1
|
Storry JR, Azouzi S. An uncommon MALady: is the AnWj puzzle complete? Blood 2024; 144:2688-2689. [PMID: 39724164 DOI: 10.1182/blood.2024026378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
|
2
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
3
|
Shetty SV, Mazzucco MR, Winokur P, Haigh SV, Rumah KR, Fischetti VA, Vartanian T, Linden JR. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins (Basel) 2023; 15:423. [PMID: 37505692 PMCID: PMC10467094 DOI: 10.3390/toxins15070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.
Collapse
Affiliation(s)
- Samantha V. Shetty
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Michael R. Mazzucco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Paige Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-Endocrinology Rockefeller University, New York, NY 10065, USA
| | - Sylvia V. Haigh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Kareem Rashid Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Jennifer R. Linden
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| |
Collapse
|
4
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA. The MAL Family of Proteins: Normal Function, Expression in Cancer, and Potential Use as Cancer Biomarkers. Cancers (Basel) 2023; 15:2801. [PMID: 37345137 DOI: 10.3390/cancers15102801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mazzucco M, Mannheim W, Shetty SV, Linden JR. CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis. Fluids Barriers CNS 2022; 19:13. [PMID: 35135557 PMCID: PMC8822708 DOI: 10.1186/s12987-021-00299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood–brain barrier (BBB) permeability. Currently, active disease is determined by physician confirmed relapse or detection of contrast enhancing lesions via MRI indicative of BBB permeability. However, clinical confirmation of active disease can be cumbersome. As such, disease monitoring in MS could benefit from identification of an easily accessible biomarker of active disease. We believe extracellular vesicles (EV) isolated from plasma are excellent candidates to fulfill this need. Because of the critical role BBB permeability plays in MS pathogenesis and identification of active disease, we sought to identify EV originating from central nervous system (CNS) endothelial as biomarkers of active MS. Because endothelial cells secrete more EV when stimulated or injured, we hypothesized that circulating concentrations of CNS endothelial derived EV will be increased in MS patients with active disease. Methods To test this, we developed a novel method to identify EV originating from CNS endothelial cells isolated from patient plasma using flow cytometry. Endothelial derived EV were identified by the absence of lymphocyte or platelet markers CD3 and CD41, respectively, and positive expression of pan-endothelial markers CD31, CD105, or CD144. To determine if endothelial derived EV originated from CNS endothelial cells, EV expressing CD31, CD105, or CD144 were evaluated for expression of the myelin and lymphocyte protein MAL, a protein specifically expressed by CNS endothelial cells compared to endothelial cells of peripheral organs. Results Quality control experiments indicate that EV detected using our flow cytometry method are 0.2 to 1 micron in size. Flow cytometry analysis of EV isolated from 20 healthy controls, 16 relapsing–remitting MS (RRMS) patients with active disease not receiving disease modifying therapy, 14 RRMS patients with stable disease not receiving disease modifying therapy, 17 relapsing-RRMS patients with stable disease receiving natalizumab, and 14 RRMS patients with stable disease receiving ocrelizumab revealed a significant increase in the plasma concentration of CNS endothelial derived EV in patients with active disease compared to all other groups (p = 0.001). Conclusions: For the first time, we have identified a method to identify CNS endothelial derived EV in circulation from human blood samples. Results from our pilot study indicate that increased levels of CNS endothelial derived EV may be a biomarker of BBB permeability and active disease in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00299-4.
Collapse
Affiliation(s)
- Michael Mazzucco
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - William Mannheim
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Samantha V Shetty
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - Jennifer R Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Transcriptomic analysis revealed increased expression of genes involved in keratinization in the tears of COVID-19 patients. Sci Rep 2021; 11:19817. [PMID: 34615949 PMCID: PMC8494911 DOI: 10.1038/s41598-021-99344-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.
Collapse
|
9
|
Li D, Zhang J, Wu L, Yang X, Chen Z, Yuan J. Myelin and Lymphocyte Protein (MAL): A Novel Biomarker for Uterine Corpus Endometrial Carcinoma. Cancer Manag Res 2021; 13:7311-7323. [PMID: 34584457 PMCID: PMC8464314 DOI: 10.2147/cmar.s317319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Myelin and lymphocyte protein (MAL) plays an essential role in esophageal cancer, classic Hodgkin's lymphoma and breast cancer. However, its role in uterine corpus endometrial carcinoma (UCEC) has not been explored. Therefore, the current study sought to explore the role of MAL in UCEC. Patients and Methods Differentially expressed genes (DEGs) were identified by using Limma package in R based on TCGA-UCEC data. Kaplan-Meier plotter analysis was performed to explore the prognostic value of MAL. Function enrichment analyses were performed using GSVA. Further, roles of MAL in UCEC were validated using clinical cohort, which included 120 tumor and adjacent tissues. qRT-PCR and immunohistochemistry analyze the samples. Chi-square tests were performed to explore the associations between MAL expressions and clinicopathological features. Results The findings showed that overexpression level of MAL in tumor was correlated with worse survival (p = 0.000424). MAL exhibited predictive power for survival time of UCEC patients (3 years: AUC = 0.635; 5 years: AUC = 0.635). Notably, high expression level of MAL was correlated with advanced stage of UCEC. MAL overexpression was significant in UCEC with microsatellite instability (MSI). Enrichment analysis showed that MAL was enriched mainly in MYC targets, epithelial mesenchymal transition and KRAS signaling. Furthermore, MAL was associated with infiltration of immune cells in the tumor micro-environment and immune checkpoint. Analysis showed a positive association between MAL and T cell (CD4+ memory resting). Correlation analysis showed that MAL was significantly positively correlated with several immune checkpoint, including CD274 (R = 0.3389, p = 0.0081), LAG3 (R = 0.2913, p = 0.0229), PDCD1LG2 (R = 0.5345, p < 0.0001). The prognosis value of MAL was confirmed through the experiment. Conclusion The findings of the current study indicated that MAL is an effective prognostic biomarker and potential therapeutic target for UCEC patients. These results indicated that MAL functions as a diagnosis and therapeutic marker in UCEC treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Speciality, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Juan Zhang
