1
|
Zhang W, Qin H, Wang G, Zhang J, He W, Feng C, Wan H, Wang F, Guo Z. Deciphering the potential role of PGRN in regulating CD8 + T cell antitumor immunity. Cell Death Discov 2024; 10:233. [PMID: 38744851 PMCID: PMC11094002 DOI: 10.1038/s41420-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
A key factor contributing to resistance in immune checkpoint blockade (ICB) therapies is CD8+ T-cell tolerance in the tumor microenvironment (TME), partly resulting from upregulating coinhibitory receptors. Here, we describe the role of PGRN as a coinhibitory molecule that modulates the antitumor response of CD8+ T cells, thus presenting a novel immunosuppressive target for lung cancer. The in vivo subcutaneous transplanted lung cancer model showed that PGRN expression was elevated on CD8+ T cells that infiltrated transplanted lung cancers. Furthermore, PGRN deficiency was found to specifically encourage the infiltration of CD8+ T cells, enhance their proliferation, migration, and activation, and resist apoptosis, ultimately inhibiting tumor growth. This was achieved by PGRN knockout, increasing the production of T cell chemokine CCL3, which boosts the antitumor immune response induced by CD8+ T cells. Critically, the PD-L1 inhibitor exhibited a synergistic effect in enhancing the antitumor response in PGRN-/- mice. In summary, our findings highlight the significance of PGRN as a novel target for boosting CD8+ T cells antitumor immunity and its potential to overcome the resistance in ICB therapy.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Huan Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjuan He
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Chunmei Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Huimin Wan
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Medical College, Tongji University, Shanghai, 200092, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhongliang Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Isvoranu G, Chiritoiu-Butnaru M. Therapeutic potential of interleukin-21 in cancer. Front Immunol 2024; 15:1369743. [PMID: 38638431 PMCID: PMC11024325 DOI: 10.3389/fimmu.2024.1369743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Department of Animal Husbandry,” Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Marioara Chiritoiu-Butnaru
- Department of Molecular and Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
3
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Li D, Cui Z, Zhao F, Zhu X, Tan A, Deng Y, Lai Y, Huang Z. Characterization of snakehead (Channa argus) interleukin-21: Involvement in immune defense against two pathogenic bacteria, in leukocyte proliferation, and in activation of JAK-STAT signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 123:207-217. [PMID: 35278639 DOI: 10.1016/j.fsi.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-21 (IL-21), a crucial immune regulatory molecule, belongs to the common γ-chain family of type I cytokines, and exerts pleiotropic effects on multiple immune cell types in mammals. However, the characteristics and functions of fish IL-21 remain unclear. To further investigate the molecular mechanism of IL-21 in teleosts, we first cloned and identified the IL-21 gene (designated shIL-21) of the snakehead (Channa argus). The full-length open reading frame of shIL-21 is 438 bp in length, and encodes a predicted protein of 145 amino acid residues. A sequence analysis showed that shIL-21 has the typical structural characteristics of other IL-21 proteins, containing four α-helices and four conserved cysteine residues. In a phylogenetic analysis, shIL-21 clustered within a subgroup of IL-21 proteins from other teleost species and shared its closest evolutionary relationship with that of Lates calcarifer. The expression analysis showed that shIL-21 was ubiquitously expressed in all the healthy snakehead tissues tested, albeit at different levels. After infection with Nocardia seriolae or Aeromonas schubertii, the relative expression of shIL-21 was mainly upregulated in the head kidney and spleen in vivo. Similarly, after stimulation with the three pathogen analogues lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid, the expression of shIL-21 was also induced in head kidney leukocytes in vitro. A recombinant shIL-21 protein was expressed and purified, and promoted the proliferation of head kidney leukocytes, induced the expression of genes encoding critical signaling molecules in the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway, including JAK1, JAK3, STAT1, and STAT3, and induced the expression of endogenous shIL-21 and genes encoding several key proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and IL-1β). Taken together, these preliminary findings suggest that shIL-21 is involved in the immune defense against bacterial infection, in leukocyte proliferation, and in the activation of the JAK-STAT pathway. They thus extend the functional studies of IL-21 in teleosts.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
5
|
Zhao S, Zhang L, Xiang S, Hu Y, Wu Z, Shen J. Gnawing Between Cells and Cells in the Immune System: Friend or Foe? A Review of Trogocytosis. Front Immunol 2022; 13:791006. [PMID: 35185886 PMCID: PMC8850298 DOI: 10.3389/fimmu.2022.791006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
6
|
Restriction of viral replication, rather than T cell immunopathology, drives lethality in MNV CR6-infected STAT1-deficient mice. J Virol 2022; 96:e0206521. [PMID: 35107369 DOI: 10.1128/jvi.02065-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent evidence indicates that viral components of the microbiota can contribute to intestinal homeostasis and protection from local inflammatory or infectious insults. However, host-derived mechanisms that regulate the virome remain largely unknown. Here, we use colonization with the model commensal murine norovirus (MNV CR6) to interrogate host-directed mechanisms of viral regulation, and show that STAT1 is a central coordinator of both viral replication and antiviral T cell responses. In addition to restricting CR6 replication to the intestinal tract, we show that STAT1 regulates antiviral CD4+ and CD8+ T cell responses, and prevents systemic viral-induced tissue damage and disease. Despite altered T cell responses that resemble those that mediate lethal immunopathology in systemic viral infections in STAT1-deficient mice, depletion of adaptive immune cells and their associated effector functions had no effect on CR6-induced disease. However, therapeutic administration of an antiviral compound limited viral replication, preventing viral-induced tissue damage and death without impacting the generation of inflammatory antiviral T cell responses. Collectively, our data show that STAT1 restricts MNV CR6 replication within the intestinal mucosa, and that uncontrolled viral replication mediates disease rather than the concomitant development of dysregulated antiviral T cell responses in STAT1-deficient mice. Importance The intestinal microbiota is a collection of bacteria, archaea, fungi and viruses that colonize the mammalian gut. Co-evolution of the host and microbiota has required development of immunological tolerance to prevent ongoing inflammatory responses against intestinal microbes. Breakdown of tolerance to bacterial components of the microbiota can contribute to immune activation and inflammatory disease. However, the mechanisms that are necessary to maintain tolerance to viral components of the microbiome, and the consequences of loss of tolerance, are less well understood. Here, we show that STAT1 is integral for preventing escape of a commensal-like virus, murine norovirus CR6 (MNV CR6) from the gut, and that in the absence of STAT1, mice succumb to infection-induced disease. In contrast to other systemic viral infections, mortality of STAT1-deficient mice is not driven by immune-mediated pathology. Our data demonstrates the importance of host-mediated geographical restriction of commensal-like viruses.
Collapse
|
7
|
Jiang J, Qin T, Zhang L, Liu Q, Wu J, Dai R, Zhou L, Zhao Q, Luo X, Wang H, Zhao X. IL-21 Rescues the Defect of IL-10-Producing Regulatory B Cells and Improves Allergic Asthma in DOCK8 Deficient Mice. Front Immunol 2021; 12:695596. [PMID: 34867940 PMCID: PMC8636116 DOI: 10.3389/fimmu.2021.695596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in human DOCK8 cause a combined immunodeficiency syndrome characterized by allergic diseases such as asthma and food allergy. However, the underlying mechanism is unclear. Regulatory B (Breg) cells that produce IL-10 exert potent immunosuppressive functions in patients with allergic and autoimmune disorders. DOCK8-deficient B cells show diminished responses to TLR9 signaling, suggesting a possible defect in IL-10-producing Breg cells in those with DOCK8 deficiency, which may contribute to allergies. Here, we isolated peripheral blood mononuclear cells from DOCK8-deficient patients and generated a Dock8 KO mouse model to study the effect of DOCK8 deficiency on Breg cells. DOCK8-deficient patients and Dock8 KO mice harbored quantitative and qualitative defects in IL-10-producing Breg cells; these defects were caused by abnormal Dock8-/- CD4+ T cells. We found that recombinant murine (rm)IL-21 restored the function of Bregs both in vitro and in Dock8 KO mice, leading to reduced inflammatory cell infiltration of the lungs in a murine asthma model. Overall, the results provide new insight into the potential design of Breg-based or IL-21-based therapeutic strategies for allergic diseases, including asthma associated with DOCK8 deficiency.
