB. The Role of Pro-Inflammatory and Regulatory Signaling by IL-33 in the Brain and Liver: A Focused Systematic Review of Mouse and Human Data and Risk of Bias Assessment of the Literature. Int J Mol Sci 2020; 21:ijms21113933. [PMID: 32486265 PMCID: PMC7312033 DOI: 10.3390/ijms21113933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family of proteins that have multiple roles in organ-specific inflammation. Many studies suggest diagnostic and therapeutic implications of this cytokine. Many studies have reported pro-inflammatory roles for IL-33 in innate immune responses involving the heart and lung. Recent studies also describe pro-inflammatory and regulatory roles for IL-33 in the pathogenesis of brain and liver disorders in addition to regulatory roles for this cytokine in the heart and lung. In this focused systematic review, we will review the literature regarding pro-inflammatory and regulatory effects of IL-33 in the brain and liver. We will also assess the potential risk of bias in the published literature in order to uncover gaps in the knowledge that will be useful for the scientific community. We utilized guidelines set by preferred reporting items for systemic reviews and meta-analyses. The electronic database was PubMed. Eligibility criteria included organ-specific inflammation in mice and humans, organ-specific inflammation in the central nervous and hepatic systems, and IL-33. Outcomes were pro-inflammatory or regulatory effects of IL-33. Risk of bias in individual studies and across studies was addressed by adapting the Cochrane Rob 2.0 tool. We discovered that a source of bias across the studies was a lack of randomization in human studies. Additionally, because the majority of studies were performed in mice, this could be perceived as a potential risk of bias. Regarding the central nervous system, roles for IL-33 in the development and maturation of neuronal circuits were reported; however, exact mechanisms by which this occurred were not elucidated. IL-33 was produced by astrocytes and endothelial cells while IL-33 receptors were expressed by microglia and astrocytes, demonstrating that these cells are first responders for IL-33; however, in the CNS, IL-33 seems to induce Th1 cytokines such as IL-1β and TNF-α chemokines such as RANTES, MCP-1, MIP-1α, and IP-10, as well as nitric oxide. In the liver, similar risks of bias were determined because of the lack of randomized controlled trials in humans and because the majority of studies were performed in mice. Interestingly, the strain of mouse utilized in the study seemed to affect the role of IL-33 in liver inflammation. Lastly, similar to the brain, IL-33 appeared to have ST2-independent regulatory functions in the liver. Our results reveal plausible gaps in what is known regarding IL-33 in the pathogenesis of brain and liver disorders. We highlight key studies in the lung and heart as examples of advancements that likely occurred because of countless basic and translational studies in this area. More research is needed in these areas in order to assess the diagnostic or therapeutic potential of IL-33 in these disorders.
Collapse
Affiliation(s)
- Nika Zharichenko
- Department of Anesthesiology and Critical Care Medicine Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Dolores B. Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University, The Charlotte R. Bloomberg Childrens Center, 1800 Orleans Street, Suite 6349D, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-955-7610
| |
Collapse
|
21
|
Hoy Z, Wright TW, Elliott M, Malone J, Bhagwat S, Wang J, Gigliotti F. Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis. Infect Immun 2020; 88:e00640-19. [PMID: 31611280 PMCID: PMC6977122 DOI: 10.1128/iai.00640-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
The pulmonary immune response protects healthy individuals against Pneumocystis pneumonia (PcP). However, the immune response also drives immunopathogenesis in patients who develop severe PcP, and it is generally accepted that optimal treatment requires combination strategies that promote fungal killing and also provide effective immunomodulation. The anti-inflammatory drug sulfasalazine programs macrophages for enhanced Pneumocystis phagocytosis and also suppresses PcP-related immunopathogenesis. Anti-Pneumocystis antibody opsonizes Pneumocystis organisms for greater phagocytosis and may also mask antigens that drive immunopathogenesis. Thus, we hypothesized that combining antibody and sulfasalazine would have the dual benefit of enhancing fungal clearance while dampening immunopathogenesis and allow the rescue of severe PcP. To model a clinically relevant treatment scenario in mice, therapeutic interventions were withheld until clear symptoms of pneumonia were evident. When administered individually, both passive antibody and sulfasalazine improved pulmonary function and enhanced Pneumocystis clearance to similar degrees. However, combination treatment with antibody and sulfasalazine produced a more rapid improvement, with recovery of body weight, a dramatic improvement in pulmonary function, reduced lung inflammation, and the rapid clearance of the Pneumocystis organisms. Accelerated fungal clearance in the combination treatment group was associated with a significant increase in macrophage phagocytosis of Pneumocystis Both passive antibody and sulfasalazine resulted in the suppression of Th1 cytokines and a marked increase in lung macrophages displaying an alternatively activated phenotype, which were enhanced by combination treatment. Our data support the concept that passive antibody and sulfasalazine could be an effective and specific adjunctive therapy for PcP, with the potential to accelerate fungal clearance while attenuating PcP-associated immunopathogenesis.