- Department of Obstetrics and Gynecology, Jinan Maternal and Child Health Care Hospital, Jinan, People's Republic of China
| | - Lilong Wu
- Department of Obstetrics and Gynecology, Jinan Maternal and Child Health Care Hospital, Jinan, People's Republic of China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Speciality, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zheng Chen
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Speciality, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiangjing Yuan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Speciality, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
11
|
Douanne T, Stinchcombe JC, Griffiths GM. Teasing out function from morphology: Similarities between primary cilia and immune synapses. J Cell Biol 2021; 220:212075. [PMID: 33956049 PMCID: PMC8105739 DOI: 10.1083/jcb.202102089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immune synapses are formed between immune cells to facilitate communication and coordinate the immune response. The reorganization of receptors involved in recognition and signaling creates a transient area of plasma membrane specialized in signaling and polarized secretion. Studies on the formation of the immune synapse between cytotoxic T lymphocytes (CTLs) and their targets uncovered a critical role for centrosome polarization in CTL function and suggested a striking parallel between the synapse and primary cilium. Since these initial observations, a plethora of further morphological, functional, and molecular similarities have been identified between these two fascinating structures. In this review, we describe how advances in imaging and molecular techniques have revealed additional parallels as well as functionally significant differences and discuss how comparative studies continue to shed light on the molecular mechanisms underlying the functions of both the immune synapse and primary cilium.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
12
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
13
|
Leitner J, Mahasongkram K, Schatzlmaier P, Pfisterer K, Leksa V, Pata S, Kasinrerk W, Stockinger H, Steinberger P. Differentiation and activation of human CD4 T cells is associated with a gradual loss of myelin and lymphocyte protein. Eur J Immunol 2021; 51:848-863. [PMID: 33345332 PMCID: PMC8248321 DOI: 10.1002/eji.202048603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023]
Abstract
Upon generation of monoclonal antibodies to the T cell antigen receptor/CD3 (TCR/CD3) complex, we isolated mAb MT3, whose reactivity correlates inversely with the production of IFN‐γ by human peripheral blood T lymphocytes. Using eukaryotic expression cloning, we identified the MT3 antigen as myelin‐and‐lymphocyte (MAL) protein. Flow cytometry analysis demonstrates high surface expression of MAL on all naïve CD4+ T cells whereas MAL expression is diminished on central memory‐ and almost lost on effector memory T cells. MAL– T cells proliferate strongly in response to stimulation with CD3/CD28 antibodies, corroborating that MAL+ T cells are naïve and MAL– T cells memory subtypes. Further, resting MAL– T cells harbor a larger pool of Ser59‐ and Tyr394‐ double phosphorylated lymphocyte‐specific kinase (Lck), which is rapidly increased upon in vitro restimulation. Previously, lack of MAL was reported to prevent transport of Lck, the key protein tyrosine kinase of TCR/CD3 signaling to the cell membrane, and to result in strongly impaired human T cell activation. Here, we show that knocking out MAL did not significantly affect Lck membrane localization and immune synapse recruitment, or transcriptional T cell activation. Collectively, our results indicate that loss of MAL is associated with activation‐induced differentiation of human T cells but not with impaired membrane localization of Lck or TCR signaling capacity.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kodchakorn Mahasongkram
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Philipp Schatzlmaier
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Pfisterer
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Centre, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Centre, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Van Campen H, Bishop JV, Abrahams VM, Bielefeldt-Ohmann H, Mathiason CK, Bouma GJ, Winger QA, Mayo CE, Bowen RA, Hansen TR. Maternal Influenza A Virus Infection Restricts Fetal and Placental Growth and Adversely Affects the Fetal Thymic Transcriptome. Viruses 2020; 12:v12091003. [PMID: 32911797 PMCID: PMC7551156 DOI: 10.3390/v12091003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal influenza A viral infections in humans are associated with low birth weight, increased risk of pre-term birth, stillbirth and congenital defects. To examine the effect of maternal influenza virus infection on placental and fetal growth, pregnant C57BL/6 mice were inoculated intranasally with influenza A virus A/CA/07/2009 pandemic H1N1 or phosphate-buffered saline (PBS) at E3.5, E7.5 or E12.5, and the placentae and fetuses collected and weighed at E18.5. Fetal thymuses were pooled from each litter. Placentae were examined histologically, stained by immunohistochemistry (IHC) for CD34 (hematopoietic progenitor cell antigen) and vascular channels quantified. RNA from E7.5 and E12.5 placentae and E7.5 fetal thymuses was subjected to RNA sequencing and pathway analysis. Placental weights were decreased in litters inoculated with influenza at E3.5 and E7.5. Placentae from E7.5 and E12.5 inoculated litters exhibited decreased labyrinth development and the transmembrane protein 150A gene was upregulated in E7.5 placentae. Fetal weights were decreased in litters inoculated at E7.5 and E12.5 compared to controls. RNA sequencing of E7.5 thymuses indicated that 957 genes were downregulated ≥2-fold including Mal, which is associated with Toll-like receptor signaling and T cell differentiation. There were 28 upregulated genes. It is concluded that maternal influenza A virus infection impairs fetal thymic gene expression as well as restricting placental and fetal growth.
Collapse
Affiliation(s)
- Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.K.M.); (C.E.M.)
| | - Jeanette V. Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.K.M.); (C.E.M.)
| | - Gerrit J. Bouma
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
| | - Quinton A. Winger
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
| | - Christie E. Mayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.K.M.); (C.E.M.)
| | - Richard A. Bowen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.K.M.); (C.E.M.)
| | - Thomas R. Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (G.J.B.); (Q.A.W.); (R.A.B.)