Collapse
Affiliation(s)
- Jinqiu Jiang
- Department of Dermatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Qin
- Department of Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiabin Wu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rongxin Dai
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wang
- Department of Dermatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Kim DH, Kim HY, Lee WW. Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8 + T Cells, Resulting in Enhanced IL-1β Dependent Effector Function. Immune Netw 2021; 21:e33. [PMID: 34796037 PMCID: PMC8568912 DOI: 10.4110/in.2021.21.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
9
|
Le PT, Ha N, Tran NK, Newman AG, Esselen KM, Dalrymple JL, Schmelz EM, Bhandoola A, Xue HH, Singh PB, Thai TH. Targeting Cbx3/HP1γ Induces LEF-1 and IL-21R to Promote Tumor-Infiltrating CD8 T-Cell Persistence. Front Immunol 2021; 12:738958. [PMID: 34721405 PMCID: PMC8549513 DOI: 10.3389/fimmu.2021.738958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.
Collapse
Affiliation(s)
- Phuong T Le
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ngoc Ha
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ngan K Tran
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Andrew G Newman
- Institute of Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katharine M Esselen
- Division of Gynecologic Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John L Dalrymple
- Division of Gynecologic Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Eva M Schmelz
- Department of Human Nutrition, Food, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Avinash Bhandoola
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | - Prim B Singh
- Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - To-Ha Thai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Xie L, Zhang Z, Zhu P, Tian K, Liu Y, Yu Y. IL-21 Prevents Expansion of CD8 +CD28 - T Cells Stimulated by IL-15 and Changes Their Subset Distribution. Transplant Proc 2021; 53:2407-2414. [PMID: 34474914 DOI: 10.1016/j.transproceed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To examine the effect of interleukin (IL)-21 on the proliferation, subsets, and immunological characteristics of CD8+CD28- T cells stimulated by IL-15 in vitro. METHODS Purified CD8+ T cells stimulated with allogeneic CD2- cells obtained from the peripheral blood mononuclear cells of healthy volunteers were cocultured in the presence of IL-15 alone or IL-21 and IL-15 combined. The dynamic changes in the proliferation, subsets, and phenotypic characteristics of CD8+CD28- T cells were detected. Our work, involving human participants, complied with the Declaration of Helsinki and the Declaration of Istanbul. RESULTS IL-21 prevented the expansion of CD8+CD28- T cells stimulated by IL-15 by sustaining CD28 expression at the mRNA level. IL-15 altered the expanded CD8+CD28- T cell memory subsets over the coculture duration, but the addition of IL-21 could change the subset distribution. In the presence of IL-15, the in vitro-expanded CD8+CD28- T cells were mainly intermediately differentiated cells, but they were mainly late differentiated cells in the presence of IL-21 plus IL-15. Moreover, IL-21 upregulated the expression of toxic molecules in the IL-15-expanded CD8+CD28- T cells. CONCLUSIONS IL-21 prevents IL-15-induced CD8+CD28- T cell amplification by downregulating CD28 at the transcriptional level. IL-21 can alter the subpopulation distribution and phenotypic characteristics of CD8+CD28- T cells stimulated by IL-15.
Collapse
Affiliation(s)
- Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zedan Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
12
|
Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021; 35:1167-1177. [PMID: 33710028 PMCID: PMC8183476 DOI: 10.1097/qad.0000000000002864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) has been linked with the generation of virus-specific memory CD8+ T cells following acute infection with HIV-1 and reduced exhaustion of CD8+ T cells. IL-21 has also been implicated in the promotion of CD8+ T-cell effector functions during viral infection. Little is known about the expression of interleukin-21 receptor (IL-21R) during HIV-1 infection or its role in HIV-1-specific CD8+ T-cell maintenance and subsequent viral control. METHODS We compared levels of IL-21R expression on total and memory subsets of CD8+ T cells from HIV-1-negative and HIV-1-positive donors. We also measured IL-21R on antigen-specific CD8+ T cells in volunteers who were positive for HIV-1 and had cytomegalovirus-responding T cells. Finally, we quantified plasma IL-21 in treatment-naive HIV-1-positive individuals and compared this with IL-21R expression. RESULTS IL-21R expression was significantly higher on CD8+ T cells (P = 0.0256), and on central memory (P = 0.0055) and effector memory (P = 0.0487) CD8+ T-cell subsets from HIV-1-positive individuals relative to HIV-1-negative individuals. For those infected with HIV-1, the levels of IL-21R expression on HIV-1-specific CD8+ T cells correlated significantly with visit viral load (r = 0.6667, P = 0.0152, n = 13) and inversely correlated with plasma IL-21 (r = -0.6273, P = 0.0440, n = 11). Lastly, CD8+ T cells from individuals with lower set point viral load who demonstrated better viral control had the lowest levels of IL-21R expression and highest levels of plasma IL-21. CONCLUSION Our data demonstrates significant associations between IL-21R expression on peripheral CD8+ T cells and viral load, as well as disease trajectory. This suggests that the IL-21 receptor could be a novel marker of CD8+ T-cell dysfunction during HIV-1 infection.
Collapse
Affiliation(s)
- Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Loucif H, Dagenais-Lussier X, Beji C, Cassin L, Jrade H, Tellitchenko R, Routy JP, Olagnier D, van Grevenynghe J. Lipophagy confers a key metabolic advantage that ensures protective CD8A T-cell responses against HIV-1. Autophagy 2021; 17:3408-3423. [PMID: 33459125 DOI: 10.1080/15548627.2021.1874134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although macroautophagy/autophagy has been proposed as a critical defense mechanism against HIV-1 by targeting viral components for degradation, its contribution as a catabolic process in providing optimal anti-HIV-1 immunity has never been addressed. The failure to restore proper antiviral CD8A/CD8 T-cell immunity, especially against HIV-1, is still the major limitation of current antiretroviral therapies. Consequently, it is of clinical imperative to provide new strategies to enhance the function of HIV-1-specific CD8A T-cells in patients under antiretroviral treatments (ART). Here, we investigated whether targeting autophagy activity could be an optional solution to make this possible. Our data show that, after both polyclonal and HIV-1-specific activation, CD8A T-cells from ART displayed reduced autophagy-dependent degradation of lysosomal contents when compared to naturally HIV-1 protected elite controllers (EC). We further confirmed in EC, by using specific BECN1 gene silencing and lysosomal inhibitors, the critical role of active autophagy in superior CD8A T-cell protection against HIV-1. More importantly, we found that an IL21 treatment was effective in rescuing the antiviral CD8A T-cell immunity from ART in an autophagy-dependent manner. Finally, we established that IL21-dependent rescue occurred due to the enhanced degradation of endogenous lipids via autophagy, referred to as lipophagy, which fueled the cellular rates of mitochondrial beta-oxidation. In summary, our data show that autophagy/lipophagy can be considered as a therapeutic tool to elicit functional antiviral CD8 T-cell responses. Our results also provide additional insights toward the development of improved T-cell-based prevention and cure strategies against HIV-1.Abbreviations: ART: patients under antiretroviral therapy; BaF: bafilomycin A1; BECN1: beclin 1; CEF: cytomegalo-, Epstein-Barr- and flu-virus peptide pool; Chloro.: chloroquine; EC: elite controllers; FAO: fatty acid beta-oxidation; HIVneg: HIV-1-uninfected control donors; IFNG/IFN-γ: interferon gamma; IL21: interleukin 21; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBMC: peripheral blood mononuclear cells; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Cherifa Beji
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Léna Cassin
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Roman Tellitchenko
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus C, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| |
Collapse
|
14
|
Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, Shwetank, Rahman ZSM, Evavold BD, Lukacher AE. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol 2020; 5:5/51/eabb5590. [PMID: 32948671 DOI: 10.1126/sciimmunol.abb5590] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.
