1
|
Presicce P, Roland C, Senthamaraikannan P, Cappelletti M, Hammons M, Miller LA, Jobe AH, Chougnet CA, DeFranco E, Kallapur SG. IL-1 and TNF mediates IL-6 signaling at the maternal-fetal interface during intrauterine inflammation. Front Immunol 2024; 15:1416162. [PMID: 38895127 PMCID: PMC11183269 DOI: 10.3389/fimmu.2024.1416162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction IL6 signaling plays an important role in triggering labor and IL6 is an established biomarker of intrauterine infection/inflammation (IUI) driven preterm labor (PTL). The biology of IL6 during IUI at the maternal-fetal interface was investigated in samples from human subjects and non-human primates (NHP). Methods Pregnant women with histologic chorioamnionitis diagnosed by placenta histology were recruited (n=28 term, n=43 for preterm pregnancies from 26-36 completed weeks of gestation). IUI was induced in Rhesus macaque by intraamniotic injection of lipopolysachharide (LPS, n=23). IL1 signaling was blocked using Anakinra (human IL-1 receptor antagonist, n=13), and Tumor necrosis factor (TNF) signaling was blocked by anti TNF-antibody (Adalimumab n=14). The blockers were given before LPS. All animals including controls (intraamniotic injection of saline n=27), were delivered 16h after LPS/saline exposure at about 80% gestation. Results IUI induced a robust expression of IL6 mRNAs in the fetal membranes (chorion-amnion-decidua tissue) both in humans (term and preterm) and NHP. The major sources of IL6 mRNA expression were the amnion mesenchymal cells (AMC) and decidua stroma cells. Additionally, during IUI in the NHP, ADAM17 (a protease that cleaves membrane bound IL6 receptor (IL6R) to release a soluble form) and IL6R mRNA increased in the fetal membranes, and the ratio of IL6 and soluble forms of IL6R, gp130 increased in the amniotic fluid signifying upregulation of IL6 trans-signaling. Both IL1 and TNF blockade suppressed LPS-induced IL6 mRNAs in the AMC and variably decreased elements of IL6 trans-signaling. Discussion These data suggest that IL1 and TNF blockers may be useful anti-inflammatory agents via suppression of IL6 signaling at the maternal-fetal interface.
Collapse
Affiliation(s)
- Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Cynthia Roland
- Department of Obstetrics/Gynecology, Maternal-Fetal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Paranthaman Senthamaraikannan
- Division of Neonatology/Pulmonary Biology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Monica Cappelletti
- Division of Immunogenetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - McKensie Hammons
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Lisa A. Miller
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Alan H. Jobe
- Division of Neonatology/Pulmonary Biology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Emily DeFranco
- Department of Obstetrics/Gynecology, Maternal-Fetal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Tu Z, Wei W, Zeng F, Wang W, Zhang Y, Zhang Y, Zhou F, Cai C, Zhang S, Zhou H. IL-6 Up-Regulates Expression of LIM-Domain Only Protein 4 in Psoriatic Keratinocytes through Activation of the MEK/ERK/NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:708-720. [PMID: 38320628 DOI: 10.1016/j.ajpath.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the activation of keratinocytes and the infiltration of immune cells. Overexpression of the transcription factor LIM-domain only protein 4 (LMO4) promoted by IL-23 has critical roles in regulating the proliferation and differentiation of psoriatic keratinocytes. IL-6, an autocrine cytokine in psoriatic epidermis, is a key mediator of IL-23/T helper 17-driven cutaneous inflammation. However, little is known about how IL-6 regulates the up-regulation of LMO4 expression in psoriatic lesions. In this study, human immortalized keratinocyte cells, clinical biopsy specimens, and an animal model of psoriasis induced by imiquimod cream were used to investigate the role of IL-6 in the regulation of keratinocyte proliferation and differentiation. Psoriatic epidermis showed abnormal expression of IL-6 and LMO4. IL-6 up-regulated the expression of LMO4 and promoted keratinocyte proliferation and differentiation. Furthermore, in vitro and in vivo studies showed that IL-6 up-regulates LMO4 expression by activating the mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK)/NF-κB signaling pathway. These results suggest that IL-6 can activate the NF-κB signaling pathway, up-regulate the expression of LMO4, lead to abnormal proliferation and differentiation of keratinocytes, and promote the occurrence and development of psoriasis.
Collapse
Affiliation(s)
- Zhenzhen Tu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Dermatology, Anhui Medical University-Affiliated Provincial Hospital, Hefei, China
| | - Fanjun Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenwen Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuyan Zhang
- Department of Dermatology, WanNan Medical College, WuHu, China
| | - Yintao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Chunlin Cai
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Siping Zhang
- Department of Dermatology, Anhui Medical University-Affiliated Provincial Hospital, Hefei, China.
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; The Center for Scientific Research, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Gondane P, Kumbhakarn S, Maity P, Kapat K. Recent Advances and Challenges in the Early Diagnosis and Treatment of Preterm Labor. Bioengineering (Basel) 2024; 11:161. [PMID: 38391647 PMCID: PMC10886370 DOI: 10.3390/bioengineering11020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Preterm birth (PTB) is the primary cause of neonatal mortality and long-term disabilities. The unknown mechanism behind PTB makes diagnosis difficult, yet early detection is necessary for controlling and averting related consequences. The primary focus of this work is to provide an overview of the known risk factors associated with preterm labor and the conventional and advanced procedures for early detection of PTB, including multi-omics and artificial intelligence/machine learning (AI/ML)- based approaches. It also discusses the principles of detecting various proteomic biomarkers based on lateral flow immunoassay and microfluidic chips, along with the commercially available point-of-care testing (POCT) devices and associated challenges. After briefing the therapeutic and preventive measures of PTB, this review summarizes with an outlook.
Collapse
Affiliation(s)
- Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| |
Collapse
|
4
|
Mager CE, Mormol JM, Shelton ED, Murphy PR, Bowman BA, Barley TJ, Wang X, Linn SC, Liu K, Nelin LD, Hafner M, Liu Y. p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis. J Biol Chem 2023; 299:103043. [PMID: 36803959 PMCID: PMC10025163 DOI: 10.1016/j.jbc.2023.103043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow-derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1-/- bone marrow-derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.
Collapse
Affiliation(s)
- Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Evan D Shelton
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kevin Liu
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Benzon Z, Kuzmić Prusac I, Zekić Tomaš S, Vulić M, Vulić L, Benzon S, Stefanovic V. Chorioamnionitis has no impact on immunohistochemical expression of IL-6 in placental membranes of the late preterm delivery regardless of the membrane status. J Perinat Med 2022; 50:386-390. [PMID: 34890500 DOI: 10.1515/jpm-2021-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To compare the immunohistochemical expression of IL-6 in placental membranes of late preterm delivery in women with histologically proven chorioamnionitis with and without preterm premature rupture of membranes (PPROM). METHODS Fetal membranes were collected from 60 women who had late preterm delivery with histologic chorioamnionitis with and without PPROM (30 in each group). Immunohistochemistry for IL-6 was performed on formalin fixed and paraffin-embedded sections. The two groups were matched for age, body mass index and parity. SPSS Version 17.0 was used for statistical analysis. RESULTS There was no difference in immunohistochemical expression of IL-6 in placental membranes of women with histologic chorioamnionitis regardless of the membrane status. CONCLUSIONS Chorioamnionitis has no impact on immunohistochemical expression of IL-6 in placental membranes of women with late preterm delivery despite the clinical presentation.
Collapse
Affiliation(s)
- Zdeslav Benzon
- Department of Gynecology and Obstetrics, University Hospital and School of Medicine, University of Split, Split, Croatia
| | - Ivana Kuzmić Prusac
- Institute for Pathology, University Hospital and School of Medicine, Split, Croatia
| | - Sandra Zekić Tomaš
- Institute for Pathology, University Hospital and School of Medicine, Split, Croatia
| | - Marko Vulić
- Department of Gynecology and Obstetrics, University Hospital and School of Medicine, University of Split, Split, Croatia
| | - Luka Vulić
- Department of Gynecology and Obstetrics, University Hospital Center "Sisters of Mercy", Zagreb, Croatia
| | - Sandra Benzon
- Department of Gynecology and Obstetrics, University Hospital and School of Medicine, University of Split, Split, Croatia
| | - Vedran Stefanovic
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Barley TJ, Murphy PR, Wang X, Bowman BA, Mormol JM, Mager CE, Kirk SG, Cash CJ, Linn SC, Meng X, Nelin LD, Chen B, Hafner M, Zhang J, Liu Y. Mitogen-activated protein kinase phosphatase-1 controls PD-L1 expression by regulating type I interferon during systemic Escherichia coli infection. J Biol Chem 2022; 298:101938. [PMID: 35429501 PMCID: PMC9108994 DOI: 10.1016/j.jbc.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/β receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/β receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.
