1
|
Doroftei B, Ilie OD, Maftei R, Scripcariu IS, Armeanu T, Stoian IL, Ilea C. A Narrative Review Discussing Vasectomy-Related Impact upon the Status of Oxidative Stress and Inflammation Biomarkers and Semen Microbiota. J Clin Med 2023; 12:jcm12072671. [PMID: 37048754 PMCID: PMC10095584 DOI: 10.3390/jcm12072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Male contraceptive approaches besides tubal sterilization involve vasectomy and represent the method of choice among midlife men in developing countries thanks to many advantages. However, the subsidiary consequences of this intervention are insufficiently explored since the involved mechanisms may offer insight into a much more complex picture. Methods: Thus, in this manuscript, we aimed to reunite all available data by searching three separate academic database(s) (PubMed, Web of Knowledge, and Scopus) published in the past two decades by covering the interval 2000–2023 and using a predefined set of keywords and strings involving “oxidative stress” (OS), “inflammation”, and “semen microbiota” in combination with “humans”, “rats”, and “mice”. Results: By following all evidence that fits in the pre-, post-, and vasectomy reversal (VR) stages, we identified a total of n = 210 studies from which only n = 21 were finally included following two procedures of eligibility evaluation. Conclusions: The topic surrounding this intricate landscape has created debate since the current evidence is contradictory, limited, or does not exist. Starting from this consideration, we argue that further research is mandatory to decipher how a vasectomy might disturb homeostasis.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue no 20A, 700505 Iasi, Romania
| | - Radu Maftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| |
Collapse
|
2
|
Arif A, Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Dichotomous role of autophagy in cancer. ASIAN BIOMED 2022; 16:111-120. [PMID: 37551378 PMCID: PMC10321184 DOI: 10.2478/abm-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that plays physiological and pathological roles in a cell. Its effect on cellular metabolism, the proteome, and the number and quality of organelles, diversely holds the potential to alter cellular functions. It acts paradoxically in cancer as a tumor inhibitor as well as a tumor promoter. In the early stage of tumorigenesis, it prevents tumor initiation by the so-called "quality control mechanism" and suppresses cancer progression. For late-staged tumors that are exposed to stress, it acts as a vibrant process of degradation and recycling that promotes cancer by facilitating metastasis. Despite this dichotomy, the crucial role of autophagy is evident in cancer, and associated with mammalian targets of rapamycin (mTOR), p53, and Ras-derived major cancer networks. Irrespective of the controversy regarding autophagic manipulation, promotion and suppression of autophagy act as potential therapeutic targets in cancer treatment and may provide various anticancer therapies.
Collapse
Affiliation(s)
- Amin Arif
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muhammad Babar Khawar
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Narowal, Narowal51750, Pakistan
| | - Rabia Mehmood
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Okara, Okara56130, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| |
Collapse
|
3
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Kulshrestha A, Katara GK, Ibrahim SA, Riehl VE, Schneiderman S, Bilal M, Young AN, Levine S, Fleetwood S, Dolan J, Gilman-Sachs A, Beaman KD. In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses. Mol Oncol 2020; 14:2436-2454. [PMID: 32797726 PMCID: PMC7530789 DOI: 10.1002/1878-0261.12782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor acidity is the key metabolic feature promoting cancer progression and is modulated by pH regulators on a cancer cell's surface that pump out excess protons/lactic acid for cancer cell survival. Neutralizing tumor acidity improves the therapeutic efficacy of current treatments including immunotherapies. Vacuolar-ATPase (V-ATPase) proton pumps encompass unique plasma membrane-associated subunit isoforms, making this molecule an important target for anticancer therapy. Here, we examined the in vivo therapeutic efficacy of an antibody (a2v-mAB) targeting specific V-ATPase-'V0a2' surface isoform in controlling ovarian tumor growth. In vitro a2v-mAb treatment inhibited the proton pump activity in ovarian cancer (OVCA) cells. In vivo intraperitoneal a2v-mAb treatment drastically delayed ovarian tumor growth with no measurable in vivo toxicity in a transplant tumor model. To explore the possible mechanism causing delayed tumor growth, histochemical analysis of the a2v-mAb-treated tumor tissues displayed high immune cell infiltration (M1-macrophages, neutrophils, CD103+ cells, and NK cells) and an enhanced antitumor response (iNOS, IFN-y, IL-1α) compared to control. There was marked decrease in CA-125-positive cancer cells and an enhanced active caspase-3 expression in a2v-mAb-treated tumors. RNA-seq analysis of a2v-mAb tumor tissues further revealed upregulation of apoptosis-related and toll-like receptor pathway-related genes. Indirect coculture of a2v-mAb-treated OVCA cells with human PBMCs in an unbuffered medium led to an enhanced gene expression of antitumor molecules IFN-y, IL-17, and IL-12-A in PBMCs, further validating the in vivo antitumor responses. In conclusion, V-ATPase inhibition using a monoclonal antibody directed against the V0a2 isoform increases antitumor immune responses and could therefore constitute an effective treatment strategy in OVCA.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Valerie E Riehl
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sylvia Schneiderman
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mahmood Bilal
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandria N Young
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, IL, USA
| | - Shayna Levine
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - James Dolan
- Department of Obstetrics & Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
5
|
Ibrahim SA, Kulshrestha A, Katara GK, Riehl V, Sahoo M, Beaman KD. Cancer-associated V-ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol Oncol 2020; 14:590-610. [PMID: 31925882 PMCID: PMC7053242 DOI: 10.1002/1878-0261.12630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tumors and neutrophils undergo an unexpected interaction, in which products released by tumor cells interact to support neutrophils that in turn support cancer growth, angiogenesis, and metastasis. A key protein that is highly expressed by cancer cells in tumors is the a2 isoform V‐ATPase (a2V). A peptide from a2V (a2NTD) is secreted specifically by cancer cells, but not normal cells, into the tumor microenvironment. This peptide reprograms neutrophils to promote angiogenesis, cancer cell invasiveness, and neutrophil recruitment. Here, we provide evidence that cancer‐associated a2V regulates the life span of protumorigenic neutrophils by influencing the intrinsic pathway of apoptosis. Immunohistochemical analysis of human cancer tissue sections collected from four different organs shows that levels of a2NTD and neutrophil counts are increased in cancer compared with normal tissues. Significant increases in neutrophil counts were present in both poorly and moderately differentiated tumors. In addition, there is a positive correlation between the number of neutrophils and a2NTD expression. Human neutrophils treated with recombinant a2NTD show significantly delayed apoptosis, and such prolonged survival was dependent on NF‐κB activation and ROS generation. Induction of antiapoptotic protein expression (Bcl‐xL and Bcl‐2A1) and decreased expression of proapoptotic proteins (Bax, Apaf‐1, caspase‐3, caspase‐6, and caspase‐7) were a hallmark of these treated neutrophils. Autocrine secretion of prosurvival cytokines of TNF‐α and IL‐8 by treated neutrophils prolongs their survival. Our findings highlight the important role of cancer‐associated a2V in regulating protumorigenic innate immunity, identifying a2V as a potential important target for cancer therapy.