- Correspondence:
| |
Collapse
|
16
|
The role of competing mechanisms on Lck regulation. Immunol Res 2020; 68:289-295. [PMID: 32794043 DOI: 10.1007/s12026-020-09148-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Lck is a Src-related protein tyrosine kinase that associates with CD4 and CD8 molecules and is essential to T cell development and T cell activation. Regulatory mechanisms of Lck are diverse and controversy exists regarding the importance of each mechanism. The balance of phosphorylation at the inhibitory and activating Tyr residues is maintained by a balance between CD45 and Csk and is dependent upon intact intracellular trafficking machinery. Current evidence shows that lipid-binding changes depending on Lck conformation and that phosphorylation-induced conformational changes in Lck modulate its kinase activity potentially through regulation of Lck clustering at the plasma membrane. Downstream regulators such as ZAP-70 mediate negative feedback that is dependent on Tyr192 phosphorylation. This review examines the diverse regulation of Lck in detail, highlighting the role of each mechanism on maintaining an appropriate amount of Lck in each conformational state, thus allowing for an efficient, appropriate, and controlled amount of T cell activation following TCR stimulation.
Collapse
|
17
|
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci 2020; 21:E3283. [PMID: 32384769 PMCID: PMC7247333 DOI: 10.3390/ijms21093283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023] Open
Abstract
In a signaling network, not only the functions of molecules are important but when (temporal) and where (spatial) those functions are exerted and orchestrated is what defines the signaling output. To temporally and spatially modulate signaling events, cells generate specialized functional domains with variable lifetime and size that concentrate signaling molecules, enhancing their transduction potential. The plasma membrane is a key in this regulation, as it constitutes a primary signaling hub that integrates signals within and across the membrane. Here, we examine some of the mechanisms that cells exhibit to spatiotemporally regulate signal transduction, focusing on the early events of T cell activation from triggering of T cell receptor to formation and maturation of the immunological synapse.
Collapse
Affiliation(s)
- Esther Garcia
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
18
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
19
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
20
|
Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8:E789. [PMID: 31362462 PMCID: PMC6721628 DOI: 10.3390/cells8080789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
The primary cilium has gone from being a vestigial organelle to a crucial signaling hub of growing interest given the association between a group of human disorders, collectively known as ciliopathies, and defects in its structure or function. In recent years many ciliogenesis proteins have been observed at extraciliary sites in cells and likely perform cilium-independent functions ranging from regulation of the cytoskeleton to vesicular trafficking. Perhaps the most striking example is the non-ciliated T lymphocyte, in which components of the ciliary machinery are repurposed for the assembly and function of the immunological synapse even in the absence of a primary cilium. Furthermore, the specialization traits described at the immunological synapse are similar to those seen in the primary cilium. Here, we review common regulators and features shared by the immunological synapse and the primary cilium that document the remarkable homology between these structures.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
21
|
Onnis A, Baldari CT. Orchestration of Immunological Synapse Assembly by Vesicular Trafficking. Front Cell Dev Biol 2019; 7:110. [PMID: 31334230 PMCID: PMC6616304 DOI: 10.3389/fcell.2019.00110] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligation of the T-cell antigen receptor (TCR) by cognate peptide bound to the Major Histocompatibility Complex on the surface of an antigen-presenting cell (APC) leads to the spatial reorganization of the TCR and accessory receptors to form a specialized area of intimate contact between T cell and APC, known as the immunological synapse (IS), where signals are deciphered, coordinated, and integrated to promote T cell activation. With the discovery that an endosomal TCR pool contributes to IS assembly and function by undergoing polarized recycling to the IS, recent years have witnessed a shift from a plasma membrane-centric view of the IS to the vesicular trafficking events that occur at this location following the TCR-dependent translocation of the centrosome toward the synaptic membrane. Here we will summarize our current understanding of the trafficking pathways that are responsible for the steady delivery of endosomal TCRs, kinases, and adapters to the IS to sustain signaling, as well as of the endocytic pathways responsible for signal termination. We will also discuss recent evidence highlighting a role for endosomes in sustaining TCR signaling after its internalization at the IS and identifying the IS as a site of formation and release of extracellular vesicles that allow for transcellular communication with the APC.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
22
|
Adler D, Linden JR, Shetty SV, Ma Y, Bokori-Brown M, Titball RW, Vartanian T. Clostridium perfringens Epsilon Toxin Compromises the Blood-Brain Barrier in a Humanized Zebrafish Model. iScience 2019; 15:39-54. [PMID: 31030181 PMCID: PMC6487375 DOI: 10.1016/j.isci.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is hypothesized to mediate blood-brain barrier (BBB) permeability by binding to the myelin and lymphocyte protein (MAL) on the luminal surface of endothelial cells (ECs). However, the kinetics of this interaction and a general understanding of ETX's behavior in a live organism have yet to be appreciated. Here we investigate ETX binding and BBB breakdown in living Danio rerio (zebrafish). Wild-type zebrafish ECs do not bind ETX. When zebrafish ECs are engineered to express human MAL (hMAL), proETX binding occurs in a time-dependent manner. Injection of activated toxin in hMAL zebrafish initiates BBB leakage, hMAL downregulation, blood vessel stenosis, perivascular edema, and blood stasis. We propose a kinetic model of MAL-dependent ETX binding and neurovascular pathology. By generating a humanized zebrafish BBB model, this study contributes to our understanding of ETX-induced BBB permeability and strengthens the proposal that MAL is the ETX receptor.