Collapse
Affiliation(s)
- Zachary Hoy
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Terry W Wright
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Elliott
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jane Malone
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Samir Bhagwat
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Jing Wang
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
22
|
Bhagwat SP, Gigliotti F, Wang J, Wang Z, Notter RH, Murphy PS, Rivera-Escalera F, Malone J, Jordan MB, Elliott MR, Wright TW. Intrinsic Programming of Alveolar Macrophages for Protective Antifungal Innate Immunity Against Pneumocystis Infection. Front Immunol 2018; 9:2131. [PMID: 30283457 PMCID: PMC6156154 DOI: 10.3389/fimmu.2018.02131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022] Open
Abstract
Invasive fungal infections, including Pneumocystis Pneumonia (PcP), remain frequent life-threatening conditions of patients with adaptive immune defects. While innate immunity helps control pathogen growth early during infection, it is typically not sufficient for complete protection against Pneumocystis and other human fungal pathogens. Alveolar macrophages (AM) possess pattern recognition molecules capable of recognizing antigenic and structural determinants of Pneumocystis. However, this pathogen effectively evades innate immunity to infect both immunocompetent and immunosuppressed hosts, albeit with differing outcomes. During our studies of mouse models of PcP, the FVB/N strain was identified as unique because of its ability to mount a protective innate immune response against Pneumocystis infection. In contrast to other immunocompetent strains, which become transiently infected prior to the onset of adaptive immunity, FVB/N mice rapidly eradicated Pneumocystis before an adaptive immune response was triggered. Furthermore, FVB/N mice remained highly resistant to infection even in the absence of functional T cells. The effector mechanism of innate protection required the action of functional alveolar macrophages, and the adoptive transfer of resistant FVB/N AMs, but not susceptible CB.17 AMs, conferred protection to immunodeficient mice. Macrophage IFNγ receptor signaling was not required for innate resistance, and FVB/N macrophages were found to display markers of alternative activation. IFNγ reprogrammed resistant FVB/N macrophages to a permissive M1 biased phenotype through a mechanism that required direct activation of the macrophage IFNγR. These results demonstrate that appropriately programmed macrophages provide protective innate immunity against this opportunistic fungal pathogen, and suggest that modulating macrophage function may represent a feasible therapeutic strategy to enhance antifungal host defense. The identification of resistant and susceptible macrophages provides a novel platform to study not only the mechanisms of macrophage-mediated antifungal defense, but also the mechanisms by which Pneumocystis evades innate immunity.
Collapse
Affiliation(s)
- Samir P. Bhagwat
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Francis Gigliotti
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jing Wang
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Zhengdong Wang
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Robert H. Notter
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Patrick S. Murphy
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Fátima Rivera-Escalera
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jane Malone
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Michael B. Jordan
- Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Terry W. Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
23
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
24
|
Tu GW, Shi Y, Zheng YJ, Ju MJ, He HY, Ma GG, Hao GW, Luo Z. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. J Transl Med 2017; 15:181. [PMID: 28851381 PMCID: PMC5576304 DOI: 10.1186/s12967-017-1284-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe inflammatory lung diseases. Methylprednisolone (MP) is a common drug against inflammation in clinic. In this study, we aim to investigate the protective effect of MP on ALI and potential mechanisms. METHODS Male BABL/c mice were injected through tail vein using lipopolysaccharide (LPS, 5 mg/kg) with or without 5 mg/kg MP. Lung mechanics, tissue injury and inflammation were examined. Macrophage subsets in the lung were identified by flow cytometry. Macrophages were cultured from bone marrow of mice with or without MP. Then, we analyzed and isolated the subsets of macrophages. These isolated macrophages were then co-cultured with CD4+ T cells, and the percentage of regulatory T cells (Tregs) was examined. The expression of IL-10 and TGF-β in the supernatant was measured. The Tregs immunosuppression function was examined by T cell proliferation assay. To disclose the mechanism of the induction of Tregs by M2c, we blocked IL-10 or/and TGF-β using neutralizing antibody. RESULTS Respiratory physiologic function was significantly improved by MP treatment. Tissue injury and inflammation were ameliorated in the MP-treated group. After MP treatment, the number of M1 decreased and M2 increased in the lung. In in vitro experiment, MP promoted M2 polarization rather than M1. We then induced M1, M2a and M2c from bone marrow cells. M1 induced more Th17 while M2 induced more CD4+CD25+Fxop3+ Tregs. Compared with M2a, M2c induced more Tregs, and this effect could be blocked by anti-IL-10 and anti-TGF-β antibodies. However, M2a and M2c have no impact on Tregs immunosuppression function. CONCLUSION In conclusion, MP ameliorated ALI by promoting M2 polarization. M2, especially M2c, induced Tregs without any influence on Tregs immunosuppression function.