Collapse
Affiliation(s)
- Safaa A Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Valerie Riehl
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Manoranjan Sahoo
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
6
|
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19:12. [PMID: 31969156 PMCID: PMC6975070 DOI: 10.1186/s12943-020-1138-4] [Citation(s) in RCA: 875] [Impact Index Per Article: 218.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, as a type II programmed cell death, plays crucial roles with autophagy-related (ATG) proteins in cancer. Up to now, the dual role of autophagy both in cancer progression and inhibition remains controversial, in which the numerous ATG proteins and their core complexes including ULK1/2 kinase core complex, autophagy-specific class III PI3K complex, ATG9A trafficking system, ATG12 and LC3 ubiquitin-like conjugation systems, give multiple activities of autophagy pathway and are involved in autophagy initiation, nucleation, elongation, maturation, fusion and degradation. Autophagy plays a dynamic tumor-suppressive or tumor-promoting role in different contexts and stages of cancer development. In the early tumorigenesis, autophagy, as a survival pathway and quality-control mechanism, prevents tumor initiation and suppresses cancer progression. Once the tumors progress to late stage and are established and subjected to the environmental stresses, autophagy, as a dynamic degradation and recycling system, contributes to the survival and growth of the established tumors and promotes aggressiveness of the cancers by facilitating metastasis. This indicates that regulation of autophagy can be used as effective interventional strategies for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, 100044, China.,Department of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Rao Z, Pace S, Jordan PM, Bilancia R, Troisi F, Börner F, Andreas N, Kamradt T, Menche D, Rossi A, Serhan CN, Gerstmeier J, Werz O. Vacuolar (H +)-ATPase Critically Regulates Specialized Proresolving Mediator Pathways in Human M2-like Monocyte-Derived Macrophages and Has a Crucial Role in Resolution of Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1031-1043. [PMID: 31300512 DOI: 10.4049/jimmunol.1900236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
Alternative (M2)-polarized macrophages possess high capacities to produce specialized proresolving mediators (SPM; i.e., resolvins, protectins, and maresins) that play key roles in resolution of inflammation and tissue regeneration. Vacuolar (H+)-ATPase (V-ATPase) is fundamental in inflammatory cytokine trafficking and secretion and was implicated in macrophage polarization toward the M2 phenotype, but its role in SPM production and lipid mediator biosynthesis in general is elusive. In this study, we show that V-ATPase activity is required for the induction of SPM-biosynthetic pathways in human M2-like monocyte-derived macrophages (MDM) and consequently for resolution of inflammation. Blockade of V-ATPase by archazolid during IL-4-induced human M2 polarization abrogated 15-lipoxygenase-1 expression and prevented the related biosynthesis of SPM in response to pathogenic Escherichia coli, assessed by targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics. In classically activated proinflammatory M1-like MDM, however, the biosynthetic machinery for lipid mediator formation was independent of V-ATPase activity. Targeting V-ATPase in M2 influenced neither IL-4-triggered JAK/STAT6 nor the mTOR complex 1 signaling but strongly suppressed the ERK-1/2 pathway. Accordingly, the ERK-1/2 pathway contributes to 15-lipoxygenase-1 expression and SPM formation in M2-like MDM. Targeting V-ATPase in vivo delayed resolution of zymosan-induced murine peritonitis accompanied by decreased SPM levels without affecting proinflammatory leukotrienes or PGs. Together, our data propose that V-ATPase regulates 15-lipoxygenase-1 expression and consequent SPM biosynthesis involving ERK-1/2 during M2 polarization, implying a crucial role for V-ATPase in the resolution of inflammation.
Collapse
Affiliation(s)
- Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; and
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|
8
|
Sisti G, Di Tommaso M, Paccosi S, Parenti A, Di Rienzo G, Campana D, Witkin SS. Sex-specific influence of the vacuolar adenosine triphosphatase a2 isoform on outcome in twin pregnancies. Am J Reprod Immunol 2018; 81:e13071. [PMID: 30418688 DOI: 10.1111/aji.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022] Open
Abstract
PROBLEM The influence of fetal sex on immune responses in multifetal pregnancies remains incompletely elucidated. The a2 isoform of vacuolar adenosine triphosphatase (a2V) is expressed on the cell membrane of maternal lymphoid cells and contributes to down-regulation of pro-inflammatory immune responses during gestation. The association between fetal sex and a2V expression on peripheral blood mononuclear cells (PBMCs) from mothers with twin gestations was assessed. METHOD OF STUDY Patients in this prospective study were 93 women with twin pregnancies in their mid-second or early third trimester-27 with two male, 30 with two female and 36 with one male and one female fetus. PBMCs were isolated and a2V was measured by ELISA in cell lysates. Demographic and clinical data were subsequently obtained and correlations between a2V and fetal sex, birthweight and pregnancy outcome were assessed by the Mann-Whitney and Spearman rank correlation tests. RESULTS The mean a2V level was highest when both fetuses were male (2.0 ng/mL) and lowest when both were female (1.5 ng/mL; P = 0.0184). Only when both fetuses were female did the a2V concentration negatively correlate with birthweight of the 1st (P = 0.0011) and 2nd (P = 0.0044) born fetus and with gestational age at delivery (P = 0.0018). There were no associations between a2V and these outcomes in male only or mixed twin pregnancies. CONCLUSION We conclude that the a2V-mediated regulation of maternal immunity during twin pregnancies is influenced by fetal sex.