Collapse
Affiliation(s)
- Drew Adler
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jennifer R Linden
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Samantha V Shetty
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Yinghua Ma
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | - Richard W Titball
- Department of Biosciences, University of Exeter, Exeter, Devon EX4 4SB, UK
| | - Timothy Vartanian
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Lara-Lemus R. On The Role of Myelin and Lymphocyte Protein (MAL) In Cancer: A Puzzle With Two Faces. J Cancer 2019; 10:2312-2318. [PMID: 31258734 PMCID: PMC6584422 DOI: 10.7150/jca.30376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Myelin and lymphocyte protein (MAL) is an integral membrane protein constituent of lipid rafts, and it is implicated in apical transport of proteins in polarized epithelial cells. However, beyond the involvement of MAL in apical sorting and as its function as a raft stabilizer, it is still not totally clear how MAL participates in cell proliferating processes. More controversial and interesting is the fact that MAL has been implicated in carcinogenesis in two opposite ways. First, this protein is overexpressed in ovarian cancer and some kinds of lymphomas where it seems to favor cancer progression. Conversely, it has been reported that downregulation of the MAL gene by promoter hypermethylation is a hallmark of several adenocarcinomas. So far, there is not enough experimental evidence to help us understand this phenomenon, and no MAL mutations or MAL isoforms have been associated with these opposite functions. This review provides an updated summary of the structure and functions of MAL, and we will discuss the possible mechanisms underlying its roles as a tumor suppressor and a tumor progression factor.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Department of Research in Biochemistry, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, 14080. Mexico
| |
Collapse
|
24
|
Del Río-Iñiguez I, Vázquez-Chávez E, Cuche C, Di Bartolo V, Bouchet J, Alcover A. HIV-1 Nef Hijacks Lck and Rac1 Endosomal Traffic To Dually Modulate Signaling-Mediated and Actin Cytoskeleton-Mediated T Cell Functions. THE JOURNAL OF IMMUNOLOGY 2018; 201:2624-2640. [PMID: 30282749 DOI: 10.4049/jimmunol.1800372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023]
Abstract
Endosomal traffic of TCR and signaling molecules regulates immunological synapse formation and T cell activation. We recently showed that Rab11 endosomes regulate the subcellular localization of the tyrosine kinase Lck and of the GTPase Rac1 and control their functions in TCR signaling and actin cytoskeleton remodeling. HIV-1 infection of T cells alters their endosomal traffic, activation capacity, and actin cytoskeleton organization. The viral protein Nef is pivotal for these modifications. We hypothesized that HIV-1 Nef could jointly alter Lck and Rac1 endosomal traffic and concomitantly modulate their functions. In this study, we show that HIV-1 infection of human T cells sequesters both Lck and Rac1 in a pericentrosomal compartment in an Nef-dependent manner. Strikingly, the Nef-induced Lck compartment contains signaling-competent forms (phosphorylated on key Tyr residues) of Lck and some of its downstream effectors, TCRζ, ZAP70, SLP76, and Vav1, avoiding the proximal LAT adaptor. Importantly, Nef-induced concentration of signaling molecules was concomitant with the upregulation of several early and late T cell activation genes. Moreover, preventing the concentration of the Nef-induced Lck compartment by depleting the Rab11 effector FIP3 counteracted Nef-induced gene expression upregulation. In addition, Nef extensively sequesters Rac1 and downregulates Rac1-dependent actin cytoskeleton remodeling, thus reducing T cell spreading. Therefore, by modifying their endosomal traffic, Nef hijacks signaling and actin cytoskeleton regulators to dually modulate their functional outputs. Our data shed new light into the molecular mechanisms that modify T cell physiology during HIV-1 infection.
Collapse
Affiliation(s)
- Iratxe Del Río-Iñiguez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and.,Collège Doctoral, Sorbonne Université, 75014 Paris, France
| | - Elena Vázquez-Chávez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Jérôme Bouchet
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France; .,INSERM U1221, 75015 Paris, France; and
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France; .,INSERM U1221, 75015 Paris, France; and
| |
Collapse
|
25
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
26
|
Dorca-Arévalo J, Blanch M, Pradas M, Blasi J. Epsilon toxin from Clostridium perfringens induces cytotoxicity in FRT thyroid epithelial cells. Anaerobe 2018; 53:43-49. [PMID: 29895394 DOI: 10.1016/j.anaerobe.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
Abstract
Epsilon toxin (Etx) is produced by Clostridium perfringens and induces enterotoxemia in ruminants. Etx crosses the blood-brain barrier, binds to myelin structures, and kills oligodendrocytes, inducing central nervous system demyelination. In addition, Etx has a cytotoxic effect on distal and collecting kidney tubules. There are few cell lines sensitive to Etx. At present, the most sensitive in vitro model for Etx is the Madin-Darby canine kidney (MDCK) cell line, where Etx oligomerizes and forms a pore with consequent ion efflux and cell death. Although the Etx receptor has not yet been fully clarified, it is known that caveolin 1 and 2 potentiate Etx cytotoxicity and oligomerization, and more recently, the myelin and lymphocyte (MAL) protein has been implicated in Etx binding and activity. Here, we studied the effect of Etx on Fischer rat thyroid cells (FRT) and observed similar effects as those seen in MDCK cells. Etx incubated with FRT cells showed binding to the plasma membrane, and western blotting assays revealed oligomeric complex formation. Moreover, cytotoxic assays on FRT cells after Etx incubation indicated cell death at a similar level as in MDCK cells. In addition, a luminescent ATP detection assay revealed ATP depletion in FRT cells after Etx exposure. Previous studies have reported that FRT cells do not express caveolins and do not form caveolae but express MAL protein in glycolipid-enriched membrane microdomains. Our results indicate that caveolins are not directly implicated in Etx cytotoxicity, supporting the notion that the MAL protein is involved in Etx action. In addition, a cell line of thyroid origin is described for the first time as a good model to study Etx action.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain
| | - Marta Blanch
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain
| | - Marina Pradas
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain.