Collapse
Affiliation(s)
- Heather M Ren
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Quinn Wade
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shwetank
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
15
|
Cui ZW, Zhang XY, Chen XH, Zhang XJ, Zhang YA. Splicing variants of grass carp (Ctenopharyngodon idellus) IL-21: Functions in IgM + B cell proliferation and IgM secretion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103728. [PMID: 32387557 DOI: 10.1016/j.dci.2020.103728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In mammals, interleukin 21 (IL-21) is a type I four-helical bundle cytokine produced by activated T cells that has pleiotropic functions on immune cells. Although IL-21 has been discovered in fish, the splicing variants of this cytokine and their functions on B cells are unclear. In this study, based on the original transcript of grass carp IL-21 (named gcIL-21sv1 in this study), two alternative splicing variants, named gcIL-21sv2 and gcIL-21sv3, were cloned and characterized. The protein sequences of gcIL-21sv1 and gcIL-21sv2 consist of four α-helixes, and only the six amino acid residues at the C-terminal are different. Unlike gcIL-21sv1 and gcIL-21sv2, gcIL-21sv3 lacks the C-terminal region. The expression analysis showed that gcIL-21sv1, gcIL-21sv2, and gcIL-21sv3 were constitutively expressed in all the tested tissues, and their expression could be significantly up-regulated by LPS and Poly (I:C) in head kidney leukocytes (HKLs), with the fold change of gcIL-21sv1 being higher than that of gcIL-21sv2 and gcIL-21sv3. Recombinant gcIL-21sv1 and gcIL-21sv2, but not gcIL-21sv3, could induce the proliferation of IgM+ B cells and the secretion of IgM, with the activity of gcIL-21sv1 being stronger than that of gcIL-21sv2, indicating that the C-terminal region plays important roles in the function of gcIL-21. Taken together, this study found that, like IL-21 in human and mouse, IL-21 splicing variants also exist in fish, and the regulatory activities of these variants in humoral immunity are differ, suggesting that grass carp may balance the immune response mediated by IL-21 through alternative splicing.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Chen
- Department of Clinical Laboratory, General Hospital of Central Theater Command, PLA, Wuhan, 430070, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
16
|
Clavijo-Salomon MA, Salcedo R, Roy S, das Neves RX, Dzutsev A, Sales-Campos H, Borbely KSC, Silla L, Orange JS, Mace EM, Barbuto JAM, Trinchieri G. Human NK cells prime inflammatory DC precursors to induce Tc17 differentiation. Blood Adv 2020; 4:3990-4006. [PMID: 32841340 PMCID: PMC7448590 DOI: 10.1182/bloodadvances.2020002084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Adaptive immune responses are acknowledged to evolve from innate immunity. However, limited information exists regarding whether encounters between innate cells direct the generation of specialized T-cell subsets. We aim to understand how natural killer (NK) cells modulate cell-mediated immunity in humans. We found that human CD14+CD16- monocytes that differentiate into inflammatory dendritic cells (DCs) are shaped at the early stages of differentiation by cell-to-cell interactions with NK cells. Although a fraction of monocytes is eliminated by NK-cell-mediated cytotoxicity, the polarization of interferon-γ (IFN-γ) at the NKp30-stabilized synapses triggers a stable IFN-γ signature in surviving monocytes that persists after their differentiation into DCs. Notably, NK-cell-instructed DCs drive the priming of type 17 CD8+ T cells (Tc17) with the capacity to produce IFN-γ and interleukin-17A. Compared with healthy donors, this cellular network is impaired in patients with classical NK-cell deficiency driven by mutations in the GATA2 gene. Our findings reveal a previously unrecognized connection by which Tc17-mediated immunity might be regulated by NK-cell-mediated tuning of antigen-presenting cells.
Collapse
Affiliation(s)
- Maria A Clavijo-Salomon
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Center of Translational Research in Oncology, Institute of Cancer of São Paulo (ICESP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosalba Salcedo
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Soumen Roy
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rodrigo X das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amiran Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Helioswilton Sales-Campos
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karen Steponavicius-Cruz Borbely
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Nutrition Faculty, Federal University of Alagoas, Maceio, Brazil
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Lucia Silla
- Cellular Technology and Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Cell and Molecular Therapy Center (NETCEM), University of São Paulo, São Paulo, Brazil
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Qian G, Wu M, Zhao Y, Li Q, Zhang M, Cai C, Tong D. Thyroid cancer metastasis is associated with an overabundance of defective follicular helper T cells. APMIS 2020; 128:487-496. [PMID: 32562574 DOI: 10.1111/apm.13062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023]
Abstract
Metastatic thyroid cancers are more difficult to treat and have a significantly worse prognosis than localized thyroid cancers. Previous studies have shown that follicular helper T cells (Tfh) may participate in antitumor immune responses. Here, we investigated the characteristics of Tfh cells in patients with differentiated thyroid cancer (DTC) at various severities, including patients with localized disease, cervical metastasis, and distant metastasis. In circulating CD4 T cells, the proportion of CD4+ CXCR5+ Tfh-like cells was significantly higher in patients with distant metastasis than in healthy controls, patients with local disease, and patients with cervical metastasis. Also, the expression of Tfh cell-associated surface molecules, such as PD-1, ICOS, and BTLA, tended to be higher in patients with cervical and distant metastasis than in healthy controls. However, the expression of secreted molecules, such as IL-10, IL-21, and CXCL13, was significantly lower in patients with distant metastasis than in healthy controls and patients with local disease. Additionally, circulating Tfh-like cells from patients with distant metastasis were less capable of supporting B-cell growth and IgM secretion. We also examined the CD4+ CXCR5+ Tfh-like cells in tumor samples. Tumor-infiltrating Tfh-like cells were highly enriched in the pulmonary metastasis compared to the local tumor and the cervical metastasis. However, tumor-infiltrating Tfh-like cells from pulmonary metastasis displayed higher PD-1, TIM-3, and lower IL-21 expression than those from the local tumor. Together, this study identified that the metastasis of DTC patients was associated with an overabundance of defective Tfh cells.
Collapse
Affiliation(s)
- Guangfang Qian
- Department of Endocrinology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, China
| | - Min Wu
- Department of Endocrinology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, China
| | - Yuanyuan Zhao
- Department of Endocrinology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, China
| | - Qing Li
- Department of Endocrinology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, China
| | - Mimi Zhang
- Department of Endocrinology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Shanghai, China
| | - Danian Tong
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Workel HH, van Rooij N, Plat A, Spierings DC, Fehrmann RSN, Nijman HW, de Bruyn M. Transcriptional Activity and Stability of CD39+CD103+CD8+ T Cells in Human High-Grade Endometrial Cancer. Int J Mol Sci 2020; 21:E3770. [PMID: 32471032 PMCID: PMC7312498 DOI: 10.3390/ijms21113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating CD8+ T cells (TIL) are of the utmost importance in anti-tumor immunity. CD103 defines tumor-resident memory T cells (TRM cells) associated with improved survival and response to immune checkpoint blockade (ICB) across human tumors. Co-expression of CD39 and CD103 marks tumor-specific TRM with enhanced cytolytic potential, suggesting that CD39+CD103+ TRM could be a suitable biomarker for immunotherapy. However, little is known about the transcriptional activity of TRM cells in situ. We analyzed CD39+CD103+ TRM cells sorted from human high-grade endometrial cancers (n = 3) using mRNA sequencing. Cells remained untreated or were incubated with PMA/ionomycin (activation), actinomycin D (a platinum-like chemotherapeutic that inhibits transcription), or a combination of the two. Resting CD39+CD103+ TRM cells were transcriptionally active and expressed a characteristic TRM signature. Activated CD39+CD103+ TRM cells differentially expressed PLEK, TWNK, and FOS, and cytokine genes IFNG, TNF, IL2, CSF2 (GM-CSF), and IL21. Findings were confirmed using qPCR and cytokine production was validated by flow cytometry of cytotoxic TIL. We studied transcript stability and found that PMA-responsive genes and mitochondrial genes were particularly stable. In conclusion, CD39+CD103+ TRM cells are transcriptionally active TRM cells with a polyfunctional, reactivation-responsive repertoire. Secondly, we hypothesize that differential regulation of transcript stability potentiates rapid responses upon TRM reactivation in tumors.