Collapse
Affiliation(s)
- Giovanni Sisti
- Department of Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, New York.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York
| | | | - Sara Paccosi
- Department of Obstetrics and Gynecology, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Obstetrics and Gynecology, University of Florence, Florence, Italy
| | - Giulia Di Rienzo
- Department of Obstetrics and Gynecology, University of Florence, Florence, Italy
| | - Dante Campana
- Department of Obstetrics and Gynecology, University of Florence, Florence, Italy
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York.,Institute of Tropical Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
9
|
Sahoo M, Katara GK, Bilal MY, Ibrahim SA, Kulshrestha A, Fleetwood S, Suzue K, Beaman KD. Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget 2018; 9:33215-33231. [PMID: 30237863 PMCID: PMC6145706 DOI: 10.18632/oncotarget.26061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023] Open
Abstract
The interaction of recruited immune effector cells and cancer cells within tumor microenvironment (TME) shapes the fate of cancer progression and metastasis. Many cancers including breast cancer, express a specific vacuolar ATPase (a2V) on their cell surface which acidifies the extracellular milieu helping cancer cell proliferation and metastasis. To understand the role of immune cell-associated-a2V during breast tumor pathogenesis, we knocked-out a2V (KO) from the hematopoietic stem cells (HSC) and generated breast tumors in mice. The a2V-KO mice developed faster growing, larger, and metastatic breast tumors compared to control mice. Further investigation of the TME revealed a significant reduction in the presence of CD4+ and CD8+ T cells in the a2V-KO tumors. Targeted RNA-Seq of the cells of the TME demonstrated that pro-inflammatory cytokines, death receptors, death receptor ligands, and cytotoxic effectors were significantly down-regulated within the a2V-KO TME. Interestingly, analysis of immune cells in the blood, spleen, and thymus of the non-tumor bearing a2V-KO mice revealed a significant decrease in CD4+ and CD8+ T cell populations. For the first time, this study demonstrates that inhibition of V-ATPase expression in HSC leads to a decrease in CD4+ and CD8+ T cell populations and thus promotes breast tumor growth and metastasis.
Collapse
Affiliation(s)
- Manoranjan Sahoo
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mahmood Y Bilal
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kimiko Suzue
- Department of Pathology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
10
|
Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer 2018; 17:41. [PMID: 29448933 PMCID: PMC5815226 DOI: 10.1186/s12943-018-0811-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Vacuolar ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. The structure of V-ATPase has been highly conserved among all eukaryotic cells and is involved in diverse functions across species. V-ATPase is best known for its acidification of endosomes and lysosomes and is also important for luminal acidification of specialized cells. Several reports have suggested the involvement of V-ATPase in maintaining an alkaline intracellular and acidic extracellular pH thereby aiding in proliferation and metastasis of cancer cells respectively. Increased expression of V-ATPase and relocation to the plasma membrane aids in cancer modulates key tumorigenic cell processes like autophagy, Warburg effect, immunomoduation, drug resistance and most importantly cancer cell signaling. In this review, we discuss the direct role of V-ATPase in acidification and indirect regulation of signaling pathways, particularly Notch Signaling.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
11
|
Beaman KD, Dambaeva S, Katara GK, Kulshrestha A, Gilman-Sachs A. The immune response in pregnancy and in cancer is active and supportive of placental and tumor cell growth not their destruction. Gynecol Oncol 2017; 145:476-480. [PMID: 28477880 DOI: 10.1016/j.ygyno.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While many investigators have described the biochemical and physiological similarities between tumor cells and trophoblast cells, in this discourse we will compare primarily their leucocytes, which constitute a large portion of the tumor and its microenvironment as well as the placenta and its microenvironment. There is a remarkable similarity between the cells that support placental growth and development and tumor growth and development. In many cases over half of the cells present in the tumor and the placenta are non-tumor or nontrophoblast cells, immune cells. Most of these immune cells are prevented from attacking the fetal derived placental cells and the self-derived tumor cells. Nevertheless, these leucocytes, in our opinion, are very active and support tumor and placental cell growth through the production of growth factors and angiogenic factors. These cells do this by activating the portion of the immune response which initiates and helps control tissue repair.