Collapse
Affiliation(s)
- Guo-wei Tu
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yi Shi
- 0000 0001 0125 2443grid.8547.eBiomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yi-jun Zheng
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Min-jie Ju
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hong-yu He
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Guo-guang Ma
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Guang-wei Hao
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Zhe Luo
- 0000 0001 0125 2443grid.8547.eDepartment of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
25
|
Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, Liang Y, Fan J, Luo H, He Z. Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol 2017; 17:177. [PMID: 28821221 PMCID: PMC5563047 DOI: 10.1186/s12866-017-1086-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Penicillium marneffei (P. marneffei) is a thermally dimorphic fungus pathogen that causes fatal infection. Alveolar macrophages are innate immune cells that have critical roles in protection against pulmonary fungal pathogens and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. The aim of this study was to investigate mouse alveolar macrophage polarization states during P. marneffei infection. Results We used enzyme-linked immunosorbent (ELISA) assays, quantitative real-time PCR (qRT-PCR), and Griess, arginase activity to evaluate the phenotypic markers of alveolar macrophages from BALB/C mice infected with P. marneffei. We then treated alveolar macrophages from infected mice with P. marneffei cytoplasmic yeast antigen (CYA) and investigated alveolar macrophage phenotypic markers in order to identify macrophage polarization in response to P. marneffei antigens. Our results showed: i) P. marneffei infection significantly enhanced the expression of classically activated macrophage (M1)-phenotypic markers (inducible nitric oxide synthase [iNOS] mRNA, nitric oxide [NO], interleukin-12 [IL-12], tumor necrosis factor-alpha [TNF-α]) and alternatively activated macrophage (M2a)-phenotypic markers (arginase1 [Arg1] mRNA, urea) during the second week post-infection. This significantly decreased during the fourth week post-infection. ii) During P. marneffei infection, CYA stimulation also significantly enhanced the expression of M1 and M2a-phenotypic markers, consistent with the results for P. marneffei infection and CYA stimulation preferentially induced M1 subtype. Conclusions The data from the current study demonstrated that alveolar macrophage M1/M2a subtypes were present in host defense against acute P. marneffei infection and that CYA could mimic P. marneffei to induce a host immune response with enhanced M1 subtype. This could be useful for investigating the enhancement of host anti-P. marneffei immune responses and to provide novel ideas for prevention of P. marneffei-infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoying Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Congzheng Mao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Nanning, Guangxi, 530021, China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Meihua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingmin Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiangtao Fan
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Honglin Luo
- Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
26
|
Differential Macrophage Polarization from Pneumocystis in Immunocompetent and Immunosuppressed Hosts: Potential Adjunctive Therapy during Pneumonia. Infect Immun 2017; 85:IAI.00939-16. [PMID: 27993972 DOI: 10.1128/iai.00939-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
We explored differential polarization of macrophages during infection using a rat model of Pneumocystis pneumonia. We observed enhanced pulmonary M1 macrophage polarization in immunosuppressed (IS) hosts, but an M2 predominant response in immunocompetent (IC) hosts following Pneumocystis carinii challenge. Increased inflammation and inducible nitric oxide synthase (iNOS) levels characterized the M1 response. However, macrophage ability to produce nitric oxide was defective. In contrast, the lungs of IC animals revealed a prominent M2 gene signature, and these macrophages effectively elicited an oxidative burst associated with clearance of Pneumocystis In addition, during P. carinii infection the expression of Dectin-1, a critical receptor for recognition and clearance of P. carinii, was upregulated in macrophages of IC animals but suppressed in IS animals. In the absence of an appropriate cytokine milieu for M2 differentiation, Pneumocystis induced an M1 response both in vitro and in vivo The M1 response induced by P. carinii was plastic in nature and reversible with appropriate cytokine stimuli. Finally, we tested whether macrophage polarization can be modulated in vivo and used to help manage the pathogenesis of Pneumocystis pneumonia by adoptive transfer. Treatment with both M1 and M2 cells significantly improved survival of P. carinii-infected IS hosts. However, M2 treatment provided the best outcomes with efficient clearance of P. carinii and reduced inflammation.
Collapse
|
27
|
Deckman JM, Kurkjian CJ, McGillis JP, Cory TJ, Birket SE, Schutzman LM, Murphy BS, Garvy BA, Feola DJ. Pneumocystis infection alters the activation state of pulmonary macrophages. Immunobiology 2016; 222:188-197. [PMID: 27720434 DOI: 10.1016/j.imbio.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
Recent studies show a substantial incidence of Pneumocystis jirovecii colonization and infection in patients with chronic inflammatory lung conditions. However, little is known about the impact of Pneumocystis upon the regulation of pulmonary immunity. We demonstrate here that Pneumocystis polarizes macrophages towards an alternatively activated macrophage-like phenotype. Genetically engineered mice that lack the ability to signal through IL-4 and IL-13 were used to show that Pneumocystis alternative macrophage activation is dependent upon signaling through these cytokines. To determine whether Pneumocystis-induced macrophage polarization would impact subsequent immune responses, we infected mice with Pneumocystis and then challenged them with Pseudomonas aeruginosa 14 days later. In co-infected animals, a higher proportion of macrophages in the alveolar and interstitial spaces expressed both classical and alternatively activated markers and produced the regulatory cytokines TGFβ and IL-10, as well as higher arginase levels than in mice infected with P. aeruginosa alone. Our results suggest that Pneumocystis reprograms the overall macrophage repertoire in the lung to that of a more alternatively-activated setpoint, thereby altering subsequent immune responses. These data may help to explain the association between Pneumocystis infection and decline in pulmonary function.