Collapse
Affiliation(s)
- Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Charles J Cash
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Bernadette Chen
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Gupta JK, Alfirevic A. Systematic review of preterm birth multi-omic biomarker studies. Expert Rev Mol Med 2022; 24:1-24. [PMID: 35379367 PMCID: PMC9884789 DOI: 10.1017/erm.2022.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Preterm birth (PTB) is one of the leading causes of deaths in infants under the age of five. Known risk factors of PTB include genetic factors, lifestyle choices or infection. Identification of omic biomarkers associated with PTB could aid clinical management of women at high risk of early labour and thereby reduce neonatal morbidity. This systematic literature review aimed to identify and summarise maternal omic and multi-omic (genomics, transcriptomics, proteomics and metabolites) biomarker studies of PTB. Original research articles were retrieved from three databases: PubMed, Web of Science and Science Direct, using specified search terms for each omic discipline. PTB studies investigating genomics, transcriptomics, proteomics or metabolomics biomarkers prior to onset of labour were included. Data were collected and reviewed independently. Pathway analyses were completed on the biomarkers from non-targeted omic studies using Reactome pathway analysis tool. A total of 149 omic studies were identified; most of the literature investigated proteomic biomarkers. Pathway analysis identified several cellular processes associated with the omic biomarkers reported in the literature. Study heterogeneity was observed across the research articles, including the use of different gestation cut-offs to define PTB. Infection/inflammatory biomarkers were identified across majority of papers using a range of targeted and non-targeted approaches.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| |
Collapse
|
8
|
OHTO H. Editorial: Two hits and four factors affecting the development of, or resistance to, transfusion-associated graft-versus-host disease. Transfus Apher Sci 2022; 61:103401. [DOI: 10.1016/j.transci.2022.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Mendelian randomization of cytokines in schizophrenia and depression: What does this tell us about causal chains in these illnesses? Brain Behav Immun 2022; 99:130-131. [PMID: 34600087 DOI: 10.1016/j.bbi.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
|
10
|
Chen R, Zhang S, Su S, Ye H, Shu H. Interactions Between Specific Immune Status of Pregnant Women and SARS-CoV-2 Infection. Front Cell Infect Microbiol 2021; 11:721309. [PMID: 34458162 PMCID: PMC8387674 DOI: 10.3389/fcimb.2021.721309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the Coronavirus Disease 2019 (COVID-19) global pandemic. Because it is a new and highly contagious coronavirus, most people, especially pregnant women, lack immunity. It is therefore important to understand the interaction between why pregnant women are susceptible to SARS-CoV-2 and the specific immune systems of pregnant women. Here, we provide an overview of the changes that occur in the immune system during pregnancy, the activation and response of the immune system in pregnant women with COVID-19, adverse pregnancy outcomes in pregnant women with COVID-19, and the treatment and prevention of COVID-19 in this population.
Collapse
Affiliation(s)
- Ruirong Chen
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shaofen Zhang
- Department of Gynaecology and Obstetrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Sheng Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan Ye
- Department of Gynaecology and Obstetrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haihua Shu
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Prairie E, Côté F, Tsakpinoglou M, Mina M, Quiniou C, Leimert K, Olson D, Chemtob S. The determinant role of IL-6 in the establishment of inflammation leading to spontaneous preterm birth. Cytokine Growth Factor Rev 2021; 59:118-130. [PMID: 33551331 DOI: 10.1016/j.cytogfr.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB) and its consequences are a major public health concern as preterm delivery is the main cause of mortality and morbidity at birth. There are many causes of PTB, but inflammation is undeniably associated with the process of premature childbirth and fetal injury. At present, treatments clinically available mostly involve attempt to arrest contractions (tocolytics) but do not directly address upstream maternal inflammation on development of the fetus. One of the possible solutions may lie in the modulation of inflammatory mediators. Of the many pro-inflammatory cytokines involved in the induction of PTB, IL-6 stands out for its pleiotropic effects and its involvement in both acute and chronic inflammation. Here, we provide a detailed review of the effects of IL-6 on the timing of childbirth, its occurrence during PTB and its indissociable roles with associated fetal tissue damage.
Collapse
Affiliation(s)
- Elizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - France Côté
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marika Tsakpinoglou
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michael Mina
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada.
| | - Kelycia Leimert
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - David Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada.
| |
Collapse
|
12
|
Ghaneifar Z, Yousefi Z, Tajik F, Nikfar B, Ghalibafan F, Abdollahi E, Momtazi-Borojeni AA. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72:2572-2583. [PMID: 33107698 DOI: 10.1002/iub.2399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Pregnancy complications including preeclampsia, preterm birth, intrauterine growth restriction, and gestational diabetes are the main adverse reproductive outcomes. Excessive inflammation and oxidative stress play crucial roles in the pathogenesis of pregnancy disorders. Curcumin, the main polyphenolic compound derived from Curcuma longa, is mainly known by its anti-inflammatory and antioxidant properties. There are in vitro and in vivo reports revealing the preventive and ameliorating effects of curcumin against pregnancy complications. Here, we aimed to seek mechanisms underlying the modulatory effects of curcumin on dysregulated inflammatory and oxidative responses in various pregnancy complications.
Collapse
Affiliation(s)
- Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Tajik
- Faculty of medicine, Azad University of Tehran, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghalibafan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Omere C, Richardson L, Saade GR, Bonney EA, Kechichian T, Menon R. Interleukin (IL)-6: A Friend or Foe of Pregnancy and Parturition? Evidence From Functional Studies in Fetal Membrane Cells. Front Physiol 2020; 11:891. [PMID: 32848846 PMCID: PMC7397758 DOI: 10.3389/fphys.2020.00891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Protection of the fetus within the amniotic sac is primarily attained by remodeling fetal membrane (amniochorion) cells through cyclic epithelial to mesenchymal and mesenchymal to epithelial (EMT and MET) transitions. Endocrine and paracrine factors regulate EMT and MET during pregnancy. At term, increased oxidative stress forces a terminal state of EMT and inflammation, predisposing to membrane weakening and rupture. IL-6 is a constitutively expressed cytokine during gestation, but it is elevated in term and preterm births. Therefore, we tested the hypothesis that IL-6 can determine the fate of amnion membrane cells and that pathologic levels of IL-6 can cause a terminal state of EMT and inflammation, leading to adverse pregnancy outcomes. Methods Primary amnion epithelial cells (AECs) were treated with recombinant IL-6 (330, 1,650, 3,330, and 16,000 pg/ml) for 48 h (N = 5). IL-6-induced cell senescence (aging), cell death (apoptosis and necrosis), and cell cycle changes were studied using flow cytometry. Cellular transitions were determined by immunocytochemistry and western blot analysis, while IL-6 signaling (activation of signaling kinases) was measured by immunoassay. Inflammatory marker matrix metalloproteinase (MMP9) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations were measured using a Fluorokine E assay and ELISA, respectively. Amniotic membranes collected on gestational day (D) 12 and D18 from IL-6 knockout (KO) and control C57BL/6 mice (N = 3 each) were used to determine the impact of IL-6 on cell transitions. Fold changes were measured based on the mean of each group. Results IL-6 treatment of AECs at physiologic or pathologic doses increased JNK and p38MAPK activation; however, the activation of signals did not cause changes in AEC cell cycle, cellular senescence, apoptosis, necrosis, cellular transitions, or inflammation (MMP9 and GM-CSF) compared to control. EMT markers were higher on D18 compared to D12 regardless of IL-6 status in the mouse amniotic sac. Conclusion Physiologic and pathologic concentrations of IL-6 did not cause amnion cell aging, cell death, cellular transitions, or inflammation. IL-6 may function to maintain cellular homeostasis throughout gestation in fetal membrane cells. Although IL-6 is a good biomarker for adverse pregnancies, it is not an indicator of an underlying pathological mechanism in membrane cells.