Collapse
Affiliation(s)
- Hagma H. Workel
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Nienke van Rooij
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Annechien Plat
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Hans W. Nijman
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Marco de Bruyn
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| |
Collapse
|
19
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Zhang A, Jian X, Wang D, Ren J, Wang X, Zhou H. Characterization and bioactivity of grass carp (Ctenopharyngodon idella) interleukin-21: Inducible production and involvement in inflammatory regulation. FISH & SHELLFISH IMMUNOLOGY 2020; 99:19-26. [PMID: 32014588 DOI: 10.1016/j.fsi.2020.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In mammals, interleukin 21 (IL-21) is a broad pleiotropic cytokine that plays critical roles in the development of several inflammatory and autoimmune diseases. In fish, functional information of Il-21 is limited, and its role in immune response is largely unknown. In the present study, we cloned a coding sequence of grass carp (Ctenopharyngodon idella) il21 gene (gcil21). To characterize the release patterns and biological activity of gcIl-21, we prepared recombinant gcIl-21 (rgcIl-21) and obtained the polyclonal antibody with gcIl-21 specificity. Western blotting analysis showed that in grass carp head kidney leukocytes (HKLs), gcIl-21 was undetected in culture supernatant of untreated cells but drastically induced by heat-killed Aeromonas hydrophila (A. hydrophila), uncovering the release features of gcIl-21 and its possible involvement in immune response. Subsequent functional experiments revealed that rgcIl-21 did not affect the mRNA expression of grass carp il1b and tgfb, but induced a strong expression of grass carp il10, and to a lesser extent of grass carp tnfa in HKLs, suggesting a dominant effect of gcIl-21 in modulating Il-10 signaling as seen in rainbow trout and mammals. Furthermore, in vivo studies showed that intraperitoneal injection of rgcIl-21 was able to increase the survival rate of grass carp infected with live A. hydrophila, and reduce the pathological responses caused by the same pathogenic bacteria in head kidney and intestine. Taken together, these results for the first time revealed the close relationship of fish Il-21 production and function with inflammatory responses, and highlighted its anti-bacterial and anti-inflammatory ability, thereby providing a new insight into host defense mechanisms in fish.
Collapse
Affiliation(s)
- Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoyu Jian
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Antunes KH, Becker A, Franceschina C, de Freitas DDN, Lape I, da Cunha MD, Leitão L, Rigo MM, Pinto LA, Stein RT, de Souza APD. Respiratory syncytial virus reduces STAT3 phosphorylation in human memory CD8 T cells stimulated with IL-21. Sci Rep 2019; 9:17766. [PMID: 31780735 PMCID: PMC6882881 DOI: 10.1038/s41598-019-54240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of childhood lower respiratory tract infections. The recent failure of a vaccine candidate based on recombinant F protein underlines the urgent need to better understand the protective human memory immune response against RSV. Signal transducer and activator of transcription 3 (STAT3) protein is a transcription factor that promotes the maturation of the memory CD8 T cell response in cooperation with IL-10 and IL-21. However, the role of STAT3 in the memory CD8 T cell response during RSV infection remains to be elucidated. We found that in infants with bronchiolitis infected with RSV, the expression of STAT3 detected in nasal washes is reduced when compared to that in infants infected by other viruses. In vitro, RSV impairs STAT3 phosphorylation induced by IL-21 in purified human memory CD8 T cells. In addition, RSV decreases granzyme B production by memory CD8 T cells, reducing its cytotoxic activity against RSV-infected epithelial pulmonary cell lines. Together, these data indicate that RSV modulates the IL-21/STAT3 pathway in human memory CD8 T cells, and this could be a mechanism to be further explored to improve the memory response against the infection.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - André Becker
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Caroline Franceschina
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Deise do Nascimento de Freitas
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Isadora Lape
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana D'Ávila da Cunha
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lidiane Leitão
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Mauricio M Rigo
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Araújo Pinto
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Renato T Stein
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,School of Health and Life Sciences, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
22
|
IL-21 regulates SOCS1 expression in autoreactive CD8 + T cells but is not required for acquisition of CTL activity in the islets of non-obese diabetic mice. Sci Rep 2019; 9:15302. [PMID: 31653894 PMCID: PMC6814838 DOI: 10.1038/s41598-019-51636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
In type 1 diabetes, maturation of activated autoreactive CD8+ T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing β-cells. To determine whether autoreactive CTL within islets respond to cytokines we generated non-obese diabetic (NOD) mice with a reporter for cytokine signalling. These mice express a reporter gene, hCD4, under the control of the endogenous regulatory elements for suppressor of cytokine signalling (SOCS)1, which is itself regulated by pro-inflammatory cytokines. In NOD mice, the hCD4 reporter was expressed in infiltrated islets and the expression level was positively correlated with the frequency of infiltrating CD45+ cells. SOCS1 reporter expression was induced in transferred β-cell-specific CD8+ 8.3T cells upon migration from pancreatic draining lymph nodes into islets. To determine which cytokines induced SOCS1 promoter activity in islets, we examined hCD4 reporter expression and CTL maturation in the absence of the cytokine receptors IFNAR1 or IL-21R. We show that IFNAR1 deficiency does not confer protection from diabetes in 8.3 TCR transgenic mice, nor is IFNAR1 signalling required for SOCS1 reporter upregulation or CTL maturation in islets. In contrast, IL-21R-deficient 8.3 mice have reduced diabetes incidence and reduced SOCS1 reporter activity in islet CTLs. However IL-21R deficiency did not affect islet CD8+ T cell proliferation or expression of granzyme B or IFNγ. Together these data indicate that autoreactive CD8+ T cells respond to IL-21 and not type I IFNs in the islets of NOD mice, but neither IFNAR1 nor IL-21R are required for islet intrinsic CTL maturation.
Collapse
|
23
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
24
|
To Go or Stay: The Development, Benefit, and Detriment of Tissue-Resident Memory CD8 T Cells during Central Nervous System Viral Infections. Viruses 2019; 11:v11090842. [PMID: 31514273 PMCID: PMC6784233 DOI: 10.3390/v11090842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells coordinate immune defenses against viral infections of the central nervous system (CNS). Virus-specific CD8 T cells infiltrate the CNS and differentiate into brain-resident memory CD8 T cells (CD8 bTRM). CD8 bTRM are characterized by a lack of recirculation and expression of phenotypes and transcriptomes distinct from other CD8 T cell memory subsets. CD8 bTRM have been shown to provide durable, autonomous protection against viral reinfection and the resurgence of latent viral infections. CD8 T cells have also been implicated in the development of neural damage following viral infection, which demonstrates that the infiltration of CD8 T cells into the brain can also be pathogenic. In this review, we will explore the residency and maintenance requirements for CD8 bTRM and discuss their roles in controlling viral infections of the brain.