Collapse
Affiliation(s)
- Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Svetlana Dambaeva
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
12
|
Ibrahim SA, Kulshrestha A, Katara GK, Amin MA, Beaman KD. Cancer derived peptide of vacuolar ATPase 'a2' isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci Rep 2016; 6:36865. [PMID: 27845385 PMCID: PMC5109272 DOI: 10.1038/srep36865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/20/2016] [Indexed: 01/14/2023] Open
Abstract
Neutrophils play significant regulatory roles within the tumor microenvironment by directly promoting tumor progression that leads to poor clinical outcomes. Identifying the tumor associated molecules that regulate neutrophil infiltration into tumors may provide new and specific therapeutic targets for cancer treatment. The a2-isoform of vacuolar ATPase (a2V) is uniquely and highly expressed on cancer cell plasma membrane. Cancer cells secrete a peptide from a2V (a2NTD) that promotes the pro-tumorigenic properties of neutrophils. This provides a2V the propensity to control neutrophil migration. Here, we report that the treatment of human neutrophils with recombinant a2NTD leads to neutrophil adherence and polarization. Moreover, a2NTD treatment activates surface adhesion receptors, as well as FAK and Src kinases that are essential regulators of the migration process in neutrophils. Functional analysis reveals that a2NTD can act as a chemo-attractant and promotes neutrophil migration. In addition, a2Neuɸ secrete high levels of IL-8 via NF-κB pathway activation. Confirmatory assays demonstrate that the promoted migration of a2Neuɸ was dependent on the autocrine secretion of IL-8 from a2Neuɸ. These findings demonstrate for the first time the direct regulatory role of cancer associated a2-isoform V-ATPase on neutrophil migration, suggesting a2V as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Safaa A. Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K. Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Kenneth D. Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
13
|
Brown JS. Cancer Immune Equilibrium and Schizophrenia Have Similar Interferon-γ, Tumor Necrosis Factor-α, and Interleukin Expression: A Tumor Model of Schizophrenia. Schizophr Bull 2016; 42:1407-1417. [PMID: 27169466 PMCID: PMC5049534 DOI: 10.1093/schbul/sbw064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For at least a century, a debate has continued as to whether cancer risk is reduced in schizophrenia. Genetic studies have also suggested the 2 conditions may share protein transcriptional pathways. The author predicted that if the pathophysiology of schizophrenia confers protection from cancer, then the immunology of schizophrenia should reflect a state of tumor suppression, ie, the opposite of tumor escape. To examine this possibility, the author performed a literature search for measurements of cytokines in drug-naïve first episode subjects with schizophrenia for comparison with cytokine expression in tumor escape vs tumor suppression. The comparison showed that instead of either tumor suppression or escape, schizophrenia appears to be in a state of tumor equilibrium. Based on this finding, the author hypothesized that the clinical presentation of schizophrenia may involve cell transformation similar to an early stage of cancer initiation or an attenuated tumorigenesis. While this condition could reflect the presence of an actual tumor such as an ovarian teratoma causing anti-NMDA receptor encephalitis, it would only explain a small percentage of cases. To find a more likely tumor model, the author then compared the cytokine profile of schizophrenia to individual cancers and found the best match was melanoma. To demonstrate the viability of the theory, the author compared the hallmarks, emerging hallmarks, and enabling characteristics of melanoma to schizophrenia and found that many findings in schizophrenia are understood if schizophrenia is a condition of attenuated tumorigenesis.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA
| |
Collapse
|
14
|
Abstract
The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid-base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor's metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations targeting this vulnerable side of cancer development. It also analyzes the double-edged approach, which consists in pharmacologically increasing intracellular proton production and simultaneously decreasing proton extrusion creating intracellular acidity, acid stress, and eventual apoptosis.
Collapse
Affiliation(s)
- Tomas Koltai
- Obra Social del Personal de la, Industria Alimenticia, Filial Capital Federal, Republic of Argentina
| |
Collapse
|
15
|
Ibrahim SA, Katara GK, Kulshrestha A, Jaiswal MK, Amin MA, Beaman KD. Breast cancer associated a2 isoform vacuolar ATPase immunomodulates neutrophils: potential role in tumor progression. Oncotarget 2016; 6:33033-45. [PMID: 26460736 PMCID: PMC4741747 DOI: 10.18632/oncotarget.5439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
In invasive breast cancer, tumor associated neutrophils (TAN) represent a significant portion of the tumor mass and are associated with increased angiogenesis and metastasis. Identifying the regulatory factors that control TAN behavior will help in developing ideal immunotherapies. Vacuolar ATPases (V-ATPases), multi-subunit proton pumps, are highly expressed in metastatic breast cancer cells. A cleaved peptide from a2 isoform V-ATPase (a2NTD) has immunomodulatory role in tumor microenvironment. Here, we report for the first time the role of V-ATPase in neutrophils modulation. In invasive breast cancer cells, a2NTD was detected and a2V was highly expressed on the surface. Immunohistochemical analysis of invasive breast cancer tissues revealed that increased neutrophil recruitment and blood vessel density correlated with increased a2NTD levels. In order to determine the direct regulatory role of a2NTD on neutrophils, recombinant a2NTD was used for the treatment of neutrophils isolated from the peripheral blood of healthy volunteers. Neutrophils treated with a2NTD (a2Neuɸ) showed increased secretion of IL-1RA, IL-10, CCL-2 and IL-6 that are important mediators in cancer related inflammation. Moreover, a2Neuɸ exhibited an increased production of protumorigenic factors including IL-8, matrix metaloprotinase-9 and vascular endothelial growth factor. Further, functional characterization of a2Neuɸ revealed that a2Neuɸ derived products induce in vitro angiogenesis as well as increase the invasiveness of breast cancer cells. This study establishes the modulatory effect of breast cancer associated a2V on neutrophils, by the action of a2NTD, which has a positive impact on tumor progression, supporting that a2V can be a potential selective target for breast cancer therapy.