| |
Collapse
|
27
|
Chase AJ, Wombacher R, Fackler OT. Intrinsic properties and plasma membrane trafficking route of Src family kinase SH4 domains sensitive to retargeting by HIV-1 Nef. J Biol Chem 2018; 293:7824-7840. [PMID: 29588370 DOI: 10.1074/jbc.ra118.002794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 01/18/2023] Open
Abstract
The HIV type 1 pathogenicity factor Nef enhances viral replication by modulating multiple host cell pathways, including tuning the activation state of infected CD4 T lymphocytes to optimize virus spread. For this, Nef inhibits anterograde transport of the Src family kinase (SFK) Lck toward the plasma membrane (PM). This leads to retargeting of the kinase to the trans-Golgi network, whereas the intracellular transport of a related SFK, Fyn, is unaffected by Nef. The 18-amino acid Src homology 4 (SH4) domain membrane anchor of Lck is necessary and sufficient for Nef-mediated retargeting, but other details of this process are not known. The goal of this study was therefore to identify characteristics of SH4 domains responsive to Nef and the transport machinery used. Screening a panel of SFK SH4 domains revealed two groups that were sensitive or insensitive for trans-Golgi network retargeting by Nef as well as the importance of the amino acid at position 8 for determining Nef sensitivity. Anterograde transport of Nef-sensitive domains was characterized by slower delivery to the PM and initial targeting to Golgi membranes, where transport was arrested in the presence of Nef. For Nef-sensitive SH4 domains, ectopic expression of the lipoprotein binding chaperone Unc119a or the GTPase Arl3 or reduction of their endogenous expression phenocopied the effect of Nef. Together, these results suggest that, analogous to K-Ras, Nef-sensitive SH4 domains are transported to the PM by a cycle of solubilization and membrane insertion and that intrinsic properties define SH4 domains as cargo of this Nef-sensitive lipoprotein binding chaperone-GTPase transport cycle.
Collapse
Affiliation(s)
- Amanda J Chase
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Rebecka Wombacher
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
29
|
Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, Redline RW, Rokas A, Muglia LJ. Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. eLife 2018; 7. [PMID: 29309034 PMCID: PMC5758111 DOI: 10.7554/elife.31150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Healthy pregnancy depends on proper placentation-including proliferation, differentiation, and invasion of trophoblast cells-which, if impaired, causes placental ischemia resulting in intrauterine growth restriction and preeclampsia. Mechanisms regulating trophoblast invasion, however, are unknown. We report that reduction of Inverted formin 2 (INF2) alters intracellular trafficking and significantly impairs invasion in a model of human extravillous trophoblasts. Furthermore, global loss of Inf2 in mice recapitulates maternal and fetal phenotypes of placental insufficiency. Inf2-/- dams have reduced spiral artery numbers and late gestational hypertension with resolution following delivery. Inf2-/- fetuses are growth restricted and demonstrate changes in umbilical artery Doppler consistent with poor placental perfusion and fetal distress. Loss of Inf2 increases fetal vascular density in the placenta and dysregulates trophoblast expression of angiogenic factors. Our data support a critical regulatory role for INF2 in trophoblast invasion-a necessary process for placentation-representing a possible future target for improving placentation and fetal outcomes.
Collapse
Affiliation(s)
- Katherine Young Bezold Lamm
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Julie Baker Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Michael B Muntifering
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeanne M James
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Helen N Jones
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Raymond W Redline
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
30
|
Ashdown GW, Williamson DJ, Soh GHM, Day N, Burn GL, Owen DM. Membrane lipid order of sub-synaptic T cell vesicles correlates with their dynamics and function. Traffic 2017; 19:29-35. [PMID: 28981993 DOI: 10.1111/tra.12532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
During an immune response, T cells survey antigen presenting cells for antigenic peptides via the formation of an interface known as an immunological synapse. Among the complex and dynamic biophysical phenomena occurring at this interface is the trafficking of sub-synaptic vesicles carrying a variety of proximal signalling molecules. Here, we show that rather than being a homogeneous population, these vesicles display a diversity of membrane lipid order profiles, as measured using the environmentally sensitive dye di-4-ANEPPDHQ and multi-spectral TIRF microscopy. Using live-cell imaging, vesicle tracking and a variety of small molecule drugs to manipulate components of the actin and tubulin cytoskeleton, we show that the membrane lipid order of these vesicles correlate with their dynamics. Furthermore, we show that the key proximal signalling molecule Linker for Activation of T cells (LAT) is enriched in specific vesicle populations as defined by their higher membrane order. These results imply that vesicle lipid order may represent a novel regulatory mechanism for the sorting and trafficking of signalling molecules at the immunological synapse, and, potentially, other cellular structures.
Collapse
Affiliation(s)
- George W Ashdown
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - David J Williamson
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Gary H M Soh
- Friedrich Miescher Laboratory, University of Tübingen, Tübingen, Germany
| | - Nathan Day
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Garth L Burn
- Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
31
|
Bouchet J, Del Río-Iñiguez I, Vázquez-Chávez E, Lasserre R, Agüera-González S, Cuche C, McCaffrey MW, Di Bartolo V, Alcover A. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction. THE JOURNAL OF IMMUNOLOGY 2017; 198:2967-2978. [PMID: 28235866 DOI: 10.4049/jimmunol.1600671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
Abstract
The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production.