Collapse
|
25
|
Fan W, Wan Y, Li Q. Interleukin-21 enhances the antibody avidity elicited by DNA prime and MVA boost vaccine. Cytokine 2019; 125:154814. [PMID: 31450102 DOI: 10.1016/j.cyto.2019.154814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
Enhancement of the magnitude or affinity of protective antibodies (Abs) induced by vaccine adjuvant is highly desirable to prevent challenging pathogens such as HIV-1. IL-21 plays a crucial role in germinal center reactions during humoral immune responses. However, the effect of IL-21 as a vaccine adjuvant on the quantity and quality of antigen-specific Abs elicited by DNA prime and MVA boost vaccine, a commonly used vaccine strategy, remains unknown. To close this knowledge gap, female adult B6N mice were primed with DNA vaccine twice (days 0, 14, 100 µg, I.M.) and boosted with MVA vaccine (day 28, 2 × 107 pfu, I.M.) with or without an IL-21 DNA adjuvant (days 3, 17, 31, 40 µg, I.M.), in which HIV-1 gag was expressed as a model antigen. With the addition of an IL-21 adjuvant, we found significantly increased avidity of antigen-specific Abs at multiple time points in a longitudinal follow up. Collectively, our results suggest that an IL-21 immune adjuvant can significantly increase Ab quality induced by heterologous DNA-MVA prime-boost vaccine strategy.
Collapse
Affiliation(s)
- Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA
| | - Yanmin Wan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA.
| |
Collapse
|
26
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
27
|
Moretto MM, Hwang S, Chen K, Khan IA. Complex and Multilayered Role of IL-21 Signaling during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:1242-1251. [PMID: 31341076 DOI: 10.4049/jimmunol.1800743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
Abstract
Unlike IL-7, which is known to be critical for T cell thymic development, the role of IL-21 in this process is still controversial. IL-21 has been shown to accelerate thymic recovery in mice treated with glucocorticoids and revives the peripheral T cell pool in aged animals. However, mice with a defect in IL-21 signaling exhibit normal thymic cellularity, challenging the importance of this cytokine in the thymic developmental process. Using mixed bone marrow chimeric mice, our studies describe a multilayered role for IL-21 in thymopoiesis. In this system, IL-21R-deficient cells are unable to compete with wild-type populations at different stages of the thymic development. Using a mixed bone marrow chimeric animal model, IL-21 seems to be involved as early as the double-negative 1 stage, and the cells from the knockout compartment have problems transitioning to subsequent double-negative stages. Also, similar to IL-7, IL-21 seems to be involved in the positive selection of double-positive lymphocytes and appears to play a role in the migration of single-positive T cells to the periphery. Although not as critical as IL-7, based on our studies, IL-21 plays an important complementary role in thymic T cell development, which, to date, has been underrecognized.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - SuJin Hwang
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Keer Chen
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - Imtiaz A Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| |
Collapse
|
28
|
Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. Induction of Follicular-Like CXCR5 + CD8 + T Cells by TGF- β1/IL-23 Is Limited During HIV Infection. Viral Immunol 2019; 32:278-288. [PMID: 31274389 DOI: 10.1089/vim.2019.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Follicular CD4+ T cells are the main HIV reservoirs due to, among other factors, the low frequency of CD8+ T cells in lymphoid follicles. Follicular CXCR5+ CD8+ T cells are associated with HIV control, but their differentiation conditions are yet undefined. In this study, we explored the in vitro effect of transforming growth factor (TGF)-β1, interleukin (IL)-12, and IL-23 on the induction of CXCR5, the follicle homing receptor, in human circulating CD8+ T cells from seronegative, and treated HIV-infected individuals. The combination of TGF-β1 plus IL-23 induced the highest expression of CXCR5 in purified CD8+ T cells. These CXCR5+ CD8+ T cells also expressed a transcriptional and phenotypic profile similar to that of follicular CD4+ T cells, such as the upregulation of BCL6, inducible costimulator and CD40L, and downregulation of PRDM1. These cells responded in vitro to CXCL13 and had low expression of CCR7. In addition, after polyclonal stimulation, they produced IL-21, interferon-γ, and de novo perforin. However, in comparison with seronegative individuals, CD8+ T cells from HIV-infected patients had a lower response to TGF-β1/IL-23, a defect that was restored with the blockade of the programmed cell death 1 inhibitory receptor. Thus, TGF-β1 plus IL-23 induce follicular-like CXCR5+ CD8+ T cells in seronegative individuals, but in HIV-infected patients there is a limited response which could impair the generation of this cell population.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Manuel G Feria
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
29
|
Li Q, Wang B, Mu K, Zhang J. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm. J Cell Physiol 2018; 234:2204-2216. [PMID: 30246383 DOI: 10.1002/jcp.27180] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Qian Li
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Bin Wang
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Kaida Mu
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| | - Jin‐An Zhang
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| |
Collapse
|
30
|
Circulating CXCR5-Expressing CD8+ T-Cells Are Major Producers of IL-21 and Associate With Limited HIV Replication. J Acquir Immune Defic Syndr 2018; 78:473-482. [DOI: 10.1097/qai.0000000000001700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Meng Q, Valentini D, Rao M, Liu Z, Xie S, Morgell A, Dodoo E, Löhr M, Rangelova E, Del Chiaro M, Ernberg I, Maeurer M. Prediction of improved survival in patients with pancreatic cancer via IL-21 enhanced detection of mesothelin epitope-reactive T-cell responses. Oncotarget 2018; 9:22451-22459. [PMID: 29854291 PMCID: PMC5976477 DOI: 10.18632/oncotarget.25121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Most patients with pancreatic cancer present with extensive metastasis at diagnosis, with a 5-year survival rate of approximately 5%, despite chemotherapy and surgery. New treatment modalities are needed to improve survival. Mesothelin is a tumor-associated antigen (TAA) in patients with pancreatic cancer that could be used to gauge cellular immune responses directed against transformed cells since up to 100 percent of pancreatic ductal adenocarcinoma cells have been shown to strongly express mesothelin. A prospective, observational study was carried out in twenty-six, chemotherapy-naïve patients with resectable pancreatic ductal adenocarcinoma. Participants were between 48 and 81 years (median age: 64.5 years), 15 males and 11 females. All participants were clinically followed-up between 439 and 853 days post-surgery (n=14) or until death (n=12). Peripheral blood drawn on the day of surgery was stimulated with a mesothelin peptide pool (42 peptides, non-overlapping), individual mesothelin peptides, positive (anti-CD3 antibody, OKT3) and negative controls (medium) with or without adding IL-21. Kaplan-Meier estimators were used to gauge patients’ survival pattern in relation to mesothelin-specific IFN-γ responses. A survival benefit was linked with IFN-γ responses to peptides corresponding to mature mesothelin (p=0.018) and targeted recognition of the mesothelin601-615 epitope (MQEALSGTPCLLGPG) (p=0.006) in the presence of IL-21. Conversely, production of high levels of IFN-γ to OKT3 stimulation with IL-21 conditioning was associated with reduced survival of patients (p=0.016). Gauging anti-Mesothelin- directed immune responses will aid to identify patients i) in need of a more intensive clinical follow-up and ii) who may benefit from immunotherapeutic approaches targeting mesothelin.
Collapse
Affiliation(s)
- Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Xie
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ann Morgell
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Matthias Löhr
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Marco Del Chiaro
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
32
|
Veselenak RL, Milligan GN, Miller AL, Pyles RB, Bourne N. Transcriptional Analysis of the Guinea Pig Mucosal Immune Response to Intravaginal Infection with Herpes Simplex Virus Type 2. Virology 2018; 518:349-357. [PMID: 29604476 DOI: 10.1016/j.virol.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Genital herpes infection in guinea pigs closely models human infection but tools for immune characterization are limited. Immunity to HSV infection at the vaginal epithelial surface was characterized in guinea pigs using PCR-based array analysis of vaginal swab samples. IFNγ was one of the most significantly upregulated genes throughout the infection and over 40% of genes with significantly altered expression were linked to IFNγ based on INTERFEROME analysis. IFNγ transcripts and biologically active IFNγ at the genital mucosa were confirmed by RTPCR and IFNγ reporter cells. Gene ontology analysis revealed activation of many biological processes related to genital immunity shared by humans and mice demonstrating the similarities of the local immune response to primary genital HSV-2 infection in guinea pigs and other established models. This transcription-based array will be useful for dissection of immunity during reactivation from latency, an infection outcome that is not well recapitulated by other animal models.