Collapse
Affiliation(s)
- Safaa A Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
16
|
Pamarthy S, Jaiswal MK, Kulshreshtha A, Katara GK, Gilman-Sachs A, Beaman KD. The Vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells. Oncotarget 2016; 6:34206-20. [PMID: 26418877 PMCID: PMC4741446 DOI: 10.18632/oncotarget.5275] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a subtype of breast cancer with poor prognosis for which no targeted therapies are currently available. Notch signaling has been implicated in breast cancer but the factors that control Notch in TNBC are unknown. Because the Vacuolar ATPase has been shown to be important in breast cancer invasiveness, we investigated the role of a2-subunit isoform of Vacuolar ATPase (a2V) in regulating Notch signaling in TNBC. Confocal microscopy revealed that among all the ‘a’ subunit isoforms, a2V was uniquely expressed on the plasma membrane of breast cancer cells. Both a2V and NOTCH1 were elevated in TNBC tumors tissues and cell lines. a2V knockdown by siRNA as well as V-ATPase inhibition by Bafilomycin A1 (Baf A1) in TNBC cell lines enhanced Notch signaling by increasing the expression of Notch1 intracellular Domain (N1ICD). V-ATPase inhibition blocked NICD degradation by disrupting autophagy and lysosomal acidification as demonstrated by accumulation of LC3B and diminished expression of LAMP1 respectively. Importantly, treatment with Baf A1 or anti-a2V, a novel-neutralizing antibody against a2V hindered cell migration of TNBC cells. Our findings indicate that a2V regulates Notch signaling through its role in endolysosomal acidification and emerges as a potential target for TNBC.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshreshtha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
17
|
Kulshrestha A, Katara GK, Ginter J, Pamarthy S, Ibrahim SA, Jaiswal MK, Sandulescu C, Periakaruppan R, Dolan J, Gilman-Sachs A, Beaman KD. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells. Mol Oncol 2016; 10:789-805. [PMID: 26899534 DOI: 10.1016/j.molonc.2016.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 12/31/2022] Open
Abstract
Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo-resistant ovarian carcinoma and improve efficacy of platinum drugs.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jordyn Ginter
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Corina Sandulescu
- Department of Obstetrics & Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Ramayee Periakaruppan
- Department of Obstetrics & Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - James Dolan
- Department of Obstetrics & Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
18
|
Kulshrestha A, Katara GK, Ibrahim S, Pamarthy S, Jaiswal MK, Gilman Sachs A, Beaman KD. Vacuolar ATPase 'a2' isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget 2016; 6:3797-810. [PMID: 25686833 PMCID: PMC4414154 DOI: 10.18632/oncotarget.2902] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/14/2014] [Indexed: 01/25/2023] Open
Abstract
Tumor associated vacuolar H+-ATPases (V-ATPases) are multi-subunit proton pumps that acidify tumor microenvironment, thereby promoting tumor invasion. Subunit ‘a’ of its V0 domain is the major pH sensing unit that additionally controls sub-cellular targeting of V-ATPase and exists in four different isoforms. Our study reports an elevated expression of the V-ATPase-V0a2 isoform in ovarian cancer(OVCA) tissues and cell lines(A2780, SKOV-3 and TOV-112D). Among all V0’a’ isoforms, V0a2 exhibited abundant expression on OVCA cell surface while normal ovarian epithelia did not. Sub-cellular distribution of V-ATPase-V0a2 confirmed its localization on plasma-membrane, where it was also co-associated with cortactin, an F-actin stabilizing protein at leading edges of cancer cells. Additionally, V0a2 was also localized in early and late endosomal compartments that are sites for modulations of several signaling pathways in cancer. Targeted inhibition of V-ATPase-V0a2 suppressed matrix metalloproteinase activity(MMP-9 & MMP-2) in OVCA cells. In conclusion, V-ATPase-V0a2 isoform is abundantly expressed on ovarian tumor cell surface in association with invasion assembly related proteins and plays critical role in tumor invasion by modulating the activity of matrix-degrading proteases. This study highlights for the first time, the importance of V-ATPase-V0a2 isoform as a distinct biomarker and possible therapeutic target for treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alice Gilman Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
19
|
Jaiswal MK, Agrawal V, Katara GK, Pamarthy S, Kulshrestha A, Chaouat G, Gilman-Sachs A, Beaman KD. Male fertility and apoptosis in normal spermatogenesis are regulated by vacuolar-ATPase isoform a2. J Reprod Immunol 2015; 112:38-45. [PMID: 26226211 DOI: 10.1016/j.jri.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/24/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
Abstract
The a2 isoform of vacuolar-ATPase (ATP6V0A2, referred to as a2V) is required for normal spermatogenesis and maturation of sperm. Treatment of male mice with anti-a2V disturbs the testicular cytokine/chemokine balance and leads to severe deficiencies of spermatogenesis. The aim of the present study was to investigate the role of a2V in male fertility and in the regulation of apoptotic pathways required for normal spermatogenesis in mice. To study the role of a2V single dose of anti-a2V monoclonal antibody or mouse IgG isotype (3μg/animal) was injected i.p. into males on alternate days for 10 days. The expression of sperm maturation-related molecules and pro-apoptotic molecules was measured by real-time PCR or immunohistochemistry in control and anti-a2V-treated testes. The caspase levels and their activity were measured by western blot and fluorometry. We found that the expression of the sperm maturation-related molecules SPAM1, ADAM1, and ADAM2 was significantly decreased in testes from anti-a2V-treated males. The expression of pro-apoptotic molecules (Bax, p53, and p21) and molecules involved in the intrinsic pathway of apoptosis (caspase-9, caspase-3, and PARP), which are crucial for normal spermatogenesis was significantly reduced in testes from anti-a2V-treated males compared with the control. The total ATP level was significantly lower in anti-a2V-treated testes. The data provide novel evidence showing that a2V can regulate the apoptotic pathways, an essential testicular feature, and is necessary for efficient spermatogenesis.