Collapse
Affiliation(s)
- Chasey Omere
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - George R Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
14
|
Rood KM, Buhimschi CS, Zhao G, Oliver EA, Summerfield T, Bahtiyar MO, Buhimschi IA. Tenascin-X in amniotic fluid and reproductive tissues of pregnancies complicated by infection and preterm prelabor rupture of membranes†. Biol Reprod 2020; 100:773-782. [PMID: 30277495 DOI: 10.1093/biolre/ioy216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/12/2022] Open
Abstract
Preterm prelabor rupture of membranes (PPROM), which can precede or follow intra-amniotic infection/inflammation (IAI), is a poorly understood pregnancy complication. Tenascin-X (TNX) is a connective tissue extracellular matrix protein that regulates fibrillogenesis of collagens I, III, and V. Our goal was to investigate the presence and level of soluble TNX (sTNX) in amniotic fluid (AF) and TNX expression in reproductive tissues of pregnancies complicated by PPROM and IAI. We prospectively recruited 334 women pregnant with singletons who had a clinically indicated amniocentesis for genetic karyotyping, lung maturity testing, or rule-out IAI in the presence or absence of PPROM. We quantified TNX expression in fetal membranes, myometrium, cervix, and placenta using immunological methods and qRT-PCR. In pregnancies with normal outcomes, AF sTNX levels were GA-regulated with lower levels toward term. IAI significantly upregulated AF sTNX levels independent of membrane status. AF sTNX levels inversely correlated with fetal membranes tenascin XB (TNXB) mRNA level, which was significantly downregulated by IAI. Western blotting identified characteristic ∼75 and ∼140 kDa sTNX forms in both AF and fetal membranes. Fetal membranes, placenta, and cervix constitutively express TNX with the highest abundance in the amnion. Amnion TNX richness is significantly lost in the setting of IAI. Our results suggest that fetal membranes may be a source of AF sTNX whereby protein and mRNA expression seem to be significantly impacted by inflammation independent of fetal membrane status. A more thorough understanding of TNX changes may be valuable for understanding spontaneous PPROM and to potentially develop therapeutic targets.
Collapse
Affiliation(s)
- Kara M Rood
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Catalin S Buhimschi
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Emily A Oliver
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Taryn Summerfield
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mert Ozan Bahtiyar
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina A Buhimschi
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
15
|
Pandey M, Awasthi S. Role of MMP-1, MMP-8 and MMP-9 gene polymorphisms in preterm birth. J Genet 2020; 99:2. [PMID: 32089521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel approaches to preterm births are underway building upon our prior discoveries and probing into unknown discovery pathways. The recent findings showed a high affinity of MMP-9 in serum and its polymorphisms for preterm birth. This study, which is a hospital-based case-control study, aims to investigate the association of MMP-1, MMP-8 and MMP-9 polymorphisms, and levels of MMP-9 in preterm birth. Increased level of MMP-9 was reported in cases as compared to control. The significant association of MMP-9 (-1562) CT (P = 0.001; OR = 1.44(CI = 0.97-2.14)) and TTgenotype (P = 0.05;OR = 2.6 (CI = 1.46-4.69)) were reported in preterm birth. Our findings suggest that the MMP-9 plays an important role in contributing preterm labour and this can be used as a diagnostic tool during pregnancy.
Collapse
Affiliation(s)
- Monika Pandey
- Department of Pediatrics, King George's Medical University, Lucknow 226 003, India.
| | | |
Collapse
|
16
|
|
17
|
Akkaya Fırat A, Alıcı Davutoğlu E, Özel A, Güngör ZB, Madazlı R, Ulakoğlu Zengin E. Hypoxia-inducible factor-1α, hepcidin and interleukin-6 levels in pregnancies with preterm labour. J OBSTET GYNAECOL 2019; 40:813-819. [PMID: 31795791 DOI: 10.1080/01443615.2019.1672141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the study was to investigate whether serum hypoxia-inducible factor-1alpha (HIF-1α), hepcidin and interleukin-6 (IL-6) concentrations differed between threatened preterm labour (TPL) and uncomplicated pregnancies. This study was conducted on 54 women with TDL pregnancies and 26 healthy pregnant women. The TPL group was further divided into two subgroups according to the gestational age at delivery. Patients who gave birth within 48-72 h after the hospitalisation were referred to as preterm delivery (PD) and who gave birth at ≥37 weeks were referred to as term delivery (TD). Maternal levels of serum HIF-1α, hepcidin and IL-6 were measured with the use of enzyme-linked immunosorbent assay kits. The mean maternal serum HIF-1α, hepcidin and IL-6 levels of PD were significantly higher than TD (p < .001*) and control group (p < .001*). The mean maternal serum HIF-1α and hepcidin levels of TD were no significantly higher than the control group (p=.058, p = .064). The mean maternal serum IL-6 level of TD was significantly higher than the control group (p < .001*). A negative correlation was found between serum concentration of HIF1α, hepcidin, IL-6 with the gestational week of delivery (r = -0.421, p < .01* for HIF-1α; r = -0.578, p < .01* for hepcidin and r = -0.435, p < .01* for IL-6). High levels of HIF-1α, hepcidin and IL-6 may have potential to be used as biomarkers for the differentiation of PD and TD.Impact statementWhat is already known on this subject? It is known that hypoxia-inducible factor-1alpha (HIF-1α) is a hypoxia marker and hepcidin and interleukin-6 (IL-6) increase in inflammation. Our study is the comparison of maternal serum HIF-1α, hepcidin and IL-6 levels between the TPL group (TD and PD) and healthy control group.What the results of this study add? The present study demonstrates that serum HIF-1α, hepcidin and IL-6 levels were significantly higher in TPD group than uncomplicated group. The mean maternal serum HIF-1α and hepcidin levels of TD were no significantly higher than the control group.What the implications are of these findings for clinical practice and/or further research? High levels of HIF-1α, hepcidin and IL-6 may be biomarkers in the determination of true preterm labour within the TPL group.
Collapse
Affiliation(s)
- Asuman Akkaya Fırat
- Biochemistry Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| | - Ebru Alıcı Davutoğlu
- Obstetrics and Gynecology Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| | - Ayşegül Özel
- Obstetrics and Gynecology Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| | - Zeynep Banu Güngör
- Biochemistry Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| | - Rıza Madazlı
- Obstetrics and Gynecology Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| | - Emel Ulakoğlu Zengin
- Biochemistry Department, Cerrahpasa School of Medicine, Istanbul University, İstanbul, Turkey
| |
Collapse
|
18
|
Beck S, Buhimschi IA, Summerfield TL, Ackerman WE, Guzeloglu-Kayisli O, Kayisli UA, Zhao G, Schatz F, Lockwood CJ, Buhimschi CS. Toll-like receptor 9, maternal cell-free DNA and myometrial cell response to CpG oligodeoxynucleotide stimulation. Am J Reprod Immunol 2019; 81:e13100. [PMID: 30758898 DOI: 10.1111/aji.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 01/05/2023] Open
Abstract
PROBLEM Among mechanisms triggering onset of parturition, it has been recently postulated that Toll-Like Receptor (TLR)9 engagement by cell-free DNA (cfDNA) triggers inflammation, myometrial contractions, and labor in absence of infection. The current study evaluated whether direct (myometrial) or indirect (decidual) TLR9 engagement enhances human myometrial contractility. METHOD OF STUDY Toll-like receptor 9 expression and cellular localization were surveyed by immunohistochemistry of placenta, fetal membranes, and myometrium in term (gestational age [GA]: >37 weeks) labor (TL, n = 7) or term non-labor (TNL, n = 7) tissues. Non-pregnant myometrium (n = 4) served as reference. TLR9 mRNA expression relative to other TLRs was evaluated through the mining of an RNA-seq dataset and confirmed by RT-PCR. Immortalized human myometrial cells (hTERT-HM) were treated with incremental concentrations of TLR9 agonist ODN2395, TNF-α, or LPS. Secreted cytokines were quantified by multiplex immunoassay, and contractility was assessed by an in-gel cell contraction assay (n = 9). Induction of hTERT-HM contractility was also evaluated indirectly following exposure to conditioned media from primary term decidual cells (n = 4) previously stimulated with ODN2395. RESULTS Toll-like receptor 9 immunostaining in placenta and amniochorion was strongest in decidual cells, but unrelated to labor. TLR9 staining intensity was significantly decreased in TL compared with TNL myometrium (P = 0.002). Although total cfDNA in maternal circulation increased in TL (P = 0.025 vs TNL), difference in cffDNA was non-significant. Myometrial TLR9 mRNA levels were unaffected by contractile status and far less abundant than other pro-inflammatory TLRs. hTERT-HM contractility was enhanced by LPS (P = 0.002) and TNF-α (P = 0.003), but not by ODN2395 (P = 0.345) or supernatant of TLR9-stimulated decidual cells. CONCLUSION Myometrial and decidual TLR9 are unlikely to directly regulate human parturition.