Collapse
Affiliation(s)
- Jérôme Bouchet
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France; .,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| | - Iratxe Del Río-Iñiguez
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| | - Elena Vázquez-Chávez
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| | - Rémi Lasserre
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France
| | - Sonia Agüera-González
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France
| | - Céline Cuche
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Vincenzo Di Bartolo
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France.,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| | - Andrés Alcover
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 75724 Paris, France; .,CNRS URA1961, 75724 Paris Cedex 15, France.,INSERM U1221, 75724 Paris Cedex 15, France; and
| |
Collapse
|
32
|
Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function. Toxicon 2017; 127:90-99. [PMID: 28089770 DOI: 10.1016/j.toxicon.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Epsilon toxin of the Clostridium perfringens garnered a lot of attention due to its potential for toxicity in humans, extreme potency for cytotoxicity in mice and lack of any approved therapeutics prescribed for human. However, the intricacies of the Epsilon toxin action mechanism are yet to be understood. In this regard, various in silico tools have been exploited to model and refine the 3D structure of the toxin and its two receptors. The receptor proteins were embedded into designed lipid membranes within an aqueous and ionized environment. Thereafter, the modeled structures subjected to series of consecutive molecular dynamics runs to achieve the most natural like coordination for each model. Ultimately, protein-protein interaction analyses were performed to understand the probable action mechanism. The obtained results successfully confirmed the accuracy of employed methods to achieve high quality models for the toxin and its receptors within their lipid bilayers. Molecular dynamics analyses lead the structures to a more native like coordination. Moreover, the results of previous empirical studies were confirmed, while new insights for action mechanisms including the detailed roles of Hepatitis A virus cellular receptor 1 (HAVCR1) and Myelin and lymphocyte protein (MAL) proteins were achieved. In light of previous and our observations, we suggested novel models which elucidated the existing interplay between potential players of Epsilon toxin action mechanism with detailed structural evidences. These models would pave the way to have more robust understanding of the Epsilon toxin biology, more precise vaccine construction and more successful drug (inhibitor) design.
Collapse
|
33
|
Abstract
Immunological synapse formation is the result of a profound T cell polarization process that involves the coordinated action of the actin and microtubule cytoskeleton, as well as intracellular vesicle traffic. Endosomal vesicle traffic ensures the targeting of the T cell receptor (TCR) and various signaling molecules to the synapse, being necessary for the generation of signaling complexes downstream of the TCR. Here we describe the microscopy imaging methods that we currently use to unveil how TCR and signaling molecules are associated with endosomal compartments and deliver their cargo to the immunological synapse.
Collapse
Affiliation(s)
- Jérôme Bouchet
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, Paris, 75015, France
- INSERM U-1221, Paris, France
| | - Iratxe Del Río-Iñiguez
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, Paris, 75015, France
- INSERM U-1221, Paris, France
| | - Andrés Alcover
- Department of Immunology, Lymphocyte Cell Biology Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, Paris, 75015, France.
- INSERM U-1221, Paris, France.
| |
Collapse
|
34
|
Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke. NPJ Genom Med 2016; 1:16038. [PMID: 29263821 PMCID: PMC5685316 DOI: 10.1038/npjgenmed.2016.38] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Early and accurate diagnosis of stroke improves the probability of positive outcome. The objective of this study was to identify a pattern of gene expression in peripheral blood that could potentially be optimised to expedite the diagnosis of acute ischaemic stroke (AIS). A discovery cohort was recruited consisting of 39 AIS patients and 24 neurologically asymptomatic controls. Peripheral blood was sampled at emergency department admission, and genome-wide expression profiling was performed via microarray. A machine-learning technique known as genetic algorithm k-nearest neighbours (GA/kNN) was then used to identify a pattern of gene expression that could optimally discriminate between groups. This pattern of expression was then assessed via qRT-PCR in an independent validation cohort, where it was evaluated for its ability to discriminate between an additional 39 AIS patients and 30 neurologically asymptomatic controls, as well as 20 acute stroke mimics. GA/kNN identified 10 genes (ANTXR2, STK3, PDK4, CD163, MAL, GRAP, ID3, CTSZ, KIF1B and PLXDC2) whose coordinate pattern of expression was able to identify 98.4% of discovery cohort subjects correctly (97.4% sensitive, 100% specific). In the validation cohort, the expression levels of the same 10 genes were able to identify 95.6% of subjects correctly when comparing AIS patients to asymptomatic controls (92.3% sensitive, 100% specific), and 94.9% of subjects correctly when comparing AIS patients with stroke mimics (97.4% sensitive, 90.0% specific). The transcriptional pattern identified in this study shows strong diagnostic potential, and warrants further evaluation to determine its true clinical efficacy.
Collapse
|
35
|
Ventimiglia LN, Alonso MA. Biogenesis and Function of T Cell-Derived Exosomes. Front Cell Dev Biol 2016; 4:84. [PMID: 27583248 PMCID: PMC4987406 DOI: 10.3389/fcell.2016.00084] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.
Collapse
Affiliation(s)
- Leandro N Ventimiglia
- Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel A Alonso
- Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
36
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
37
|
Lou J, Rossy J, Deng Q, Pageon SV, Gaus K. New Insights into How Trafficking Regulates T Cell Receptor Signaling. Front Cell Dev Biol 2016; 4:77. [PMID: 27508206 PMCID: PMC4960267 DOI: 10.3389/fcell.2016.00077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023] Open
Abstract
There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.
Collapse
Affiliation(s)
- Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Sophie V Pageon
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South WalesSydney, NSW, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
38
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
39
|
Ventimiglia LN, Fernández-Martín L, Martínez-Alonso E, Antón OM, Guerra M, Martínez-Menárguez JA, Andrés G, Alonso MA. Cutting Edge: Regulation of Exosome Secretion by the Integral MAL Protein in T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:810-4. [PMID: 26109641 DOI: 10.4049/jimmunol.1500891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/03/2015] [Indexed: 11/19/2022]
Abstract
Exosomes secreted by T cells play an important role in coordinating the immune response. HIV-1 Nef hijacks the route of exosome secretion of T cells to modulate the functioning of uninfected cells. Despite the importance of the process, the protein machinery involved in exosome biogenesis is yet to be identified. In this study, we show that MAL, a tetraspanning membrane protein expressed in human T cells, is present in endosomes that travel toward the plasma membrane for exosome secretion. In the absence of MAL, the release of exosome particles and markers was greatly impaired. This effect was accompanied by protein sorting defects at multivesicular endosomes that divert the exosomal marker CD63 to autophagic vacuoles. Exosome release induced by HIV-1 Nef was also dependent on MAL expression. Therefore, MAL is a critical element of the machinery for exosome secretion and may constitute a target for modulating exosome secretion by human T cells.