Collapse
Affiliation(s)
- Ronald L Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| |
Collapse
|
33
|
Loschinski R, Böttcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 2018; 9:13125-13138. [PMID: 29568345 PMCID: PMC5862566 DOI: 10.18632/oncotarget.24442] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
T-cell-based therapies represent a promising strategy for cancer treatment. In this context, cytokines are discussed as a bona fide instrument for fine-tuning T- cell biology. One promising candidate is the pleiotropic interleukin-21 (IL-21) with only little being known regarding its direct effects on human T-cells. Thus, we sought out to characterize the impact of IL-21 on T-cell metabolism, fitness, and differentiation. Culturing T-cells in presence of IL-21 elicited a metabolic skewing away from aerobic glycolysis towards fatty acid oxidation (FAO). These changes of the metabolic framework were paralleled by increased mitochondrial fitness and biogenesis. However, oxidative stress levels were not increased but rather decreased. Furthermore, elevated FAO and mitochondrial biomass together with enhanced antioxidative properties are linked to formation of longer lasting memory responses and less PD-1 expression. We similarly observed an IL-21-triggered induction of central memory-like T-cells and reduced levels of PD-1 on the cell surface. Taken together, IL-21 shifts T-cells towards an immunometabolic phenotype that has been associated with increased survivability and enhanced anti-tumor efficacy. In addition, our data reveals a novel interconnection between fatty acid metabolism and immune function regulated by IL 21.
Collapse
Affiliation(s)
- Romy Loschinski
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
34
|
Th9 cells promote antitumor immunity via IL-9 and IL-21 and demonstrate atypical cytokine expression in breast cancer. Int Immunopharmacol 2017; 52:163-167. [DOI: 10.1016/j.intimp.2017.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/19/2022]
|
35
|
Méndez-Lagares G, Lu D, Merriam D, Baker CA, Villinger F, Van Rompay KKA, McCune JM, Hartigan-O'Connor DJ. IL-21 Therapy Controls Immune Activation and Maintains Antiviral CD8 + T Cell Responses in Acute Simian Immunodeficiency Virus Infection. AIDS Res Hum Retroviruses 2017; 33:S81-S92. [PMID: 29140110 DOI: 10.1089/aid.2017.0160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replicate during acute infection in lymphocytes of the gastrointestinal tract, before disseminating systemically. Localized replication and associated loss of gut-resident CD4+ T cells occur regardless of the portal of entry of the virus (e.g., intravenous vs. rectal). Thus, HIV and SIV are tropic for gut tissue, and their pathogenesis requires the special environment of the intestine. T helper 17 (Th17) cells are important contributors to microbial defense in the gut that are vulnerable to HIV infection and whose loss is associated with translocation of microbial products to the systemic circulation, leading to chronic immune activation and disease progression. Interleukin (IL)-21 promotes differentiation and survival of Th17 cells and stimulates CD8+ T cell function. By promoting Th17 cell survival, IL-21 could limit bacterial translocation and immune activation in the setting of acute or rebounding HIV/SIV disease. In this study, we tested the effect of recombinant IL-21-IgFc treatment, given at the time of infection, on SIVmac251 infection. We found that rIL-21-IgFc decreases immune activation and maintains effective antiviral responses by CD8+ T cells in blood, but this maintenance is not associated with lower viral loads. rIL-21-IgFc treatment also did not generally support Th17 cell populations, but Th17 cells remained strongly and independently associated with control of plasma viremia. For example, the single animal exhibiting greatest control over viremia in our study also manifested the highest levels of IL-21 in plasma, Th17 cell maintenance in blood, and Th17 cells in intestinal tissue. These findings provide rationale for further exploration of IL-21 treatment as a support for host CD8+ T cell responses in HIV cure strategies.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, California
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| | - Ding Lu
- California National Primate Research Center, University of California, Davis, California
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| | - David Merriam
- California National Primate Research Center, University of California, Davis, California
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| | - Christopher A. Baker
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California
| | - François Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California
| | - Dennis J. Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California
- Department of Medical Microbiology and Immunology, University of California, Davis, California
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
36
|
Haymaker C, Yang Y, Wang J, Zou Q, Sahoo A, Alekseev A, Singh D, Ritthipichai K, Hailemichael Y, Hoang ON, Qin H, Schluns KS, Wang T, Overwijk WW, Sun SC, Bernatchez C, Kwak LW, Neelapu SS, Nurieva R. Absence of Grail promotes CD8 + T cell anti-tumour activity. Nat Commun 2017; 8:239. [PMID: 28798332 PMCID: PMC5552797 DOI: 10.1038/s41467-017-00252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
T-cell tolerance is a major obstacle to successful cancer immunotherapy; thus, developing strategies to break immune tolerance is a high priority. Here we show that expression of the E3 ubiquitin ligase Grail is upregulated in CD8+ T cells that have infiltrated into transplanted lymphoma tumours, and Grail deficiency confers long-term tumour control. Importantly, therapeutic transfer of Grail-deficient CD8+ T cells is sufficient to repress established tumours. Mechanistically, loss of Grail enhances anti-tumour reactivity and functionality of CD8+ T cells. In addition, Grail-deficient CD8+ T cells have increased IL-21 receptor (IL-21R) expression and hyperresponsiveness to IL-21 signalling as Grail promotes IL-21R ubiquitination and degradation. Moreover, CD8+ T cells isolated from lymphoma patients express higher levels of Grail and lower levels of IL-21R, compared with CD8+ T cells from normal donors. Our data demonstrate that Grail is a crucial factor controlling CD8+ T-cell function and is a potential target to improve cytotoxic T-cell activity.Grail is an E3 ubiquitin ligase that inhibits T-cell receptor signalling in CD4+ T cells. Here the authors show Grail also limits IL-21 receptor expression and function in CD8+ T cells, is overactive in these cells in patients with lymphoma, and promotes tumour development in a lymphoma transplant mouse model.
Collapse
Affiliation(s)
- Cara Haymaker
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yi Yang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Junmei Wang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qiang Zou
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anupama Sahoo
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Andrei Alekseev
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Divyendu Singh
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Krit Ritthipichai
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Oanh N Hoang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hong Qin
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Kimberly S Schluns
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Larry W Kwak
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Roza Nurieva
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Fortin C, Yang Y, Huang X. Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus. Eur J Immunol 2017; 47:1022-1031. [PMID: 28383204 DOI: 10.1002/eji.201646797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/20/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
Vaccinia virus (VV) can potently activate NK- and T-cell responses, leading to efficient viral control and generation of long-lasting protective immunity. However, immune responses against viral infections are often tightly controlled to avoid collateral damage and systemic inflammation. We have previously shown that granulocytic myeloid-derived suppressor cells (g-MDSCs) can suppress the NK-cell response to VV infection. It remains unknown what regulates T-cell responses to VV infection in vivo. In this study, we first showed that monocytic MDSCs (m-MDSCs), but not g-MDSCs, from VV-infected mice could directly suppress CD4+ and CD8+ T-cell activation in vitro. We then demonstrated that defective recruitment of m-MDSCs to the site of VV infection in CCR2-/- mice enhanced VV-specific CD8+ T-cell response and that adoptive transfer of m-MDSCs into VV-infected mice suppressed VV-specific CD8+ T-cell activation, leading to a delay in viral clearance. Mechanistically, we further showed that T-cell suppression by m-MDSCs is mediated by indication of iNOS and production of NO upon VV infection, and that IFN-γ is required for activation of m-MDSCs. Collectively, our results highlight a critical role for m-MDSCs in regulating T-cell responses against VV infection and may suggest potential strategies using m-MDSCs to modulate T-cell responses during viral infections.