Collapse
Affiliation(s)
- Jessica M Deckman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street Rm MS409, Lexington, KY 40536, USA
| | - Cathryn J Kurkjian
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street Rm MS409, Lexington, KY 40536, USA
| | - Joseph P McGillis
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street Rm MS409, Lexington, KY 40536, USA
| | - Theodore J Cory
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 S. Limestone Street Suite 292, Lexington, KY 40536, USA
| | - Susan E Birket
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 S. Limestone Street Suite 292, Lexington, KY 40536, USA
| | - Linda M Schutzman
- Department of Internal Medicine, University of Kentucky College of Medicine, 900 S. Limestone Street Suite 303, Lexington, KY 40536, USA
| | - Brian S Murphy
- Department of Internal Medicine, University of Kentucky College of Medicine, 900 S. Limestone Street Suite 303, Lexington, KY 40536, USA
| | - Beth A Garvy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street Rm MS409, Lexington, KY 40536, USA
| | - David J Feola
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 S. Limestone Street Suite 292, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Abstract
Interleukin-33 (IL-33) - a member of the IL-1 family - was originally described as an inducer of type 2 immune responses, activating T helper 2 (TH2) cells and mast cells. Now, evidence is accumulating that IL-33 also potently stimulates group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, TH1 cells, CD8+ T cells and natural killer (NK) cells. This pleiotropic nature is reflected in the role of IL-33 in tissue and metabolic homeostasis, infection, inflammation, cancer and diseases of the central nervous system. In this Review, we highlight the molecular and cellular characteristics of IL-33, together with its major role in health and disease and the potential therapeutic implications of these findings in humans.
Collapse
|
29
|
Lan F, Yuan B, Liu T, Luo X, Huang P, Liu Y, Dai L, Yin H. Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol Immunol 2016; 72:74-80. [PMID: 26991049 DOI: 10.1016/j.molimm.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Interleukin (IL)-33, a newly recognized member of IL-1 family of cytokines, plays an important role in polarizing Th2-associated immunity. Recently growing evidence indicates that IL-33 also represents a crucial mediator of antimicrobial infection. In this study, we investigated the effect of IL-33 on antibacterial response using an acute Staphylococcus aureus peritoneal infection model. Our results showed that IL-33 administration induced a rapid bacterial clearance and markedly reduced the S. aureus infection-related mortality. IL-33-treated mice displayed increased neutrophil influx into the focus of infection and higher concentrations of chemokine CXCL2 in the peritoneum than untreated mice. The beneficial effect of IL-33 priming was related to reversal of the S. aureus-induced reduction of CXCR2 expression on the surface of neutrophils. Furthermore, conditioning of neutrophils by IL-33 led to the enhancement of complement receptor 3 expression induced by S. aureus, which in turn facilitates the phagocytosis of opsonized S. aureus. Finally, neutrophils primed by IL-33 upregulated the production of reactive oxygen species and the subsequent killing activity for S. aureus. All together, these findings suggest that IL-33, through regulating multiple steps of neutrophil-mediated bactericidal function, provides a profound effect in host antimicrobial defense response.
Collapse
Affiliation(s)
- Fang Lan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Baohong Yuan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaochun Luo
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Huang
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Liangcheng Dai
- Intensive Care Unit, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Zhang ZQ, Wang J, Hoy Z, Keegan A, Bhagwat S, Gigliotti F, Wright TW. Neither classical nor alternative macrophage activation is required for Pneumocystis clearance during immune reconstitution inflammatory syndrome. Infect Immun 2015; 83:4594-603. [PMID: 26371121 PMCID: PMC4645389 DOI: 10.1128/iai.00763-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/05/2015] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/pathology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Eosinophils/immunology
- Eosinophils/microbiology
- Eosinophils/pathology
- Gene Expression Regulation
- Host-Pathogen Interactions
- Immune Reconstitution Inflammatory Syndrome/genetics
- Immune Reconstitution Inflammatory Syndrome/immunology
- Immune Reconstitution Inflammatory Syndrome/microbiology
- Immune Reconstitution Inflammatory Syndrome/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/microbiology
- Killer Cells, Natural/pathology
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Macrophage Activation
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- Neutrophils/immunology
- Neutrophils/microbiology
- Neutrophils/pathology
- Pneumocystis/immunology
- Pneumocystis/pathogenicity
- Pneumonia, Pneumocystis/genetics
- Pneumonia, Pneumocystis/immunology
- Pneumonia, Pneumocystis/microbiology
- Pneumonia, Pneumocystis/pathology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/microbiology
- T-Lymphocytes, Helper-Inducer/pathology
- Th1-Th2 Balance
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jing Wang
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zachary Hoy
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Achsah Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samir Bhagwat
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Terry W Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
31
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
32
|
Bishop LR, Lionakis MS, Sassi M, Murphy PM, Hu X, Huang DW, Sherman B, Qiu J, Yang J, Lempicki RA, Kovacs JA. Characterization of chemokine and chemokine receptor expression during Pneumocystis infection in healthy and immunodeficient mice. Microbes Infect 2015; 17:638-50. [PMID: 26052064 PMCID: PMC4554965 DOI: 10.1016/j.micinf.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
We examined gene expression levels of multiple chemokines and chemokine receptors during Pneumocystis murina infection in wild-type and immunosuppressed mice, using microarrays and qPCR. In wild-type mice, expression of chemokines that are ligands for Ccr2, Cxcr3, Cxcr6, and Cxcr2 increased at days 32-41 post-infection, with a return to baseline by day 75-150. Concomitant increases were seen in Ccr2, Cxcr3, and Cxcr6, but not in Cxcr2 expression. Induction of these same factors also occurred in CD40-ligand and CD40 knockout mice but only at a much later time-point, during uncontrolled Pneumocystis pneumonia (PCP). Expression of CD4 Th1 markers was increased in wild-type mice during clearance of infection. Ccr2 and Cx3cr1 knockout mice cleared Pneumocystis infection with kinetics similar to wild-type mice, and all animals developed anti-Pneumocystis antibodies. Upregulation of Ccr2, Cxcr3, and Cxcr6 and their ligands supports an important role for T helper cells and mononuclear phagocytes in the clearance of Pneumocystis infection. However, based on the current and prior studies, no single chemokine receptor appears to be critical to the clearance of Pneumocystis.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaojun Hu