Collapse
Affiliation(s)
- Stacy Beck
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Irina A Buhimschi
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Taryn L Summerfield
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - William E Ackerman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Catalin S Buhimschi
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
19
|
Holmström E, Myntti T, Sorsa T, Kruit H, Juhila J, Paavonen J, Rahkonen L, Stefanovic V. Cervical and Amniotic Fluid Matrix Metalloproteinase-8 and Interleukin-6 Concentrations in Preterm Pregnancies with or without Preterm Premature Rupture of Membranes. Fetal Diagn Ther 2018; 46:103-110. [PMID: 30308501 DOI: 10.1159/000493207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Intra-amniotic inflammation is defined by elevated inflammatory biomarkers in the amniotic fluid (AF), either due to microbial invasion of the amniotic cavity (MIAC) or sterile inflammation. Amniocentesis being an invasive procedure, we wanted to investigate whether elevated matrix metalloproteinase-8 (MMP-8) or interleukin-6 (IL-6) concentrations could be detected from cervical fluid samples. MATERIALS AND METHODS This prospective study included 67 women with singleton nondiabetic pregnancies with or without preterm premature rupture of membranes (PPROM) between 22+0 and 37+0 weeks of gestation. Simultaneous AF and cervical samples were obtained. RESULTS In women without PPROM, cervical MMP-8 concentrations correlated with AF MMP-8 concentrations (rS = 0.466, p = 0.002), but cervical IL-6 did not correlate with AF IL-6 (rS = 0.277, p = 0.076). In PPROM cases no correlations were found. Women with MIAC had higher concentrations of AF MMP-8 and AF IL-6 compared to women without MIAC regardless of membrane status. However, only women without PPROM had higher concentrations of cervical MMP-8 in proven MIAC. CONCLUSION In women without PPROM, cervical MMP-8 concentration reflects the magnitude of AF MMP-8, thus potentially guiding the selection of patients benefitting from amniocentesis.
Collapse
Affiliation(s)
- Emilia Holmström
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,
| | - Tarja Myntti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland.,Institute of Dentistry, University of Helsinki, Helsinki, Finland.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Heidi Kruit
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Jorma Paavonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Rahkonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Vedran Stefanovic
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Benzon Z, Benzon S, Tomaš SZ, Prusac IK, Vulić L, Vulić M, Stefanovic V. Immunohistochemical demonstration of RECK protein and interleukin-6 in fetal membranes from singleton pregnancies with late preterm delivery, intact membranes and histological chorioamnionitis. Biotech Histochem 2018; 93:575-580. [PMID: 30230382 DOI: 10.1080/10520295.2018.1511061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We investigated whether chorioamnionitis affects immunohistochemical demonstration of RECK protein and interleukin-6 (IL-6) expression in fetal placental membranes following late preterm delivery with intact membranes. Fetal membranes of 28 women with single pregnancy, preterm delivery and histologically documented chorioamnionitis at gestational age 34-366/7 weeks constituted the chorioamnionitis study group. The control group consisted of 28 fetal membranes from women with preterm deliveries at the same gestational age without histological chorioamnionitis. Immunohistochemistry was performed using monoclonal antibodies against RECK protein and IL-6. We found a statistically significant difference in RECK expression between the chorioamnionitis and control groups; however, we found no difference in IL-6 expression between the groups. We demonstrated that RECK expression is down-regulated in fetal membranes from pregnancies with spontaneous late preterm birth and intact membranes, which suggests its role in preterm parturition. Equal expression of IL-6 in fetal membranes of pregnancies with and without histological chorioamnionitis is an intriguing and unexpected observation that requires further investigation.
Collapse
Affiliation(s)
- Z Benzon
- a Department of Obstetrics and Gynecology , Split University Hospital, University of Split , Split , Croatia
| | - S Benzon
- a Department of Obstetrics and Gynecology , Split University Hospital, University of Split , Split , Croatia
| | - S Z Tomaš
- b Institute of Pathology , Split University Hospital, University of Split , Split , Croatia
| | - I K Prusac
- b Institute of Pathology , Split University Hospital, University of Split , Split , Croatia
| | - L Vulić
- c School of Medicine , Split University Hospital, University of Split , Split , Croatia
| | - M Vulić
- a Department of Obstetrics and Gynecology , Split University Hospital, University of Split , Split , Croatia
| | - V Stefanovic
- d Department of Obstetrics and Gynecology , Helsinki University Hospital, University of Helsinki , Helsinki , Finland
| |
Collapse
|
21
|
Zika virus infection of first-trimester human placentas: utility of an explant model of replication to evaluate correlates of immune protection ex vivo. Curr Opin Virol 2018; 27:48-56. [PMID: 29172071 DOI: 10.1016/j.coviro.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The emergence of congenital Zika virus (ZIKV) disease, with its devastating effects on the fetus, has prompted development of vaccines and examination of how ZIKV breaches the maternal-fetal barrier. Infection of placental and decidual tissue explants has demonstrated cell types at the uterine-placental interface susceptible to infection and suggests routes for transmission across the placenta and amniochorionic membrane. ZIKV replicates in proliferating Hofbauer cells within chorionic villi in placentas from severe congenital infection. Explants of anchoring villi recapitulate placental architecture and early-stage development and suggest infected Hofbauer cells disseminate virus to fetal blood vessels. ZIKV infection of explants represents a surrogate human model for evaluating protection against transmission by antibodies in vaccine recipients and passive immune formulations and novel therapeutics.
Collapse
|
22
|
Noda-Nicolau NM, Polettini J, da Silva MG, Peltier MR, Menon R. Polybacterial stimulation suggests discrete IL-6/IL-6R signaling in human fetal membranes: Potential implications on IL-6 bioactivity. J Reprod Immunol 2018. [PMID: 29524791 DOI: 10.1016/j.jri.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The polybacterial invasion of the amniotic cavity and risk of preterm birth is often due to cervicovaginal bacteria such as genital mycoplasmas (Mycoplasma hominis and Ureaplasma urealyticum) and Gardnerella vaginalis. The most studied biomarker associated with preterm birth is interleukin-6 (IL-6), a pleiotropic cytokine that performs different functions based on classical or trans-signaling mechanisms. This study evaluated the changes in IL-6 and IL-6 function associated accessory molecules by human fetal membranes to determine the functional availability of IL-6 assessment in an in vitro model of polybacterial infection. Fetal membranes were treated with LPS or heat-inactivated genital mycoplasmas and G. vaginalis alone or in combination. IL-6 and its soluble receptors (sgp130, sIL-6R) were assessed in conditioned medium by immunoassays and membrane-bound receptors were evaluated in the tissue using immunohistochemistry and RT-PCR. Data from protein and gene expression were evaluated using linear mixed effects models. Data from immunohistochemistry were evaluated using one-way analysis of variance followed by the Tukey test. Genital mycoplasmas alone, or in combination, inhibited IL-6 trans-signaling with increased sgp130 production. G. vaginalis activated the classical IL-6 signaling pathway, as did LPS. Polybacterial treatment resulted in a balanced response with neither pathway being favored. The increase in IL-6 production by fetal membranes in response to infection is likely a non-specific innate response and not an indicator of a functional mediator of any labor-inducing pathways. This suggests that correlating the risk of adverse pregnancy outcomes and designing interventions based on IL-6 levels without considering soluble receptors may be an ineffective strategy.