Collapse
Affiliation(s)
- Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University Health System, Evanston, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gerard Chaouat
- U976 INSERM /UMR 976CNRS Saint Louis Hospital, 75010 Paris, France
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
20
|
Katara GK, Kulshrestha A, Jaiswal MK, Pamarthy S, Gilman-Sachs A, Beaman KD. Inhibition of vacuolar ATPase subunit in tumor cells delays tumor growth by decreasing the essential macrophage population in the tumor microenvironment. Oncogene 2015; 35:1058-65. [PMID: 25961933 DOI: 10.1038/onc.2015.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 01/04/2023]
Abstract
In cancer cells, vacuolar ATPase (V-ATPase), a multi-subunit enzyme, is expressed on the plasma as well as vesicular membranes and critically influences metastatic behavior. The soluble, cleaved N-terminal domain of V-ATPase a2 isoform is associated with in vitro induction of tumorigenic characteristics in macrophages. This activity led us to further investigate its in vivo role in cancer progression by inhibition of a2 isoform (a2V) in tumor cells and the concomitant effect on tumor microenvironment in the mouse 4T-1 breast cancer model. Results showed that macrophages cocultivated with a2V knockdown (sh-a2) 4T-1 cells produce lower amounts of tumorigenic factors in vitro and have reduced ability to suppress T-cell activation and proliferation compared with control 4T-1 cells. Data analysis showed a delayed mammary tumor growth in Balb/c mice inoculated with sh-a2 4T-1 cells compared with control. The purified CD11b(+) macrophages from sh-a2 tumors showed a reduced expression of mannose receptor-1 (CD206), interleukin-10, transforming growth factor-β, arginase-1, matrix metalloproteinase and vascular endothelial growth factor. Flow cytometric analysis of tumor-infiltrated macrophages showed a significantly low number of F4/80(+)CD11c(+)CD206(+) macrophages in sh-a2 tumors compared with control. In sh-a2 tumors, most of the macrophages were F4/80(+)CD11c(+) (antitumor M1 macrophages) suggesting it to be the reason behind delayed tumor growth. Additionally, tumor-infiltrating macrophages from sh-a2 tumors showed a reduced expression of CD206 compared with control whereas CD11c expression was unaffected. These findings demonstrate that in the absence of a2V in tumor cells, the resident macrophage population in the tumor microenvironment is altered which affects in vivo tumor growth. We suggest that by involving the host immune system, tumor growth can be controlled through targeting of a2V on tumor cells.
Collapse
Affiliation(s)
- G K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - A Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - M K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - S Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - A Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - K D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
21
|
Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E, Beaman K. Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol 2015; 97:1121-31. [PMID: 25877929 DOI: 10.1189/jlb.3a1214-620rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.
Collapse
Affiliation(s)
- Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anjali Tikoo
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Leyla Akman-Anderson
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mukesh Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Evangelos Ntrivalas
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
22
|
Kwong C, Gilman-Sachs A, Beaman K. An independent endocytic pathway stimulates different monocyte subsets by the a2 N-terminus domain of vacuolar-ATPase. Oncoimmunology 2014; 2:e22978. [PMID: 23483532 PMCID: PMC3583941 DOI: 10.4161/onci.22978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) plays an important role in tumor progression and metastases. A novel peptide from the a2 isoform of V-ATPase called a2NTD has been shown to exert an immunoregulatory role in the tumor microenvironment by controlling the maturation of monocytes toward a tumor-associated macrophage phenotype. Our data indicate that a2NTD binds to the surface of monocytes. a2NTD was preferentially endocytosed by pro-inflammatory monocytes bearing a CD14++CD16+ phenotype, which is associated with the monocyte-to-macrophage maturation process. Both a2NTD binding and internalization led to production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β by CD14++CD16- (classical) and CD14++CD16+ (intermediate) monocytes. a2NTD was internalized via a macropinocytosis mechanism utilizing scavenger receptors. However, the inhibition of a2NTD endocytosis did not reduce cytokine production by monocytes. This points to the existence of two receptors that respond to a2NTD: scavengers receptors that mediate cellular uptake and an hitherto unidentified receptor stimulating the production of inflammatory cytokines. Both of these monocyte receptors may be important in generating the localized inflammation that is often required to promote tumor growth and hence may constitute novel targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Christina Kwong
- Department of Microbiology and Immunology; Chicago Medical School; Rosalind Franklin University of Medicine and Science; Chicago, IL USA
| | | | | |
Collapse
|
23
|
Scherer O, Steinmetz H, Kaether C, Weinigel C, Barz D, Kleinert H, Menche D, Müller R, Pergola C, Werz O. Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum. Biochem Pharmacol 2014; 91:490-500. [PMID: 25107704 DOI: 10.1016/j.bcp.2014.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human monocytes that can promote cancer by sustaining inflammation through the release of tumor-promoting cytokines. Human primary monocytes express V-ATPase, and archazolid (10-100nM) increases the vesicular pH in these cells. Archazolid (10nM) markedly reduced the release of pro-inflammatory (TNF-α, interleukin-6 and -8) but also of anti-inflammatory (interleukin-10) cytokines in monocytes stimulated with LPS, without affecting cell viability up to 1000nM. Of interest, secretion of interleukin-1β was increased by archazolid. Comparable effects were obtained by the V-ATPase inhibitors bafilomycin and apicularen. The phosphorylation of p38 MAPK and ERK-1/2, Akt, SAPK/JNK or of the inhibitor of NFκB (IκBα) as well as mRNA expression of IL-8 were not altered by archazolid in LPS-stimulated monocytes. Instead, archazolid caused endoplasmic reticulum (ER) stress response visualized by increased BiP expression and accumulation of IL-8 (and TNF-α) at the ER, indicating a perturbation of protein secretion. In conclusion, by interference with V-ATPase, archazolid significantly affects the secretion of cytokines due to accumulation at the ER which might be of relevance when using these agents for cancer therapy.
Collapse
Affiliation(s)
- Olga Scherer
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christoph Kaether
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Dagmar Barz
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | | | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmazeutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Carlo Pergola
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
24
|
Katara GK, Jaiswal MK, Kulshrestha A, Kolli B, Gilman-Sachs A, Beaman KD. Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene 2013; 33:5649-54. [DOI: 10.1038/onc.2013.532] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
|
25
|
Jaiswal MK, Agrawal V, Mallers T, Gilman-Sachs A, Hirsch E, Beaman KD. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. THE JOURNAL OF IMMUNOLOGY 2013; 191:5702-13. [PMID: 24163412 DOI: 10.4049/jimmunol.1301604] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An innate immune response is required for successful implantation and placentation. This is regulated, in part, by the a2 isoform of V-ATPase (a2V) and the concurrent infiltration of M1 (inflammatory) and M2 (anti-inflammatory) macrophages to the uterus and placenta. The objective of the present study was to identify the role of a2V during inflammation-induced preterm labor in mice and its relationship to the regulation of apoptosis and innate immune responses. Using a mouse model of infection-induced preterm delivery, gestational tissues were collected 8 h after intrauterine inoculation on day 14.5 of pregnancy with either saline or peptidoglycan (PGN; a TLR 2 agonist) and polyinosinic-polycytidylic acid [poly(I:C); a TLR3 agonist], modeling Gram-positive bacterial and viral infections, respectively. Expression of a2V decreased significantly in the placenta, uterus, and fetal membranes during PGN+poly(I:C)-induced preterm labor. Expression of inducible NO synthase was significantly upregulated in PGN+poly(I:C)-treated placenta and uterus. PGN+poly(I:C) treatment disturbed adherens junction proteins and increased apoptotic cell death via an extrinsic pathway of apoptosis among uterine decidual cells and spongiotrophoblasts. F4/80(+) macrophages were increased and polarization was skewed in PGN+poly(I:C)-treated uterus toward double-positive CD11c(+) (M1) and CD206(+) (M2) cells, which are critical for the clearance of dying cells and rapid resolution of inflammation. Expression of Nlrp3 and activation of caspase-1 were increased in PGN+poly(I:C)-treated uterus, which could induce pyroptosis. These results suggest that the double hit of PGN+poly(I:C) induces preterm labor via reduction of a2V expression and simultaneous activation of apoptosis and inflammatory processes.