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Da Wei Huang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brad Sherman
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju Qiu
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Richard A Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Abstract
Macrophages are cellular components of the innate immune system that reside in virtually all tissues and contribute to immunity, repair, and homeostasis. The traditional view that all tissue-resident macrophages derive from the bone marrow through circulating monocyte intermediates has dramatically shifted recently with the observation that macrophages from embryonic progenitors can persist into adulthood and self-maintain by local proliferation. In several tissues, however, monocytes also contribute to the resident macrophage population, on which the local environment can impose tissue-specific macrophage functions. These observations have raised important questions: What determines resident macrophage identity and function, ontogeny or environment? How is macrophage proliferation regulated? In this review, we summarize the current knowledge about the identity, proliferation, and turnover of tissue-resident macrophages and how they differ from freshly recruited short-lived monocyte-derived cells. We examine whether macrophage proliferation can be qualified as self-renewal of mature differentiated cells and whether the concepts and molecular pathways are comparable to self-renewal mechanisms in stem cells. Finally, we discuss how improved understanding of macrophage identity and self-renewal could be exploited for therapeutic intervention of macrophage-mediated pathologies by selectively targeting freshly recruited or resident macrophages.
Collapse
Affiliation(s)
- Rebecca Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France; Institute National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | | | | |
Collapse
|
34
|
Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol 2015; 97:1037-48. [DOI: 10.1189/jlb.3ri1214-595r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
|
35
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
36
|
Hoyt TR, Dobrinen E, Kochetkova I, Meissner N. B cells modulate systemic responses to Pneumocystis murina lung infection and protect on-demand hematopoiesis via T cell-independent innate mechanisms when type I interferon signaling is absent. Infect Immun 2015; 83:743-58. [PMID: 25452554 PMCID: PMC4294237 DOI: 10.1128/iai.02639-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
HIV infection results in a complex immunodeficiency due to loss of CD4(+) T cells, impaired type I interferon (IFN) responses, and B cell dysfunctions causing susceptibility to opportunistic infections such as Pneumocystis murina pneumonia and unexplained comorbidities, including bone marrow dysfunctions. Type I IFNs and B cells critically contribute to immunity to Pneumocystis lung infection. We recently also identified B cells as supporters of on-demand hematopoiesis following Pneumocystis infection that would otherwise be hampered due to systemic immune effects initiated in the context of a defective type I IFN system. While studying the role of type I IFNs in immunity to Pneumocystis infection, we discovered that mice lacking both lymphocytes and type I IFN receptor (IFrag(-/-)) developed progressive bone marrow failure following infection, while lymphocyte-competent type I IFN receptor-deficient mice (IFNAR(-/-)) showed transient bone marrow depression and extramedullary hematopoiesis. Lymphocyte reconstitution of lymphocyte-deficient IFrag(-/-) mice pointed to B cells as a key player in bone marrow protection. Here we define how B cells protect on-demand hematopoiesis following Pneumocystis lung infection in our model. We demonstrate that adoptive transfer of B cells into IFrag(-/-) mice protects early hematopoietic progenitor activity during systemic responses to Pneumocystis infection, thus promoting replenishment of depleted bone marrow cells. This activity is independent of CD4(+) T cell help and B cell receptor specificity and does not require B cell migration to bone marrow. Furthermore, we show that B cells protect on-demand hematopoiesis in part by induction of interleukin-10 (IL-10)- and IL-27-mediated mechanisms. Thus, our data demonstrate an important immune modulatory role of B cells during Pneumocystis lung infection that complement the modulatory role of type I IFNs to prevent systemic complications.
Collapse
Affiliation(s)
- Teri R Hoyt
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
37
|
Brown MB, von Chamier M, Allam AB, Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front Immunol 2014; 5:606. [PMID: 25505471 PMCID: PMC4241843 DOI: 10.3389/fimmu.2014.00606] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Tissue macrophages play an important role in all stages of pregnancy, including uterine stromal remodeling (decidualization) before embryo implantation, parturition, and post-partum uterine involution. The activation state and function of utero-placental macrophages are largely dependent on the local tissue microenvironment. Thus, macrophages are involved in a variety of activities such as regulation of immune cell activities, placental cell invasion, angiogenesis, and tissue remodeling. Disruption of the uterine microenvironment, particularly during the early stages of pregnancy (decidualization, implantation, and placentation) can have profound effects on macrophage activity and subsequently impact pregnancy outcome. In this review, we will provide an overview of the temporal and spatial regulation of utero-placental macrophage activation during normal pregnancy in human beings and rodents with a focus on more recent findings. We will also discuss the role of M1/M2 dysregulation within the intrauterine environment during adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Mary B Brown
- D. H. Barron Reproductive and Perinatal Biology Research Program, Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, FL , USA
| | - Maria von Chamier
- D. H. Barron Reproductive and Perinatal Biology Research Program, Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, FL , USA
| | - Ayman B Allam
- D. H. Barron Reproductive and Perinatal Biology Research Program, Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, FL , USA
| | - Leticia Reyes
- D. H. Barron Reproductive and Perinatal Biology Research Program, Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, FL , USA
| |
Collapse
|
38
|
Abstract
Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.