Collapse
Affiliation(s)
- Nathalia Mayumi Noda-Nicolau
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jossimara Polettini
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil; Master's Course in Health Sciences, University of Western São Paulo, UNOESTE, Presidente Prudente, São Paulo, Brazil
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Morgan R Peltier
- Department of Biomedical Research, NYU-Winthrop University Hospital, Mineola, NY, United States; Department of Obstetrics and Gynecology, NYU-Winthrop University Hospital, Mineola, NY, United States
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
23
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
24
|
Shook LL, Buhimschi CS, Dulay AT, McCarthy ME, Hardy JT, Duzyj Buniak CM, Zhao G, Buhimschi IA. Calciprotein particles as potential etiologic agents of idiopathic preterm birth. Sci Transl Med 2017; 8:364ra154. [PMID: 27831903 DOI: 10.1126/scitranslmed.aah4707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023]
Abstract
Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is often preceded by preterm premature rupture of the membranes (PPROM) without an identifiable cause. Pathological calcification, the deposition of hydroxyapatite (HA) in nonskeletal tissues, has been implicated in degenerative diseases including atherosclerosis and aneurism rupture. Among pathogenic mechanisms, the aberrant aggregation of HA into calciprotein particles (CPPs) and the HA-induced differentiation of mesenchymal cells into osteoblasts (ectopic osteogenesis) have been implicated. We explored the hypothesis that CPPs form in human amniotic fluid (AF), deposit in fetal membranes, and are linked mechanistically to pathogenic pathways favoring PTB. We demonstrated that fetal membranes from women with idiopathic PPROM frequently show evidence of ectopic calcification and expression of osteoblastic differentiation markers. Concentrations of fetuin-A, an endogenous inhibitor of ectopic calcification, were decreased in AF of idiopathic PPROM cases, which reflected their reduced functional capacity to inhibit calcification. Using long-term cultures of sterile AF, we demonstrated coaggregation of HA with endogenous proteins, including fetuin-A. The fetuin-HA aggregates exhibited progressive growth in vitro in a pattern similar to CPPs. When applied to amniochorion explants, AF-derived CPPs induced structural and functional pathological effects recapitulating those noted for PPROM. Our results demonstrate that disruption of protein-mineral homeostasis in AF stimulates the formation and deposition of CPPs, which may represent etiologic agents of idiopathic PPROM. Therapeutic or dietary interventions aimed at maintaining the balance between endogenous HA formation and fetuin reserve in pregnant women may therefore have a role in preventing PTB.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Antonette T Dulay
- Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Megan E McCarthy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - John T Hardy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christina M Duzyj Buniak
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Guomao Zhao
- Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, USA. .,Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
25
|
Yang X, Peng W, Zhu LN, Zhang XA, Wang Y. [Association between IL-6 C-572G and susceptibility to spontaneous preterm birth]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:806-811. [PMID: 28697836 PMCID: PMC7389923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To investigate the association between the genetic polymorphism of IL-6 C-572G and susceptibility to spontaneous preterm birth (SPTB). METHODS The subjects were from Beijing and the surrounding areas of Beijing. This case-control study enrolled 569 SPTB infants, including 56 extremely preterm (<28 weeks of gestation), 166 very preterm (28-31+6 weeks of gestation) and 347 moderate to late preterm infants (32 to 36+6 weeks of gestation). A total of 673 term infants were enrolled as the control group. The latest Sequenom MassARRAY®SNP detection technique was used for the typing of single nucleotide polymorphism of IL-6 C-572G. RESULTS Compared with the CC genotypes, the IL-6 C-572G G-positive genotype (CG+GG genotype) was significantly associated with an increased susceptibility to moderate to late SPTB (OR=1.35, 95%CI: 1.01-1.80, P=0.04). CONCLUSIONS Among the Chinese population, IL-6 C-572G polymorphism is associated with susceptibility to moderate to late SPTB.
Collapse
Affiliation(s)
- Xiao Yang
- Developmental Biology Laboratory, Bayi Children's Hospital Affiliated to People's Liberation Army Beijing General Hospital, Beijing 100700, China.
| | | | | | | | | |
Collapse
|
26
|
Yang X, Peng W, Zhu LN, Zhang XA, Wang Y. [Association between IL-6 C-572G and susceptibility to spontaneous preterm birth]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:806-811. [PMID: 28697836 PMCID: PMC7389923 DOI: 10.7499/j.issn.1008-8830.2017.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the association between the genetic polymorphism of IL-6 C-572G and susceptibility to spontaneous preterm birth (SPTB). METHODS The subjects were from Beijing and the surrounding areas of Beijing. This case-control study enrolled 569 SPTB infants, including 56 extremely preterm (<28 weeks of gestation), 166 very preterm (28-31+6 weeks of gestation) and 347 moderate to late preterm infants (32 to 36+6 weeks of gestation). A total of 673 term infants were enrolled as the control group. The latest Sequenom MassARRAY®SNP detection technique was used for the typing of single nucleotide polymorphism of IL-6 C-572G. RESULTS Compared with the CC genotypes, the IL-6 C-572G G-positive genotype (CG+GG genotype) was significantly associated with an increased susceptibility to moderate to late SPTB (OR=1.35, 95%CI: 1.01-1.80, P=0.04). CONCLUSIONS Among the Chinese population, IL-6 C-572G polymorphism is associated with susceptibility to moderate to late SPTB.
Collapse
Affiliation(s)
- Xiao Yang
- Developmental Biology Laboratory, Bayi Children's Hospital Affiliated to People's Liberation Army Beijing General Hospital, Beijing 100700, China.
| | | | | | | | | |
Collapse
|
27
|
Chehboun S, Labrecque-Carbonneau J, Pasquin S, Meliani Y, Meddah B, Ferlin W, Sharma M, Tormo A, Masson JF, Gauchat JF. Epstein-Barr virus-induced gene 3 (EBI3) can mediate IL-6 trans-signaling. J Biol Chem 2017; 292:6644-6656. [PMID: 28280243 DOI: 10.1074/jbc.m116.762021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) is a subunit of the composite cytokines IL-27 and IL-35. Both have beneficial functions or effects in models of infectious and autoimmune diseases. This suggests that administration of EBI3 could be therapeutically useful by binding free p28 and p35 to generate IL-27 and IL-35. IL-27- and IL-35-independent functions of EBI3 could compromise its therapeutic uses. We therefore assessed the effects of EBI3 on cytokine receptor-expressing cells. We observed that EBI3 activates STAT3 and induces the proliferation of the IL-6-dependent B9 mouse plasmacytoma cell line. Analyses using blocking mAbs and Ba/F3 transfectants expressing gp130 indicate that EBI3 activity was linked to its capacity to mediate IL-6 trans-signaling, albeit less efficiently than soluble IL-6Rα. In line with this interpretation, co-immunoprecipitation and SPR experiments indicated that EBI3 binds IL-6. An important pro-inflammatory function of IL-6 trans-signaling is to activate blood vessel endothelial cells. We observed that EBI3 in combination with IL-6 could induce the expression of chemokines by human venal endothelial cells. Our results indicate that EBI3 can promote pro-inflammatory IL-6 functions by mediating trans-signaling. These unexpected observations suggest that use of EBI3 as a therapeutic biologic for autoimmune diseases will likely require co-administration of soluble gp130 to prevent the side effects associated with IL-6 trans-signaling. Together with previous studies that demonstrated activation of IL-6R by p28 (IL-30), new findings further suggest a complex interrelation between IL-27 and IL-6.
Collapse
Affiliation(s)
| | | | | | | | - Bouchra Meddah
- the Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | | | - Mukut Sharma
- the Research Service, Kansas City Veterans Affairs Medical Center and Midwest Biomedical Research Foundation, Kansas City, Missouri 64128-2226
| | | | | | | |
Collapse
|
28
|
Mach P, Köninger A, Wicherek L, Kimmig R, Kasimir-Bauer S, Birdir C, Schmidt B, Gellhaus A. Serum concentrations of soluble B7-H4 in early pregnancy are elevated in women with preterm premature rupture of fetal membranes. Am J Reprod Immunol 2016; 76:149-54. [DOI: 10.1111/aji.12527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pawel Mach
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| | - Lukasz Wicherek
- Chair of Oncology, Radiotherapy and Gynecologic Oncology of the Ludwik Rydygier Collegium Medicum in Bydgoszcz; Nicolaus Copernicus University; Bydgoszcz Poland
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| | - Cahit Birdir
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE); University of Duisburg-Essen; Essen Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics; University of Duisburg-Essen; Essen Germany
| |
Collapse
|
29
|
Devi YS, DeVine M, DeKuiper J, Ferguson S, Fazleabas AT. Inhibition of IL-6 signaling pathway by curcumin in uterine decidual cells. PLoS One 2015; 10:e0125627. [PMID: 25961579 PMCID: PMC4427355 DOI: 10.1371/journal.pone.0125627] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/24/2015] [Indexed: 01/22/2023] Open
Abstract
IL-6 is a multifunctional pro-inflammatory cytokine and has been implicated in many gestational disorders including preterm birth. Currently, there are no appropriate therapeutic interventions available to circumvent inflammatory-mediated gestational disorders. Therefore, the goal of this study was to identify a safe and effective pharmacological compound to counterbalance inflammatory responses in the uterus. Curcumin, a naturally-occuring polyphenolic compound, has been widely used in alternative medicine to treat inflammatory diseases. However, the anti-inflammatory effect of curcumin has not been explored in uterine decidual cells, a major source of IL-6. Therefore, we examined the effect of curcumin on IL-6 expression using two types of uterine decidual cells 1) HuF cells, primary human fibroblast cells obtained from the decidua parietalis; 2) UIII cells, a rodent non-transformed decidual cell line. Curcumin treatment completely abrogated the expression of IL-1β-induced IL-6 in these cells. Curcumin also strongly inhibited the expression of gp130, a critical molecule in IL-6 signaling, whereas expression of IL-6R and sIL-6R was not affected. Curcumin also inhibited phosphorylation and nuclear localization of STAT3, a well-known downstream mediator of IL-6 signaling. Furthermore, curcumin attenuated IL-1β-induced IL-6 promoter reporter activity suggesting transcriptional regulation. To further understand whether NF-ҡB is involved in this inhibition, we examined the effect of curcumin on the expression of p50 and p65 subunits of NF-ҡB in decidual cells. Expression of IL-1β-induced p50 mRNA was repressed by curcumin while p65 mRNA was not affected. However, curcumin treatment dramatically inhibited both p50 and p65 protein levels and prevented its nuclear localization. This effect is at least partly mediated through the deactivation of IKK, since IL-1β-induced IKKα/β phosphorylation is decreased upon curcumin treatment. Our results not only revealed molecular mechanisms underlying curcumin action in uterine decidual cells but also suggest that this compound may have therapeutic potential for the prevention of inflammation-mediated preterm birth and other gestational disorders.