Collapse
Affiliation(s)
- Leandro N Ventimiglia
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Laura Fernández-Martín
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Emma Martínez-Alonso
- Departamento de Biología Celular e Histología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30100 Murcia, Spain; and
| | - Olga M Antón
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Milagros Guerra
- Unidad de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Angel Martínez-Menárguez
- Departamento de Biología Celular e Histología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30100 Murcia, Spain; and
| | - Germán Andrés
- Unidad de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel A Alonso
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
40
|
Reales E, Bernabé-Rubio M, Casares-Arias J, Rentero C, Fernández-Barrera J, Rangel L, Correas I, Enrich C, Andrés G, Alonso MA. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci 2015; 128:2261-70. [DOI: 10.1242/jcs.164970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/30/2015] [Indexed: 01/11/2023] Open
Abstract
ABSTRACT
The base of the primary cilium contains a zone of condensed membranes whose importance is not known. Here, we have studied the involvement of MAL, a tetraspanning protein that exclusively partitions into condensed membrane fractions, in the condensation of membranes at the ciliary base and investigated the importance of these membranes in primary cilium formation. We show that MAL accumulates at the ciliary base of epithelial MDCK cells. Knockdown of MAL expression resulted in a drastic reduction in the condensation of membranes at the ciliary base, the percentage of ciliated cells and the length of the cilia, but did not affect the docking of the centrosome to the plasma membrane or produce missorting of proteins to the pericentriolar zone or to the membrane of the remaining cilia. Rab8 (for which there are two isoforms, Rab8A and Rab8b), IFT88 and IFT20, which are important components of the machinery of ciliary growth, were recruited normally to the ciliary base of MAL-knockdown cells but were unable to elongate the primary cilium correctly. MAL, therefore, is crucial for the proper condensation of membranes at the ciliary base, which is required for efficient primary cilium extension.
Collapse
Affiliation(s)
- Elena Reales
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Javier Casares-Arias
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain
| | - Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Laura Rangel
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Isabel Correas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain
| | - Germán Andrés
- Electron Microscopy Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Miguel A. Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
41
|
Rumah KR, Ma Y, Linden JR, Oo ML, Anrather J, Schaeren-Wiemers N, Alonso MA, Fischetti VA, McClain MS, Vartanian T. The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens ε-Toxin. PLoS Pathog 2015; 11:e1004896. [PMID: 25993478 PMCID: PMC4439126 DOI: 10.1371/journal.ppat.1004896] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/19/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium perfringens ε-toxin (ETX) is a potent pore-forming toxin responsible for a central nervous system (CNS) disease in ruminant animals with characteristics of blood-brain barrier (BBB) dysfunction and white matter injury. ETX has been proposed as a potential causative agent for Multiple Sclerosis (MS), a human disease that begins with BBB breakdown and injury to myelin forming cells of the CNS. The receptor for ETX is unknown. Here we show that both binding of ETX to mammalian cells and cytotoxicity requires the tetraspan proteolipid Myelin and Lymphocyte protein (MAL). While native Chinese Hamster Ovary (CHO) cells are resistant to ETX, exogenous expression of MAL in CHO cells confers both ETX binding and susceptibility to ETX-mediated cell death. Cells expressing rat MAL are ~100 times more sensitive to ETX than cells expressing similar levels of human MAL. Insertion of the FLAG sequence into the second extracellular loop of MAL abolishes ETX binding and cytotoxicity. ETX is known to bind specifically and with high affinity to intestinal epithelium, renal tubules, brain endothelial cells and myelin. We identify specific binding of ETX to these structures and additionally show binding to retinal microvasculature and the squamous epithelial cells of the sclera in wild-type mice. In contrast, there is a complete absence of ETX binding to tissues from MAL knockout (MAL-/-) mice. Furthermore, MAL-/- mice exhibit complete resistance to ETX at doses in excess of 1000 times the symptomatic dose for wild-type mice. We conclude that MAL is required for both ETX binding and cytotoxicity.
Collapse
Affiliation(s)
- Kareem Rashid Rumah
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York City, New York, United States of America
| | - Yinghua Ma
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Jennifer R. Linden
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Myat Lin Oo
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York City, New York, United States of America
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy Vartanian
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Laing EE, Johnston JD, Möller-Levet CS, Bucca G, Smith CP, Dijk DJ, Archer SN. Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health. Bioessays 2015; 37:544-56. [PMID: 25772847 PMCID: PMC5031210 DOI: 10.1002/bies.201400193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The power of the application of bioinformatics across multiple publicly available transcriptomic data sets was explored. Using 19 human and mouse circadian transcriptomic data sets, we found that NR1D1 and NR1D2 which encode heme‐responsive nuclear receptors are the most rhythmic transcripts across sleep conditions and tissues suggesting that they are at the core of circadian rhythm generation. Analyzes of human transcriptomic data show that a core set of transcripts related to processes including immune function, glucocorticoid signalling, and lipid metabolism is rhythmically expressed independently of the sleep‐wake cycle. We also identify key transcripts associated with transcription and translation that are disrupted by sleep manipulations, and through network analysis identify putative mechanisms underlying the adverse health outcomes associated with sleep disruption, such as diabetes and cancer. Comparative bioinformatics applied to existing and future data sets will be a powerful tool for the identification of core circadian‐ and sleep‐dependent molecules.
Collapse
Affiliation(s)
- Emma E Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat Commun 2015; 6:6163. [PMID: 25625471 DOI: 10.1038/ncomms7163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023] Open
Abstract
Glycoprotein G (gG) from herpes simplex virus 1 and 2 (HSV-1 and HSV-2, important human neurotropic pathogens) is the first viral chemokine-binding protein found to potentiate chemokine function. Here we show that gG attaches to cell surface glycosaminoglycans and induces lipid raft clustering, increasing the incorporation of CXCR4 receptors into these microdomains. gG induces conformational rearrangements in CXCR4 homodimers and changes their intracellular partners, leading to sustained, functional chemokine/receptor complexes at the surface. This results in increased chemotaxis dependent on the cholesterol content of the plasma membrane and receptor association to Src-kinases and phosphatidylinositol-3-kinase signalling pathways, but independent of clathrin-mediated endocytosis. Furthermore, using electron microscopy, we show that such enhanced functionality is associated with the accumulation of low-order CXCR4 nanoclusters. Our results provide insights into basic mechanisms of chemokine receptor function and into a viral strategy of immune modulation.