Collapse
Affiliation(s)
- Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | | | | | | | | | | |
Collapse
|
26
|
Ota K, Jaiswal MK, Ramu S, Jeyendran R, Kwak-Kim J, Gilman-Sachs A, Beaman KD. Expression of a2 vacuolar ATPase in spermatozoa is associated with semen quality and chemokine-cytokine profiles in infertile men. PLoS One 2013; 8:e70470. [PMID: 23936208 PMCID: PMC3728098 DOI: 10.1371/journal.pone.0070470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/19/2013] [Indexed: 01/08/2023] Open
Abstract
Background A number of laboratory tests have been developed to determine properties of spermatozoa quality but few have been adopted into routine clinical use in place of the WHO semen analysis. We investigated whether Atp6v0a2 (a2 isoform of vacuolar ATPase) is associated with abnormal semen quality and changes in chemokine-cytokine profiles in infertile men. Patients and Methods Semen samples were collected from 35 healthy donors and 35 infertile men at the Andrology laboratory from August 2011 to June 2012. The levels of Atp6v0a2 mRNA and protein, and its localization in spermatozoa were determined. a2NTD (the N-terminal portion of Atp6v0a2) and secreted chemokine-cytokine profiles in seminal fluid were measured. Results Atp6v0a2 protein (P<0.05) and mRNA (P<0.05) in spermatozoa from infertile men were significantly lower than those from fertile men. Fluorescent microscopy revealed that Atp6v0a2 is mainly expressed in the acrosomal region. Infertile men’s seminal fluid had significantly lower G-CSF (P<0.01), GM-CSF (P<0.01), MCP-1 (P<0.05), MIP-1α (P<0.01) and TGF-β1 (P<0.01) levels when compared to the seminal fluid from fertile men. Seminal fluid a2NTD levels were significantly correlated with G-CSF (P<0.01), GM-CSF (P<0.01), MCP-1 (P<0.05), MIP-1α (P<0.01) and TGF-β1 (P<0.01) which are key molecules during the onset of pregnancy. Conclusion These results suggested that a critical level of Atp6v0a2 is required for the fertile spermatozoa and its decreased level in spermatozoa could be used to predict male infertility. This study provides a possibility that Atp6v0a2 could be potentially used as a diagnostic marker for the evaluation of male infertility.
Collapse
Affiliation(s)
- Kuniaki Ota
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- Department of Obstetrics and Gynecology, Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois, United States of America
| | - Mukesh Kumar Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Sivakumar Ramu
- Andrology Laboratory Services, Inc., Chicago, Illinois, United States of America
| | | | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- Department of Obstetrics and Gynecology, Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois, United States of America
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Kenneth D. Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pan Y, Wang Y, Cai L, Cai Y, Hu J, Yu C, Li J, Feng Z, Yang S, Li X, Liang G. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 2012; 166:1169-82. [PMID: 22242942 DOI: 10.1111/j.1476-5381.2012.01854.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation is involved in the development and/or progression of many diseases including diabetic complications. Investigations on novel anti-inflammatory agents may offer new approaches for the prevention of diabetic nephropathy. Our previous bioscreening of synthetic analogues of curcumin revealed C66 as a novel anti-inflammatory compound against LPS challenge in macrophages. In this study, we hypothesized that C66 affects high glucose (HG)-induced inflammation profiles in vitro and in vivo and then prevents renal injury in diabetic rats via its anti-inflammatory actions. EXPERIMENTAL APPROACH Primary peritoneal macrophages (MPM), prepared from C57BL/6 mice, were treated with HG in the presence or absence of C66. Diabetes was induced in Sprague-Dawley rats with streptozotocin, and the effects of C66 (0.2, 1.0 or 5.0 mg·kg(-1) ), administered daily for 6 weeks, on plasma TNF-α levels and expression of inflammatory genes in the kidney were assessed. KEY RESULTS Pretreatment of MPMs with C66 reduced HG-stimulated production of TNF-α and NO, inhibited HG-induced IL-1β, TNF-α, IL-6, IL-12, COX-2 and iNOS mRNA transcription, and the activation of JNK/NF-kB signalling. In vivo, C66 inhibited the increased plasma TNF-α levels and renal inflammatory gene expression, improved histological abnormalities and fibrosis of diabetic kidney, but did not affect the hyperglycaemia in these diabetic rats. CONCLUSIONS AND IMPLICATIONS The anti-inflammatory effects of C66 are mediated by inhibiting HG-induced activation of the JNK/NF-κB pathway, rather than by reducing blood glucose in diabetic rats. This novel compound is a potential anti-inflammatory agent and might be beneficial for the prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Yong Pan
- Bioorganic and Medicinal Chemistry Research Center, School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jaiswal MK, Mallers TM, Larsen B, Kwak-Kim J, Chaouat G, Gilman-Sachs A, Beaman KD. V-ATPase upregulation during early pregnancy: a possible link to establishment of an inflammatory response during preimplantation period of pregnancy. Reproduction 2012; 143:713-25. [PMID: 22454532 DOI: 10.1530/rep-12-0036] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various mechanisms exist to prevent a potentially deleterious maternal immune response that results in compromising survival of semiallogeneic fetus. In pregnancy, there is a necessary early preimplantation inflammatory stage followed by a postimplantation anti-inflammatory stage. Thus, there is a biphasic 'immune response' observed during the course of pregnancy. We provide the evidence that capacitation of sperm induced the expression of a2 isoform of V-ATPase (ATP6V0A2 referred to as