Collapse
Affiliation(s)
- Carl Fortin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Division of Hematologic Malignancies and Cellular Therapy, Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
38
|
Yuan Y, Yang Y, Huang X. IL-21 is required for CD4 memory formation in response to viral infection. JCI Insight 2017; 2:e90652. [PMID: 28405614 DOI: 10.1172/jci.insight.90652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IL-21 has been shown to play an important role in the CD8 T cell response during acute and chronic viral infections. However, the role of IL-21 signaling in the CD4 T cell response to viral infection remains incompletely defined. In a model of infection with vaccinia virus, we show that intrinsic IL-21 signaling on CD4 T cells was critical for the formation of memory CD4 T cells in vivo. We further reveal that IL-21 promoted CD4 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 signaling pathways. In addition, the activation of Akt is also required for IL-21-dependent survival of CD4 T cells in vivo. These results identify a critical role for intrinsic IL-21 signaling in CD4 T cell survival and memory formation in response to viral infection in vivo and may provide insights into the design of effective vaccine strategies.
Collapse
Affiliation(s)
- Yuqing Yuan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and.,Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| |
Collapse
|
39
|
Tian Y, Zajac AJ. IL-21 and T Cell Differentiation: Consider the Context. Trends Immunol 2016; 37:557-568. [PMID: 27389961 DOI: 10.1016/j.it.2016.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
Accumulating studies demonstrate that IL-21 modulates the differentiation of various CD4 and CD8 T cell subsets and provide insights into the underlying cellular and molecular processes that are influenced by this cytokine. Intriguingly, the effects of IL-21 on T cells can be complex and vary depending on the experimental system used. We review our current understanding of the roles of IL-21 in the generation of phenotypically distinct CD4 and CD8 T cell populations and discuss the potential environmental cues, cellular factors, and molecular mediators that impact the actions of IL-21. We propose that IL-21 acts in a context-dependent manner to accentuate T cell subset development.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
40
|
Evaluation of oral Lanzhou lamb rotavirus vaccine via passive transfusion with CD4(+)/CD8(+) T lymphocytes. Virus Res 2016; 217:101-6. [PMID: 27025573 DOI: 10.1016/j.virusres.2016.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 11/23/2022]
Abstract
Lanzhou Lamb derived Rotavirus (RV) Vaccine (namely LLR) for children is only used in China. Since there were no reports on evaluation of LLR, even the data of phase IV clinical trial, we proceed the evaluation of LLR through focusing on T-cell to investigate whether LLR could induce the potential function involving in protection as a vaccine. Four groups of nude mice were transfused with CD4(+)/CD8(+) T-cells isolated from LLR-immunized (primed) and LLR-unimmunized (naïve) mice via intraperitonea (i.p.) respectively. Consequently, the adoption mice were challenged with mice-origin wild rotavirus EDIM (Epizootic Diarrhea of Infant Mice) by intragastric administration. Series of fecal/serum samples were collected and viral shedding, then serum IgA/IgG and secreted IgA were assayed. Compared to the mice transfused with T lymphocytes from naïve mice, the nude mice transfused with CD4(+) T lymphocytes from primed mice induce fecal and serum IgA increasing more rapidly, and have a shorter duration of virus shedding too. Whereas, no significant difference in virus clearance was found between the mice transfused with CD8(+) T lymphocytes isolated from primed and naïve mice. Therefore, we cleared the distinct roles of transfused CD4(+)/CD8(+) T lymphocytes for rotavirus clearance in nude mice, that the viral clearance conducted by CD4(+) T lymphocytes. Meanwhile, it has ability to help induction of LLR specific immunogenicity. Comparing with the transfusion of cell from primed and naïve mice, LLR can induce CD4(+) T lymphocytes memory which is a potential index to reflect the immunogenicity and protection, while CD8(+) T lymphocytes remove rotavirus by CTL with little memory ability.
Collapse
|
41
|
Abstract
IL-21 is a type I cytokine produced by T cells and natural killer T cells that has pleiotropic actions on a wide range of immune and non-immune cell types. Since its discovery in 2000, extensive studies on the biological actions of IL-21 have been performed in vitro and in vivo. Recent reports describing patients with primary immunodeficiency caused by mutations of IL21 or IL21R have further deepened our knowledge of the role of this cytokine in host defense. Elucidation of the molecular mechanisms that mediate IL-21's actions has provided the rationale for targeting IL-21 and IL-21 downstream mediators for therapeutic purposes. The use of next-generation sequencing technology has provided further insights into the complexity of IL-21 signaling and has identified transcription factors and co-factors involved in mediating the actions of this cytokine. In this review, we discuss recent advances in the biology and signaling of IL-21 and how this knowledge can be potentially translated into clinical settings.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| | - Chi-Keung Wan
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| |
Collapse
|
42
|
Tian Y, Cox MA, Kahan SM, Ingram JT, Bakshi RK, Zajac AJ. A Context-Dependent Role for IL-21 in Modulating the Differentiation, Distribution, and Abundance of Effector and Memory CD8 T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 196:2153-66. [PMID: 26826252 DOI: 10.4049/jimmunol.1401236] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
Abstract
The activation of naive CD8 T cells typically results in the formation of effector cells (TE) as well as phenotypically distinct memory cells that are retained over time. Memory CD8 T cells can be further subdivided into central memory, effector memory (TEM), and tissue-resident memory (TRM) subsets, which cooperate to confer immunological protection. Using mixed bone marrow chimeras and adoptive transfer studies in which CD8 T cells either do or do not express IL-21R, we discovered that under homeostatic or lymphopenic conditions IL-21 acts directly on CD8 T cells to favor the accumulation of TE/TEM populations. The inability to perceive IL-21 signals under competitive conditions also resulted in lower levels of TRM phenotype cells and reduced expression of granzyme B in the small intestine. IL-21 differentially promoted the expression of the chemokine receptor CX3CR1 and the integrin α4β7 on CD8 T cells primed in vitro and on circulating CD8 T cells in the mixed bone marrow chimeras. The requirement for IL-21 to establish CD8 TE/TEM and TRM subsets was overcome by acute lymphocytic choriomeningitis virus infection; nevertheless, memory virus-specific CD8 T cells remained dependent on IL-21 for optimal accumulation in lymphopenic environments. Overall, this study reveals a context-dependent role for IL-21 in sustaining effector phenotype CD8 T cells and influencing their migratory properties, accumulation, and functions.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Maureen A Cox
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Shannon M Kahan
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Jennifer T Ingram
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Rakesh K Bakshi
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Allan J Zajac
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
43
|
Nguyen V, Rus H, Chen C, Rus V. CTL-Promoting Effects of IL-21 Counteract Murine Lupus in the Parent→F1 Graft-versus-Host Disease Model. THE JOURNAL OF IMMUNOLOGY 2016; 196:1529-40. [DOI: 10.4049/jimmunol.1501824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
|
44
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mittal D, Caramia F, Michiels S, Joensuu H, Kellokumpu-Lehtinen PL, Sotiriou C, Loi S, Smyth MJ. Improved Treatment of Breast Cancer with Anti-HER2 Therapy Requires Interleukin-21 Signaling in CD8+ T Cells. Cancer Res 2016; 76:264-74. [PMID: 26744522 DOI: 10.1158/0008-5472.can-15-1567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022]
Abstract
The HER2/ErbB2 monoclonal antibody (mAb) trastuzumab is combined with chemotherapy as a standard-of-care for newly diagnosed HER2(+) breast cancer patients, but some patients treated with this combination therapy experience early relapse. Our analysis of data from a clinical trial evaluating the efficacy of chemotherapy plus/minus trastuzumab suggested that the magnitude of trastuzumab benefit on distant disease-free survival was higher for increasing expression of the IL21 receptor (IL21R). Therefore, we investigated a possible role for IL21 signaling in promoting HER2 mAb therapeutic efficacy. We found that IL21R-deficient mice and wild-type mice treated with a neutralizing anti-IL21 mAb were less susceptible to trastuzumab-like anti-ErbB2 therapy. Furthermore, IL21R expression on CD8(+) T cells, but not on natural killer cells, was required for optimal anti-ErbB2 mAb efficacy, and IL21 expression was enhanced in tumor-infiltrating CD4(+) T lymphocytes after anti-ErbB2 therapy. Finally, we found that administering recombinant IL21 in combination with anti-ErbB2 therapy was therapeutic against primary tumors and experimental metastases in mice. Collectively, our findings suggest that elevating IL21 signaling may enhance trastuzumab efficacy, thus constituting a novel candidate strategy to overcome trastuzumab resistance and improve patient survival. Cancer
Collapse
Affiliation(s)
- Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Stefan Michiels
- Service de Biostatistique et d'Epidemiologie, Gustave Roussy, Villejuif, France. INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Central Hospital and Helsinki University, Helsinki, Finland
| | | | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
46
|
Al-Chami E, Tormo A, Khodayarian F, Rafei M. Therapeutic utility of the newly discovered properties of interleukin-21. Cytokine 2015; 82:33-7. [PMID: 26748727 DOI: 10.1016/j.cyto.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2000, interleukin-21 (IL-21) has been shown to display a broad spectrum of pleiotropic actions including the regulation of development, differentiation and function of lymphoid-myeloid cells. More specifically, IL-21 modulates the effector functions of T, B and NK cells, which not only have key roles in antitumoral and antiviral immunity but also in exerting major effects on inflammatory responses promoting the development of autoimmune diseases. Recent studies have unveiled an unexpected role for IL-21 in immune regulation and de novo T-cell development. While highlighting its critical role in immunity, this review will mainly focus on recent advances in IL-21 biology and how such newly discovered properties could potentially be exploited therapeutically in the establishment of future clinical trials.