Collapse
|
44
|
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2014; 256:118-32. [PMID: 24117817 DOI: 10.1111/imr.12110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.
Collapse
Affiliation(s)
- Helena Soares
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France; CNRS, URA-1961, Paris, France
| | | | | |
Collapse
|
45
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
46
|
Finetti F, Baldari CT. Compartmentalization of signaling by vesicular trafficking: a shared building design for the immune synapse and the primary cilium. Immunol Rev 2013; 251:97-112. [PMID: 23278743 DOI: 10.1111/imr.12018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulating evidence underscores the immune synapse (IS) of naive T cells as a site of intense vesicular trafficking. At variance with helper and cytolytic effectors, which use the IS as a secretory platform to deliver cytokines and/or lytic granules to their cellular targets, this process is exploited by naive T cells as a means to regulate the assembly and maintenance of the IS, on which productive signaling and cell activation crucially depend. We have recently identified a role of the intraflagellar transport (IFT) system, which is responsible for the assembly of the primary cilium, in the non-ciliated T-cell, where it controls IS assembly by promoting polarized T-cell receptor recycling. This unexpected finding not only provides new insight into the mechanisms of IS assembly but also strongly supports the notion that the IS and the primary cilium, which are both characterized by a specialized membrane domain highly enriched in receptors and signaling mediators, share architectural similarities and are homologous structures. Here, we review our current understanding of vesicular trafficking in the regulation of the assembly and maintenance of the naive T-cell IS and the primary cilium, with a focus on the IFT system.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | |
Collapse
|
47
|
VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 2013; 14:723-31. [PMID: 23666293 DOI: 10.1038/ni.2609] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites. Our results indicated that this did not involve fusion of Lat-containing vesicles with the plasma membrane. VAMP7, which localized together with Lat on the subsynaptic vesicles, controlled the phosphorylation of Lat, formation of the TCR-Lat-signaling complex and, ultimately, activation of T cells. Our findings suggest that the transport and docking of Lat-containing vesicles with target membranes containing TCRs regulates TCR-induced signaling.
Collapse
|
48
|
Stirnweiss A, Hartig R, Gieseler S, Lindquist JA, Reichardt P, Philipsen L, Simeoni L, Poltorak M, Merten C, Zuschratter W, Prokazov Y, Paster W, Stockinger H, Harder T, Gunzer M, Schraven B. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Signal 2013; 6:ra13. [PMID: 23423439 DOI: 10.1126/scisignal.2003607] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lymphocyte-specific Src family protein tyrosine kinase p56(Lck) (Lck) is essential for T cell development and activation and, hence, for adaptive immune responses. The mechanism by which Lck activity is directed toward specific substrates in response to T cell receptor (TCR) activation remains elusive. We used fluorescence lifetime imaging microscopy to assess the activation-dependent spatiotemporal changes in the conformation of Lck in live human T cells. Kinetic analysis of the fluorescence lifetime of Lck biosensors enabled the direct visualization of the dynamic local opening of 20% of the total amount of Lck proteins after activation of T cells with antibody against CD3 or by superantigen-loaded antigen-presenting cells. Parallel biochemical analysis of TCR complexes revealed that the conformational changes in Lck correlated with the induction of Lck enzymatic activity. These data show the dynamic, local activation through conformational change of Lck at sites of TCR engagement.
Collapse
Affiliation(s)
- Anja Stirnweiss
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aranda JF, Reglero-Real N, Marcos-Ramiro B, Ruiz-Sáenz A, Fernández-Martín L, Bernabé-Rubio M, Kremer L, Ridley AJ, Correas I, Alonso MA, Millán J. MYADM controls endothelial barrier function through ERM-dependent regulation of ICAM-1 expression. Mol Biol Cell 2013; 24:483-94. [PMID: 23264465 PMCID: PMC3571871 DOI: 10.1091/mbc.e11-11-0914] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
The endothelium maintains a barrier between blood and tissue that becomes more permeable during inflammation. Membrane rafts are ordered assemblies of cholesterol, glycolipids, and proteins that modulate proinflammatory cell signaling and barrier function. In epithelial cells, the MAL family members MAL, MAL2, and myeloid-associated differentiation marker (MYADM) regulate the function and dynamics of ordered membrane domains. We analyzed the expression of these three proteins in human endothelial cells and found that only MYADM is expressed. MYADM was confined in ordered domains at the plasma membrane, where it partially colocalized with filamentous actin and cell-cell junctions. Small interfering RNA (siRNA)-mediated MYADM knockdown increased permeability, ICAM-1 expression, and leukocyte adhesion, all of which are features of an inflammatory response. Barrier function decrease in MYADM-silenced cells was dependent on ICAM-1 expression. Membrane domains and the underlying actin cytoskeleton can regulate each other and are connected by ezrin, radixin, and moesin (ERM) proteins. In endothelial cells, MYADM knockdown induced ERM activation. Triple-ERM knockdown partially inhibited ICAM-1 increase induced by MYADM siRNA. Importantly, ERM knockdown also reduced ICAM-1 expression in response to the proinflammatory cytokine tumor necrosis factor-α. MYADM therefore regulates the connection between the plasma membrane and the cortical cytoskeleton and so can control the endothelial inflammatory response.
Collapse
Affiliation(s)
- Juan F. Aranda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Reglero-Real
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Beatriz Marcos-Ramiro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz-Sáenz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Bernabé-Rubio
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|