Collapse
Affiliation(s)
- Akash Verma
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - George Deepe
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| |
Collapse
|
39
|
Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, Galosi C, Bartoli A, Romani L. Antifungal Th Immunity: Growing up in Family. Front Immunol 2014; 5:506. [PMID: 25360137 PMCID: PMC4197763 DOI: 10.3389/fimmu.2014.00506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 12/25/2022] Open
Abstract
Fungal diseases represent an important paradigm in immunology since they can result from either the lack of recognition or over-activation of the inflammatory response. Current understanding of the pathophysiology underlying fungal infections and diseases highlights the multiple cell populations and cell-signaling pathways involved in these conditions. A systems biology approach that integrates investigations of immunity at the systems-level is required to generate novel insights into this complexity and to decipher the dynamics of the host–fungus interaction. It is becoming clear that a three-way interaction between the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan metabolism helps support this interaction, being exploited by the mammalian host and commensals to increase fitness in response to fungi via resistance and tolerance mechanisms of antifungal immunity. The cellular and molecular mechanisms that provide immune homeostasis with the fungal biota and its possible rupture in fungal infections and diseases will be discussed within the expanding role of antifungal Th cell responses.
Collapse
Affiliation(s)
- Monica Borghi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Giorgia Renga
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | | | - Vasileios Oikonomou
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Melissa Palmieri
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Claudia Galosi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
40
|
Saini Y, Dang H, Livraghi-Butrico A, Kelly EJ, Jones LC, O'Neal WK, Boucher RC. Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics 2014; 15:726. [PMID: 25204199 PMCID: PMC4247008 DOI: 10.1186/1471-2164-15-726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development. Results Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent. Conclusions Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-726) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Saini
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, 7011 Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zarpelon AC, Cunha TM, Alves-Filho JC, Pinto LG, Ferreira SH, McInnes IB, Xu D, Liew FY, Cunha FQ, Verri WA. IL-33/ST2 signalling contributes to carrageenin-induced innate inflammation and inflammatory pain: role of cytokines, endothelin-1 and prostaglandin E2. Br J Pharmacol 2014; 169:90-101. [PMID: 23347081 DOI: 10.1111/bph.12110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/27/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE IL-33 signals through ST2 receptors and induces adaptive and innate inflammation. IL-33/ST2 is involved in adaptive inflammation-induced pain. Here, we have investigated the contribution of IL-33/ST2-triggered mechanisms to carrageenin-induced innate inflammation. EXPERIMENTAL APPROACH Carrageenin- and IL-33-induced inflammatory responses were assessed in BALB/c- (WT) and ST2-deficient ((-/-) ) mice as follows: oedema (plethysmometer), myeloperoxidase activity (colorimetric assay), mechanical hyperalgesia (electronic version of von Frey filaments), cytokine levels (ELISA), PGE2 (RIA), mRNA expression (quantitative PCR), drug treatments targeting leukocyte recruitment (fucoidin), TNF-α (infliximab), CXCL1 (antibody to CXCL1), IL-1 (IL-1ra), endothelin ETA (clazosentan) and ETB (BQ788) receptors and COX (indomethacin). KEY RESULTS Carrageenin injection increased ST2 and IL-33 mRNA expression and IL-33 production in paw skin samples. Carrageenin-induced paw oedema, hyperalgesia and myeloperoxidase activity were reduced in ST2(-/-) compared with WT mice, effects mimicked by IL-33 injection in the paw. Furthermore, IL-33-induced hyperalgesia was reduced by fucoidin suggesting a role for recruited leukocytes in its hyperalgesic effect. IL-33-induced hyperalgesia in naïve mice was reduced by treatments targeting TNF, CXCL1, IL-1, endothelin receptors and COX while carrageenin-induced ST2-dependent TNF-α, CXCL1, IL-1β, IL-10 and PGE2 production and preproET-1 mRNA expression. Combining IL-33 and carrageenin at doses that were ineffective as single treatment induced significant hyperalgesia, oedema, myeloperoxidase activity and cytokine production in a ST2-dependent manner. CONCLUSIONS AND IMPLICATIONS IL-33/ST2 signalling triggers the production of inflammatory mediators contributing to carrageenin-induced inflammation. These data reinforces the importance of IL-33/ST2 signalling as a target in innate inflammation and inflammatory pain.