Collapse
Affiliation(s)
- E Al-Chami
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - A Tormo
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - F Khodayarian
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - M Rafei
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
47
|
Micci L, Ryan ES, Fromentin R, Bosinger SE, Harper JL, He T, Paganini S, Easley KA, Chahroudi A, Benne C, Gumber S, McGary CS, Rogers KA, Deleage C, Lucero C, Byrareddy SN, Apetrei C, Estes JD, Lifson JD, Piatak M, Chomont N, Villinger F, Silvestri G, Brenchley JM, Paiardini M. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest 2015; 125:4497-513. [PMID: 26551680 PMCID: PMC4665780 DOI: 10.1172/jci81400] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non-AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4(+) T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21-treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection.
Collapse
Affiliation(s)
- Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily S. Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rémi Fromentin
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, Georgia, USA
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sara Paganini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, and
| | - Ann Chahroudi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Clarisse Benne
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth A. Rogers
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire Deleage
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Carissa Lucero
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob D. Estes
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Michael Piatak
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Francois Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Moretto MM, Khan IA. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:375-84. [PMID: 26597007 DOI: 10.4049/jimmunol.1501258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
Microsporidia, a latent opportunistic infection associated with mild inflammation, is characterized by a strong CD8 T cell response, which has been shown to be CD4 T cell dependent. In this manuscript, we demonstrate that CD4 help is provided via IL-21 production, a common γ-chain cytokine closely related to IL-2. The peak of IL-21 expression, observed during the acute infection, is associated with an elevated IL-21(+) CD4 T subset, and these cells bear a phenotypic resemblance to T follicular helper cells. We observed that, during per-oral microsporidial infection, IL-21 was critical for the generation of an optimal effector CD8 T cell immunity. Sharply decreased effector KLRG1(+) CD8 response was observed in IL-21R knockout mice, and although these cells exhibited reduced functional properties, they retained the ability to proliferate. The role of IL-21 in the generation of CD8 effectors was cell intrinsic, as stronger defects were observed in the IL-21-deficient compartment from the bone marrow chimeric mice (IL-21R knockout/wild-type). These findings are different from those reported for viral infections in which IL-21 has been primarily associated with the generation and maintenance of CD8 memory response. To the best of our knowledge, this report demonstrates a critical role for IL-21 in the generation of a primary effector CD8 T cell response to an infectious disease model.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037
| | - Imtiaz A Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037
| |
Collapse
|
49
|
Falivene J, Ghiglione Y, Laufer N, Socías ME, Holgado MP, Ruiz MJ, Maeto C, Figueroa MI, Giavedoni LD, Cahn P, Salomón H, Sued O, Turk G, Gherardi MM. Th17 and Th17/Treg ratio at early HIV infection associate with protective HIV-specific CD8(+) T-cell responses and disease progression. Sci Rep 2015; 5:11511. [PMID: 26099972 PMCID: PMC4477236 DOI: 10.1038/srep11511] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to analyze Th17 and Treg subsets and their correlation with anti-HIV T-cell responses and clinical parameters during (acute/early) primary HIV infection (PHI) and up to one year post-infection (p.i). Samples from 14 healthy donors (HDs), 40 PHI patients, 17 Chronics, and 13 Elite controllers (ECs) were studied. The percentages of Th17 and Treg subsets were severely altered in Chronics, whereas all HIV-infected individuals (including ECs) showed Th17/Treg imbalance compared to HDs, in concordance with higher frequencies of activated CD8+ T-cells (HLA-DR+/CD38+). Better clinical status (higher CD4 counts, lower viral loads and activation) was associated with higher Th17 and lower Treg levels. We found positive correlations between Th17 at baseline and anti-HIV CD8+ T-cell functionality: viral inhibitory activity (VIA) and key polyfunctions (IFN-γ+/CD107A/B+) at both early and later times p.i, highlighting the prognostic value of Th17 cells to preserve an effective HIV T-cell immunity. Th17/Treg ratio and the IL-17 relative mean fluorescence intensity (rMFI of IL-17) were also positively correlated with VIA. Taken together, our results suggested a potential link between Th17 and Th17/Treg ratio with key HIV-specific CD8+ T-cell responses against the infection.
Collapse
Affiliation(s)
- Juliana Falivene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Natalia Laufer
- 1] Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina [2] Hospital J.A. Fernández, Buenos Aires, Argentina
| | | | - María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - María Julia Ruiz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cynthia Maeto
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | - Luis D Giavedoni
- Department of Virology and Immunology, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Pedro Cahn
- 1] Fundación Huésped, Buenos Aires, Argentina [2] Hospital J.A. Fernández, Buenos Aires, Argentina
| | - Horacio Salomón
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
50
|
Moser EK, Sun J, Kim TS, Braciale TJ. IL-21R signaling suppresses IL-17+ gamma delta T cell responses and production of IL-17 related cytokines in the lung at steady state and after Influenza A virus infection. PLoS One 2015; 10:e0120169. [PMID: 25849970 PMCID: PMC4388622 DOI: 10.1371/journal.pone.0120169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/28/2015] [Indexed: 01/11/2023] Open
Abstract
Influenza A virus (IAV) infection of the respiratory tract elicits a robust immune response, which is required for efficient virus clearance but at the same time can contribute to lung damage and enhanced morbidity. IL-21 is a member of the type I cytokine family and has many different immune-modulatory functions during acute and chronic virus infections, although its role in IAV infection has not been fully evaluated. In this report we evaluated the contributions of IL-21/IL-21 receptor (IL-21R) signaling to host defense in a mouse model of primary IAV infection using IL-21R knock out (KO) mice. We found that lack of IL-21R signaling had no significant impact on virus clearance, adaptive T cell responses, or myeloid cell accumulations in the respiratory tract. However, a subset of inflammatory cytokines were elevated in the bronchoalveolar lavage fluid of IL-21R KO mice, including IL-17. Although there was only a small increase in Th17 cells in the lungs of IL-21R KO mice, we observed a dramatic increase in gamma delta (γδ) T cells capable of producing IL-17 both after IAV infection and at steady state in the respiratory tract. Finally, we found that IL-21R signaling suppressed the accumulation of IL-17+ γδ T cells in the respiratory tract intrinsically. Thus, our study reveals a previously unrecognized role of IL-21R signaling in regulating IL-17 production by γδ T cells.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Flow Cytometry
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lung/immunology
- Lung/pathology
- Lung/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin-21/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Emily K. Moser
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pharmacology, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Jie Sun
- Herman B. Wells Center for Pediatrics, The University of Indiana, Indianapolis, Indiana, United States of America
| | - Taeg S. Kim
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|