Collapse
Affiliation(s)
- Y. Sangeeta Devi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- * E-mail:
| | - Majesta DeVine
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Justin DeKuiper
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Susan Ferguson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| |
Collapse
|
30
|
Chiesa C, Pacifico L, Natale F, Hofer N, Osborn JF, Resch B. Fetal and early neonatal interleukin-6 response. Cytokine 2015; 76:1-12. [PMID: 25890877 DOI: 10.1016/j.cyto.2015.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
In 1998, a systemic fetal cytokine response, defined as a plasma interleukin-6 (IL-6) value above 11 pg/mL, was reported to be a major independent risk factor for the subsequent development of neonatal morbid events even after adjustments for gestational age and other confounders. Since then, the body of literature investigating the use of blood concentrations of IL-6 as a hallmark of the fetal inflammatory response syndrome (FIRS), a diagnostic marker of early-onset neonatal sepsis (EONS) and a risk predictor of white matter injury (WMI), has grown rapidly. In this article, we critically review: IL-6 biological functions; current evidence on the association between IL-6, preterm birth, FIRS and EONS; IL-6 reference intervals and dynamics in the early neonatal period; IL-6 response during the immediate postnatal period and perinatal confounders; accuracy and completeness of IL-6 diagnostic studies for EONS (according to the Standards for Reporting of Diagnostic Accuracy statement); and recent breakthroughs in the association between fetal blood IL-6, EONS, and WMI.
Collapse
Affiliation(s)
- Claudio Chiesa
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy.
| | - Lucia Pacifico
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Natale
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Nora Hofer
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| | - John F Osborn
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Bernhard Resch
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| |
Collapse
|
31
|
Duzyj CM, Buhimschi IA, Motawea H, Laky CA, Cozzini G, Zhao G, Funai EF, Buhimschi CS. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin. Placenta 2015; 36:645-51. [PMID: 25904157 DOI: 10.1016/j.placenta.2015.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/26/2015] [Accepted: 04/04/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. METHODS The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. RESULTS N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. DISCUSSION Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT.
Collapse
Affiliation(s)
- C M Duzyj
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - I A Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - H Motawea
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - C A Laky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - G Cozzini
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - G Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - E F Funai
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - C S Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
32
|
Geer LA, Pycke BFG, Sherer DM, Abulafia O, Halden RU. Use of amniotic fluid for determining pregnancies at risk of preterm birth and for studying diseases of potential environmental etiology. ENVIRONMENTAL RESEARCH 2015; 136:470-81. [PMID: 25460669 PMCID: PMC4279852 DOI: 10.1016/j.envres.2014.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 05/21/2023]
Abstract
Amniotic fluid (AF) is a biological medium uniquely suited for the study of early exposure of the human fetus to environmental contaminants acquired by the mother before and during pregnancy. Traditional diagnostic applications of AF have focused almost exclusively on the diagnosis of genetic aberrations such as Trisomy-21 and on heritable diseases in high-risk pregnancies. Since more than 50 anthropogenic compounds have been detected in AF, there is considerable potential in utilizing fetal protein biomarkers as indicators of health effects related to prenatal toxic exposure. Here, we focus on preterm birth (PTB) to illustrate opportunities and limitations of using AF as a diagnostic matrix. Representing a pervasive public health challenge worldwide, PTB cannot be managed simply by improving hygiene and broadening access to healthcare. This is illustrated by 15-year increases of PTB in the U.S. from 1989 to 2004. AF is uniquely suited as a matrix for early detection of the association between fetal exposures and PTB due to its fetal origin and the fact that it is sampled from women who are at higher risk of PTB. This critical review shows the occurrence in AF of a number of xenobiotics, including endocrine-disrupting compounds (EDCs), which are known or may reasonably be expected to shorten fetal gestation. It is not yet known whether EDCs, including bisphenol A, phytoestrogens, and polychlorinated biphenyls (PCBs), can affect the expression of proteins considered viable or potential biomarkers for the onset of PTB. As such, the diagnostic value of AF is broad and has not yet been fully explored for prenatal diagnosis of pregnancies at risk from toxic, environmental exposures and for the elucidation of mechanisms underlying important public health challenges including PTB.
Collapse
Affiliation(s)
- Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, Box 43, 450 Clarkson Avenue, Brooklyn, NY 11203-2533, USA.
| | - Benny F G Pycke
- Center for Environmental Security, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall Tempe, AZ, USA.
| | - David M Sherer
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA.
| | - Ovadia Abulafia
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA.
| | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall Tempe, AZ, USA.
| |
Collapse
|
33
|
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM, Carson JA. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta Mol Basis Dis 2014; 1852:816-25. [PMID: 25555992 DOI: 10.1016/j.bbadis.2014.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - J Mark Davis
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA.
| |
Collapse
|
34
|
Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, Blackstock WP, Chng WJ. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget 2014; 4:1008-18. [PMID: 23900284 PMCID: PMC3759662 DOI: 10.18632/oncotarget.1049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. MMSET, identified by its fusion to the IgH locus in t(4;14) MM, is universally overexpressed in t(4;14) MM. In order to identify cell surface biomarkers associated with t(4;14) MM for small molecule or antibody based therapies, we knocked down MMSET expression with shRNA and generated a cell line pair from KMS11, a t(4;14) MM cell line. We used quantitative mass spectrometry to identify plasma membrane proteins associated with MMSET overexpression. Using this approach, 50 cell surface proteins were identified as differentially expressed between KMS11 and KMS11/shMMSET. Western blot and flow cytometry analysis indicated SLAMF7 was over-expressed in t(4;14) MM cell lines and down-regulated by MMSET shRNAs. SLAMF7 expression was also confirmed in primary t(4;14) MM samples by flow cytometry analysis. Quantitative RT-PCR and ChIP analysis indicated MMSET might regulate the transcription level of SLAMF7 and be an important functional element for SLAMF7 promoter activity. Furthermore, SLAMF7 shRNA could induce G1 arrest or apoptosis and reduce clonogenetic capacity in t(4;14) MM cells. Overall, these results illustrated SLAMF7 might be a novel cell surface protein associated with t(4;14) MM. It is potential to develop t(4;14) MM targeted therapy by SLAMF7 antibody mediated drug delivery.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lausten-Thomsen U, Olsen M, Greisen G, Schmiegelow K. Inflammatory markers in umbilical cord blood from small-for-gestational-age newborns. Fetal Pediatr Pathol 2014; 33:114-8. [PMID: 24476425 DOI: 10.3109/15513815.2013.879239] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigates the role of inflammation in intrauterine growth retardation by exploring the levels of inflammatory markers in umbilical cord blood from neonates who were born small-for-gestational-age (SGA) and comparing them to neonates who were born appropriate-for-gestational-age (AGA). Interleukin 6 (IL-6), Tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) were measured by standard methods in term or near-term (gestational age >36 weeks) neonates born SGA (n = 45) and a matched group of neonates born AGA (n = 45). Infants exposed to maternal chronic diseases, diabetes or pre-eclampsia were excluded. SGA was defined as two standard derivations below the expected for term and gender. In multivariate regression analyses significant elevation in cord blood concentration of IL-6 was demonstrated in the SGA group (mean 4.56 vs. 2.38, p = 0.002). The results indicate the presence of elevated inflammatory markers in the cord blood from SGA infants compared to AGA infants, and consequently the results suggest an inflammatory component in intrauterine growth restriction (IUGR).