Collapse
Affiliation(s)
- A C Zarpelon
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol 2014; 7:1023-35. [PMID: 25073676 DOI: 10.1038/mi.2014.65] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/21/2014] [Indexed: 02/04/2023]
Abstract
Macrophages are innate immune cells that possess unique abilities to polarize toward different phenotypes. Classically activated macrophages are known to have major roles in host defense against various microbial pathogens, including fungi, while alternatively activated macrophages are instrumental in immune-regulation and wound healing. Macrophages in the lungs are often the first responders to pulmonary fungal pathogens, and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. This review discusses the distinct macrophage polarization states and their roles during pulmonary fungal infection. We focus primarily on Cryptococcus neoformans and Pneumocystis model systems as disease resolution of these two opportunistic fungal pathogens is linked to classically or alternatively activated macrophages, respectively. Further research considering macrophage polarization states that result in anti-fungal activity has the potential to provide a novel approach for the treatment of fungal infections.
Collapse
|
43
|
Tran VG, Cho HR, Kwon B. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans. Immune Netw 2014; 14:201-6. [PMID: 25177252 PMCID: PMC4148490 DOI: 10.4110/in.2014.14.4.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023] Open
Abstract
IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Vuvi G Tran
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714, Korea. ; Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714, Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea. ; Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714, Korea
| |
Collapse
|
44
|
Kim J, Kim W, Le HT, Moon UJ, Tran VG, Kim HJ, Jung S, Nguyen QT, Kim BS, Jun JB, Cho HR, Kwon B. IL-33-induced hematopoietic stem and progenitor cell mobilization depends upon CCR2. THE JOURNAL OF IMMUNOLOGY 2014; 193:3792-802. [PMID: 25143444 DOI: 10.4049/jimmunol.1400176] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-33 has been implicated in the pathogenesis of asthma, atopic allergy, anaphylaxis, and other inflammatory diseases by promoting the production of proinflammatory cytokines and chemokines or Th2 immune responses. In this study, we analyzed the in vivo effect of IL-33 administration. IL-33 markedly promoted myelopoiesis in the bone marrow and myeloid cell emigration. Concomitantly, IL-33 induced hematopoietic stem and progenitor cell (HSPC) mobilization and extramedullary hematopoiesis. HSPC mobilization was mediated mainly through increased levels of CCL7 produced by vascular endothelial cells in response to IL-33. In vivo treatment of IL-33 rapidly induced phosphorylation of ERK, JNK, and p38, and inhibition of these signaling molecules completely blocked the production of CCL7 induced by IL-33. Consistently, inhibitor of CCR2 markedly reduced IL-33-mediated HSPC mobilization in vivo and migration of HSPCs in response to CCL7 in vitro. IL-33-mobilized HSPCs were capable of homing to, and of long-term reconstitution in, the bone marrow of irradiated recipients. Immune cells derived from these recipients had normal antifungal activity. The ability of IL-33 to promote migration of HSPCs and myeloid cells into the periphery and to regulate their antifungal activity represents a previously unrecognized role of IL-33 in innate immunity. These properties of IL-33 have clinical implications in hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714
| | - Wonyoung Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714
| | - Hongnga T Le
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - U J Moon
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Vuvi G Tran
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Hyun J Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Soyeon Jung
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Quang-Tam Nguyen
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Byung-Sam Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749
| | - Jae-Bum Jun
- Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714; and
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714; Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea 682-714; School of Biological Sciences, University of Ulsan, Ulsan, Korea 680-749;
| |
Collapse
|
45
|
A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS One 2014; 9:e88714. [PMID: 24551140 PMCID: PMC3925157 DOI: 10.1371/journal.pone.0088714] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway.
Collapse
|
46
|
Hochstedler CM, Leidinger MR, Maher-Sturm MT, Gibson-Corley KN, Meyerholz DK. Immunohistochemical detection of arginase-I expression in formalin-fixed lung and other tissues. J Histotechnol 2013; 36:128-134. [PMID: 25332513 DOI: 10.1179/2046023613y.0000000032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arginases are a family of enzymes that convert L-arginine to L-ornithine and urea. Alterations in expression of the isoform arginase-I are increasingly recognized in lung diseases such as asthma and cystic fibrosis. To define expression of murine arginase-I in formalin-fixed tissues, including lung, an immunohistochemical protocol was validated in murine liver; a tissue that has distinct zonal arginase-I expression making it a useful control. In the lung, arginase-I immunostaining was observed in airway surface epithelium and this decreased from large to small airways; with a preferential staining of ciliated epithelium versus Clara cells and alveolar epithelia. In submucosal glands, the ducts and serous acini had moderate immunostaining, which was absent in mucous cells. Focal immunostaining was observed in alveolar macrophages, endothelial cells, pulmonary vein cardiomyocytes, pulmonary artery smooth muscle, airway smooth muscle and neurons of ganglia of the lung. Arginase-I immunostaining was also detected in other tissues including salivary glands, pancreas, liver, skin, and intestine. Differential immunostaining was observed between sexes in submandibular salivary glands; arginase-I was diffusely expressed in the convoluted granular duct cells of females, but was rarely noted in males. Strain specific differences were not detected. In one mouse with an incidental case of lymphoma, neoplastic lymphocytes lacked arginase-I immunostaining, in contrast to immunostaining detected in non-neoplastic lymphocytes of lymphoid tissues. The use of liver tissue to validate arginase-I immunohistochemistry produced consistent expression patterns in mice and this approach can be useful to enhance consistency of arginase-I immunohistochemical studies.