a2V), leukemia inhibitory factor (Lif), Il1b, and Tnf in the sperm. Capacitated sperm also released cleaved N-terminal domain of a2V-ATPase (a2NTD), which upregulates the gene expression of Lif, Il1b, Tnf, and monocyte chemotactic protein-1 (Ccl2 (Mcp1)) in the uterus. Unfertilized eggs had low a2V expression, but after fertilization, the expression of a2V increased in zygotes. This increased level of a2V expression was maintained in preimplantation embryos. Seminal plasma was necessary for upregulation of a2V expression in preimplantation embryos, as mating with seminal vesicle-deficient males failed to elicit an increase in a2V expression in preimplantation embryos. The infiltration of macrophages into the uterus was significantly increased after insemination of both sperm and seminal plasma during the preimplantation period of pregnancy. This dynamic infiltration into the uterus corresponded with the uterine a2V expression through the induction of Ccl2 expression. Furthermore, the polarization ratio of M1:M2 (pro-inflammatory/anti-inflammatory) macrophages in the uterus fluctuated from a ratio of 1.60 (day 1) to 1.45 (day 4) when female mice were inseminated with both sperm and seminal plasma. These data provide evidence that exposure to semen may initiate an inflammatory milieu by inducing a2V and cytokine/chemokine expression, which triggers the influx of macrophages into the preimplantation uterus during the onset of pregnancy and ultimately leads to successful pregnancy outcome.
Collapse
Affiliation(s)
- Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH. Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 2012; 287:9753-9764. [PMID: 22291012 DOI: 10.1074/jbc.m111.321190] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interaction between cancer cells and their microenvironment is a vicious cycle that enhances the survival and progression of cancer, resulting in metastasis. This study is the first to indicate that lung cancer-derived galectin-1 secretion is responsible for stimulating tumor-associated dendritic cells (TADCs) production of mature heparin-binding EGF-like growth factor (HB-EGF), which, in turn, increases cancer progression. Treatment of galectin-1, present in large amounts in lung cancer conditioned medium and lung cancer patient sera, mimicked the inductive effect of lung cancer conditioned medium on the expression and ectodomain shedding of HB-EGF by TNFα-converting enzyme/a disintegrin and metalloproteinase 9 (ADAM9) and ADAM17. Significant up-regulation of HB-EGF has been seen in tumor-infiltrating CD11c(+) dendritic cells in human lung cancer samples. Active cleavage of HB-EGF in TADCs by ADAM9 and ADAM17 is associated with increased protein kinase C δ and Lyn signaling. Enhancement of HB-EGF production in TADCs increased the proliferation, migration, and epithelial-to-mesenchymal transition abilities of lung cancer. In contrast, inhibiting HB-EGF by siRNA suppressed TADC-mediated cancer progression. Moreover, mice injected with galectin-1 knockdown Lewis lung carcinoma showed decreased expression and ectodomain shedding of HB-EGF and reduced incidence of cancer development, resulting in increased survival rates. We demonstrate here for the first time that human and mouse DCs are a source of HB-EGF, an EGFR ligand with tumorigenic properties. Antagonists of the effect of lung cancer-derived galectin-1 on DCs and anti-HB-EGF blocking antibodies could, therefore, have therapeutic potential as antitumor agents.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ming-Shyan Huang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Da-En Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Jen-Yu Hung
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan,; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Chih-Jen Yang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan,; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Shah-Hwa Chou
- Department of Chest Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
30
|
Jaiswal MK, Mallers TM, Kwong C, Chaouat G, Gilman-Sachs A, Beaman KD. Abortion-prone mating influences alteration of systemic a2 vacuolar ATPase expression in spleen and blood immune cells. Am J Reprod Immunol 2012; 67:421-33. [PMID: 22221850 DOI: 10.1111/j.1600-0897.2011.01098.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022] Open
Abstract
PROBLEM a2 isoform of vacuolar ATPase (Atp6v0a2) is important for maintaining the delicate immunological balance required for successful pregnancy. The objective of this investigation is to study the dynamic changes in spleen and blood that appear during spontaneous abortion in mice. METHOD OF STUDY Atp6v0a2 was measured in multiple immune cell populations from spleen and blood recovered from non-abortion-prone and abortion-prone mating combinations. RESULTS Atp6v0a2 expression was significantly lower (P ≤ 0.01) in the spleen recovered from abortion-prone ♀CBA × ♂DBA mating on days 12 and 16 of pregnancy when compared to non-abortion-prone ♀BALB/c × ♂BALB/c and ♀CBA × ♂BALB/c matings. Flow cytometric studies showed that significantly decreased expression of Atp6v0a2 in splenic CD4(+), CD8(+), CD19(+), and CD14(+) cells directly correlated with the high percentages of fetal resorption observed in abortion-prone mating on days 12 and 16 of pregnancy. In blood, CD4(+), CD8(+), and CD19(+) cells had a significantly reduced expression of Atp6v0a2 in abortion-prone mating compared to the non-abortion-prone mating combinations only on day 12. CONCLUSION This deceased expression of Atp6v0a2 in the various immune cell populations of the spleen and blood suggests that the maternal environment is not supportive to fetus and leads to poor pregnancy outcome in the abortion-prone mating model.
Collapse
Affiliation(s)
- Mukesh K Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|