Collapse
Affiliation(s)
- Ulrik Lausten-Thomsen
- 1 Department of Pediatric and Adolescent Medicine, University Hospital Rigshospitalet , Copenhagen , Denmark
| | | | | | | |
Collapse
|
36
|
Abstract
Preterm birth (PTB) is an important issue in neonates because of its complications as well as high morbidity and mortality. The prevalence of PTB is approximately 12-13% in USA and 5-9% in many other developed countries. China represents 7.8% (approximately one million) of 14.9 million babies born prematurely annually worldwide. The rate of PTB is still increasing. Both genetic susceptibility and environmental factors are the major causes of PTB. Inflammation is regarded as an enabling characteristic factor of PTB. The aim of this review is to summarize the current literatures to illustrate the role of single nucleotide polymorphisms (SNPs) of cytokine genes in PTB. These polymorphisms are different among different geographic regions and different races, thus different populations may have different risk factors of PTB. SNPs affect the ability to metabolize poisonous substances and determine inflammation susceptibility, which in turn has an influence on reproduction-related risks and on delivery outcomes after exposure to environmental toxicants and pathogenic organisms.
Collapse
Affiliation(s)
- Qin Zhu
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
| | - Jian Sun
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
| | - Ying Chen
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China
| |
Collapse
|
37
|
Vesce F, Giugliano E, Bignardi S, Cagnazzo E, Colamussi C, Marci R, Valente N, Seraceni S, Maritati M, Contini C. Vaginal lactoferrin administration before genetic amniocentesis decreases amniotic interleukin-6 levels. Gynecol Obstet Invest 2014; 77:245-9. [PMID: 24642648 DOI: 10.1159/000358877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
AIM To verify the eventual efficacy of lactoferrin (LF), an iron-binding glycoprotein, to decrease the amniotic concentration of interleukin-6 (IL-6). METHODS We prospectively enrolled 60 Caucasian patients at the 16th week of their singleton physiological gestation. A vaginal compound containing 300 mg of LF was administered randomly 4 or 12 h prior to amniocentesis, as to obtain 3 groups: A, 20 untreated patients; B, 20 treated 4 h before amniocentesis; C, 20 treated 12 h before amniocentesis. RESULTS A normal karyotype was registered in all cases. The comparison of the distribution of IL-6 among the 3 groups showed a highly significant difference (p = 0.001). The difference between mean values of group B and both groups C and A was shown to be highly significant (p = 0.006 and p = 0.03, respectively). In contrast, there was no significant difference between mean values of groups A and C. CONCLUSION Vaginal LF administration decreases amniotic IL-6 concentration. We therefore suggest that the glycoprotein may exert a protective role against ominous pregnancy complications linked to an increased level of the cytokine, such as abortion secondary to amniocentesis.
Collapse
Affiliation(s)
- Fortunato Vesce
- Section of Obstetrics and Gynecology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ouellet J, Berthiaume M, Corriveau S, Rola-Pleszczynski M, Pasquier JC. Effect of interleukin-6 receptor blockade on feto-maternal outcomes in a rat model of intrauterine inflammation. J Obstet Gynaecol Res 2013; 39:1456-64. [PMID: 23855552 DOI: 10.1111/jog.12089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
AIM To study the effect of blocking the inflammatory cascade with interleukin-6 receptor antibody (anti-IL-6R) on feto-maternal outcomes in a rat model. METHODS Pregnant Sprague-Dawley rats (n = 38) were injected intraperitoneally (day 22) (control, anti-IL-6R 30 μg/kg, lipopolysaccharide [LPS] 250 μg/kg or 500 μg/kg alone or combined with anti-IL-6R) followed by preterm caesarian performed 12 h later. Resuscitated pups (n = 179) were given to surrogate mothers. Primary outcomes were maternal and pup mortality. RESULTS Fifty percent of pregnant rats died after LPS 500 μg/kg + anti-IL-6R injection but none in other groups. Neonatal mortality at 24 h was 63% and 86% in LPS 500 μg/kg and LPS 500 μg/kg + anti-IL-6R groups, respectively (P < 0.05). Surviving pups in the latter group presented a severe growth deficit compared to the LPS 500 μg/kg group (P < 0.01) and showed no difference with controls for open field testing. Maternal cytokine analysis after LPS 500 μg/kg + anti-IL-6R injection showed a tendency for increased IL-1 production (P = 0.06). CONCLUSION Paradoxically, the association of pregnancy, inflammation and anti-IL-6R increases the inflammatory effects of LPS.
Collapse
Affiliation(s)
- Justine Ouellet
- Department of Obstetrics and Gynecology, CHUS and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Wang Y, Yang X, Zheng Y, Wu ZH, Zhang XA, Li QP, He XY, Wang CZ, Feng ZC. The SEPS1 G-105A polymorphism is associated with risk of spontaneous preterm birth in a Chinese population. PLoS One 2013; 8:e65657. [PMID: 23776519 PMCID: PMC3679159 DOI: 10.1371/journal.pone.0065657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/25/2013] [Indexed: 11/23/2022] Open
Abstract
Inflammation plays an important role in the etiology and pathophysiology of spontaneous preterm birth (SPTB), and selenoprotein S (SEPS1) is involved in regulating the inflammatory response. Recently the G-105A promoter polymorphism in SEPS1 was shown to increase pro-inflammatory cytokine expression. We examined whether this functional polymorphism was related to the risk of SPTB in a Chinese population. We also examined the impact of premature rupture of membranes (PROM) on susceptibility to SPTB. The SEPS1 G-105A polymorphism was genotyped in 569 preterm singleton neonates and 673 term neonates by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. χ2 tests and logistic regression analyses were used to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs). We observed that, compared with the GG genotype, –105A positive genotypes (GA + AA genotypes) were associated with significantly increased susceptibility to SPTB (adjusted OR, 1.87; 95% CI, 1.36–2.57; P<0.001). The –105A positive genotypes were also significantly associated with increased susceptibility to SPTB, both in the patients with PROM (adjusted OR, 2.65; 95% CI, 1.73–4.03; P<0.001) and in those without PROM (adjusted OR, 1.56; 95% CI, 1.09–2.24; P = 0.015). The –105A positive genotypes were also significantly associated with increased susceptibility to SPTB between extremely preterm neonates and controls (adjusted OR, 4.46; 95% CI, 1.86–10.73; P = 0.002) and between moderately preterm neonates and controls (adjusted OR, 1.76; 95% CI, 1.25–2.47; P = 0.001). Our findings suggest that the SEPS1 G-105A polymorphism contributes to the risk of developing SPTB in a Chinese population.
Collapse
Affiliation(s)
- Yan Wang
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
| | - Xiao Yang
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
| | - Yong Zheng
- The 309 Hospital of PLA, Beijing, P. R. China
| | - Zhi-Hao Wu
- Department of Infectious Disease Control, Beijing Institute of Disease Control and Prevention, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qiu-Ping Li
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
| | - Xi-Yu He
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
| | - Chun-Zhi Wang
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
- * E-mail: (ZCF); (CZW)
| | - Zhi-Chun Feng
- BaYi Children’s Hospital, General Military Hospital of Beijing PLA, P. R. China
- * E-mail: (ZCF); (CZW)
| |
Collapse
|
40
|
Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:485201. [PMID: 23840918 PMCID: PMC3687483 DOI: 10.1155/2013/485201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/20/2013] [Indexed: 11/26/2022]
Abstract
Infection/inflammation is commonly associated with preterm birth (PTB), initiating uterine contractions and rupture of fetal membranes. Proinflammatory cytokines induce matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) and prostaglandins which initiate uterine contractions. Nuclear factor-κB (NF-κB) and activator-protein- (AP-)1 have key roles in the formation of these prolabour mediators. In nongestational tissues, dietary flavonoids such as luteolin and kaempferol inhibit NF-κB, AP-1, and their downstream targets. The aim of this study was to determine if luteolin and kaempferol reduce infection-induced prolabour mediators in human gestational tissues. Fetal membranes were incubated with LPS, and primary amnion cells and myometrial cells were incubated with IL-1β in the absence or presence of luteolin or kaempferol. Luteolin and kaempferol significantly reduced LPS-induced secretion of proinflammatory cytokines (IL-6 and IL-8) and prostaglandins (PGE2 and PGF2α) in fetal membranes, IL-1β-induced COX-2 gene expression and prostaglandin production in myometrium, and IL-1β-induced MMP-9 activity in amnion and myometrial cells. Luteolin and kaempferol decreased IL-1β-induced NF-κB p65 DNA binding activity and nuclear c-Jun expression. In conclusion, luteolin and kaempferol inhibit prolabour mediators in human gestational tissues. Given the central role of inflammation in provoking preterm labour, phytophenols may be a therapeutic approach to reduce the incidence of PTB.