Collapse
Affiliation(s)
- Christine M Hochstedler
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mary T Maher-Sturm
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Deleon-Pennell KY, de Castro Brás LE, Lindsey ML. Circulating Porphyromonas gingivalis lipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiol Rep 2013; 1:e00079. [PMID: 24159380 PMCID: PMC3804276 DOI: 10.1002/phy2.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) circulates systemically in over 50% of periodontal disease (PD) patients and is associated with increased matrix metalloproteinase (MMP)-9. We hypothesized that low systemic Pg-LPS would stimulate an inflammatory response in the left ventricle (LV) through MMP-9, leading to a decrease in cardiac function. Wild-type (WT) and MMP-9 null mice (4-7 months old) were exposed for 1 or 28 days to low dose Pg-LPS or saline (n ≥ 6/group). MMP-9 significantly increased in WT mice LV at 1 and 28 days of exposure, compared to control (P < 0.05 for both). Fractional shortening decreased subtly yet significantly in WT mice by day 28 (31 ± 1%) compared to control (35 ± 1%; P < 0.05), and this decrease was attenuated in null (34 ± 1%) mice. Plasma cardiac troponin I levels were elevated in WT mice at day 28. Macrophage-related factors increased over twofold in WT plasma and LV after day 1 (monocyte chemoattractant protein-5, macrophage inflammatory protein (MIP)-1α, MIP-1γ, stem cell factor, Ccl12, Ccl9, Il8rb, Icam1, Itgb2, and Spp1; all P < 0.05), indicating a moderate inflammatory response. Levels returned to baseline by day 28, suggesting tolerance to Pg-LPS. In contrast, macrophage-related factors remained elevated in day 28 null mice, indicating a sustained defense against Pg-LPS stimulation. Consistent with these findings, LV macrophage numbers increased in both groups at day 1 and returned to baseline by day 28 in the WT mice only. Major histocompatibility complex (MCH) II remained elevated in the null group at day 28, confirming Pg-tolerance in the WT. Interestingly Il-1α, a regulator of macrophage immunosuppression, increased in the plasma of WT mice only on day 28, suggesting that Il-1α plays a role in tolerance in a MMP-9-dependent manner. In conclusion, circulating Pg-LPS induced tolerance in WT mice, resulting in significant LV changes and subtle cardiac dysfunction. MMP-9 played a major role in the regulation of chronic systemic inflammation and associated cardiac dysfunction.
Collapse
Affiliation(s)
- Kristine Y Deleon-Pennell
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi
| | - Lisandra E de Castro Brás
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi
| | - Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi ; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center Jackson, Mississippi
| |
Collapse
|
48
|
Yin H, Li X, Hu S, Liu T, Yuan B, Ni Q, Lan F, Luo X, Gu H, Zheng F. IL-33 promotes Staphylococcus aureus-infected wound healing in mice. Int Immunopharmacol 2013; 17:432-8. [DOI: 10.1016/j.intimp.2013.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
|
49
|
Perez-Nazario N, Rangel-Moreno J, O'Reilly MA, Pasparakis M, Gigliotti F, Wright TW. Selective ablation of lung epithelial IKK2 impairs pulmonary Th17 responses and delays the clearance of Pneumocystis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4720-30. [PMID: 24078701 DOI: 10.4049/jimmunol.1301679] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pneumocystis is an atypical fungal pathogen that causes severe, often fatal pneumonia in immunocompromised patients. Healthy humans and animals also encounter this pathogen, but they generate a protective CD4(+) T cell-dependent immune response that clears the pathogen with little evidence of disease. Pneumocystis organisms attach tightly to respiratory epithelial cells, and in vitro studies have demonstrated that this interaction triggers NF-κB-dependent epithelial cell responses. However, the contribution of respiratory epithelial cells to the normal host response to Pneumocystis remains unknown. IκB kinase 2 (IKK2) is the upstream kinase that is critical for inducible NF-κB activation. To determine whether IKK2-dependent lung epithelial cell (LEC) responses contribute to the anti-Pneumocystis immune response in vivo, transgenic mice with LEC-specific deletion of IKK2 (IKK2(ΔLEC)) were generated. Compared to wild-type mice, IKK2(ΔLEC) mice exhibited a delayed onset of Th17 and B cell responses in the lung and delayed fungal clearance. Importantly, delayed Pneumocystis clearance in IKK2(ΔLEC) mice was associated with an exacerbated immune response, impaired pulmonary function, and altered lung histology. These data demonstrate that IKK2-dependent LEC responses are important regulators of pulmonary adaptive immune responses and are required for optimal host defense against Pneumocystis infection. LECs likely set the threshold for initiation of the pulmonary immune response and serve to prevent exacerbated lung inflammation by promoting the rapid control of respiratory fungal infection.
Collapse
Affiliation(s)
- Nelissa Perez-Nazario
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
| | | | | | | | | | | |
Collapse
|
50
|
Searles S, Gauss K, Wilkison M, Hoyt TR, Dobrinen E, Meissner N. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3884-95. [PMID: 23975863 DOI: 10.4049/jimmunol.1301344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.
Collapse
Affiliation(s)
- Steve Searles
- Department of Pathology, University of California School of Medicine, La Jolla, CA 92093
| | | | | | | | | | | |
Collapse
|