Collapse
|
41
|
Zhang K, Huang XZ, Li XN, Feng M, Li L, Cai XJ, Zhang C, Liu XL, Zhang MX, Zhang Y, Wang XL, Zhang M. Interleukin 6 destabilizes atherosclerotic plaques by downregulating prolyl-4-hydroxylase α1 via a mitogen-activated protein kinase and c-Jun pathway. Arch Biochem Biophys 2012; 528:127-33. [PMID: 23022409 DOI: 10.1016/j.abb.2012.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/03/2012] [Accepted: 09/19/2012] [Indexed: 11/24/2022]
Abstract
Interleukin 6 (IL-6) is a pivotal cytokine that regulates extracellular matrix metabolism by ameliorating the modification of collagen content, important in fibrous caps of atherosclerotic plaque. Prolyl-4-hydroxylase α1 (P4Hα1) is a key intracellular enzyme required for synthesis of collagen in animals. We investigated the relationship of IL-6 and P4Hα1 in atherosclerosis-prone mice and human aortic smooth muscle cells (HASMCs). Apolipoprotein E (ApoE)-/- mice were fed a high-fat diet and a perivascular constrictive silica collar was placed on the right common carotid artery to induce atherosclerotic lesions, then mice were divided into two groups for transfection with empty lentivirus or IL-6 lentivirus. HASMCs were transfected with small interfering RNA or treated with recombinant human IL-6. IL-6 significantly downregulated collagen, P4Hα1 and smooth muscle cell contents in atherosclerotic mouse arteries. Macrophage and lipid contents in the atherosclerotic area were significantly increased with IL-6 treatment. IL-6 significantly downregulated P4Hα1 expression in HASMCs through an RAF-MEK1/2-ERK1/2 mitogen-activated protein kinase (MAPK) pathway, and c-Jun was involved in the process. Our findings highlight IL-6 destabilize atherosclerotic plaques in mice by downregulating P4Hα1 via an RAF-MEK1/2-ERK1/2 MAPK and c-Jun pathway.
Collapse
Affiliation(s)
- Ke Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol 2012; 95:1-14. [PMID: 22819759 DOI: 10.1016/j.jri.2012.05.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
IL6 is a multifunctional cytokine with pivotal roles in the inflammatory response and in directing T cell differentiation in adaptive immunity. IL6 is widely expressed in the female reproductive tract and gestational tissues, and exerts regulatory functions in embryo implantation and placental development, as well as the immune adaptations required to tolerate pregnancy. Here, we summarise the current understanding of how membrane-bound and soluble receptors mediate IL6 signalling to regulate leukocytes and non-haemopoietic cells. We review the published literature regarding the expression and actions of IL6 in the uterus, decidua and placenta, and studies implicating this cytokine in pregnancy disorders. Elevated IL6 is frequently evident in the altered cytokine profiles characteristic of unexplained infertility, recurrent miscarriage, preeclampsia and preterm delivery. Notably, there is compelling evidence indicating altered systemic IL6 trans-signalling in women prone to recurrent miscarriage, with excessive IL6 bioavailability potentially inhibiting generation of CD4+ T regulatory cells required for pregnancy tolerance. Insufficient local IL6 may also contribute to fetal loss, since IL6 expression is reduced in the endometrium of women with recurrent miscarriage, and in the fetal-placental tissue of CBA×DBA/2 mice. Consistent with the role of IL6 in key reproductive events, Il6 null mutant mice exhibit elevated fetal resorption and delayed parturition. Investigation of the association between IL6 signalling components and T cell responses in pregnant women, as well as detailed analysis of the maternal immune response in IL6-deficient mice, is now required to define the mechanisms by which this cytokine exerts influence on reproductive success.
Collapse
Affiliation(s)
- Jelmer R Prins
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
43
|
Paesano R, Pietropaoli M, Berlutti F, Valenti P. Bovine lactoferrin in preventing preterm delivery associated with sterile inflammation1This article is part of Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process. Biochem Cell Biol 2012; 90:468-75. [DOI: 10.1139/o11-060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preterm delivery (PTD) occurs before the 37th week of gestation. Iron deficiency anemia and inflammatory processes either related to infection or sterile inflammatory response represent risk factors for PTD. Bovine lactoferrin (bLf), an emerging important regulator of iron and inflammatory homeostasis, can represent a new therapeutic approach for PTD treatment. Here an open-label cohort and subcohort study is reported. The cohort was designed to assess the effect of bLf oral administration on iron and inflammatory homeostasis in anemic pregnant women. The subcohort including women of the cohort with PTD threat was additionally treated with bLf intravaginal administration. A significant improvement of hematological parameters was observed in the women’s cohort together with a consistent decrease of serum interleukin-6 (IL-6) levels. Combined administration of oral and intravaginal bLf to the women’s subcohort with PTD threat decreased IL-6 in both serum and cervicovaginal fluids, cervicovaginal prostaglandin F2α, and suppressed uterine contractility. BLf administration blocked further shortening of cervical length and the increase of fetal fibronectin thus prolonging the length of pregnancy. The deliveries occurred between the 37th and 38th week of gestation. These results provide strong evidence for a role of bLf in PTD treatment, thus extending the therapeutic potential of this multifunctional natural protein.
Collapse
Affiliation(s)
- Rosalba Paesano
- Department of Woman Health and Territorial Medicine, Sapienza University of Rome, Via di Grottarossa, 1035-1039, 00189 Rome, Italy
- Clinica Fabia Mater, Via Olevano Romano 25, 00171 Rome, Italy
| | - Miriam Pietropaoli
- Microbo Srl, Biotechnology Company, P. zza S. Apollonia 3, 00153 Rome, Italy
| | - Francesca Berlutti
- Department of Public Health and Infectious Disease, Sapienza University of Rome, p.le A. Moro, 5, 00185 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Disease, Sapienza University of Rome, p.le A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
44
|
Rosenberg VA, Buhimschi IA, Dulay AT, Abdel-Razeq SS, Oliver EA, Duzyj CM, Lipkind H, Pettker CM, Buhimschi CS. Modulation of amniotic fluid activin-a and inhibin-a in women with preterm premature rupture of the membranes and infection-induced preterm birth. Am J Reprod Immunol 2011; 67:122-31. [PMID: 21992678 DOI: 10.1111/j.1600-0897.2011.01074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Activins and inhibins are important modulators of inflammatory processes. We explored activation of amniotic fluid (AF) activin-A and inhibin-A system in women with intra-amniotic infection and preterm premature rupture of the membranes (PPROM). METHOD OF STUDY We analyzed 78 AF samples: '2nd trimester-control' (n=12), '3rd trimester-control' (n=14), preterm labor with intact membranes [positive-AF-cultures (n=13), negative-AF-cultures (n=13)], and PPROM [positive-AF-cultures (n=13), negative-AF-cultures (n=13)]. Activin-A levels were evaluated ex-vivo following incubation of amniochorion and placental villous explants with Gram-negative lipopolysaccharide (LPS) or Gram-positive (Pam3Cys) bacterial mimics. Ability of recombinant activin-A and inhibin-A to modulate inflammatory reactions in fetal membranes was explored through explants' IL-8 release. RESULTS Activin-A and inhibin-A were present in human AF and were gestational age-regulated. Activin-A was significantly upregulated by infection. Lower inhibin-A levels were seen in PPROM. LPS elicited release of activin-A from amniochorion, but not from villous explants. Recombinant activin-A stimulated IL-8 release from amniochorion, an effect that was not reversed by inhibin-A. CONCLUSION Human AF activin-A and inhibin-A are involved in biological processes linked to intra-amniotic infection/inflammation-induced preterm birth.
Collapse
Affiliation(s)
- Victor A Rosenberg
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|