1
|
Bertuccio FR, Baio N, Montini S, Ferroni V, Chino V, Pisanu L, Russo M, Giana I, Cascina A, Conio V, Grosso A, Gini E, Albicini F, Corsico AG, Stella GM. Potential New Inflammatory Markers in Bronchiectasis: A Literature Review. Curr Issues Mol Biol 2024; 46:6675-6689. [PMID: 39057040 PMCID: PMC11275576 DOI: 10.3390/cimb46070398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Specific molecular and inflammatory endotypes have been identified for chronic respiratory disorders, including asthma and COPD (chronic obstructive pulmonary disease). These endotypes correspond with clinical aspects of disease, enabling targeted medicines to address certain pathophysiologic pathways, often referred to as "precision medicine". With respect to bronchiectasis, many comorbidities and underlying causes have been identified. Inflammatory endotypes have also been widely studied and reported. Additionally, several genes have been shown to affect disease progression. However, the lack of a clear classification has also hampered our understanding of the disease's natural course. The aim of this review is, thus, to summarize the current knowledge on biomarkers and actionable targets of this complex pathologic condition and to point out unmet needs, which are required in the design of effective diagnostic and therapeutic trials.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Nicola Baio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Simone Montini
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Ferroni
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Vittorio Chino
- Ospedale Pederzoli, Peschiera del Garda, 37121 Verona, Italy;
| | - Lucrezia Pisanu
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Marianna Russo
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Ilaria Giana
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Alessandro Cascina
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Conio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Amelia Grosso
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Erica Gini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Federica Albicini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Angelo Guido Corsico
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Giulia Maria Stella
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| |
Collapse
|
2
|
Canè L, Poto R, Palestra F, Pirozzi M, Parashuraman S, Iacobucci I, Ferrara AL, La Rocca A, Mercadante E, Pucci P, Marone G, Monti M, Loffredo S, Varricchi G. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD. Eur J Intern Med 2024; 124:89-98. [PMID: 38402021 DOI: 10.1016/j.ejim.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Antonello La Rocca
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Edoardo Mercadante
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Piero Pucci
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
3
|
Song C, Sun J, Zhao Z, Zhang X, Ding X, Liang X, Bai J, Xing L, Gong L, Li C, Lin B. Thymic Stromal Lymphopoietin Activates Mouse Dendritic Cells Through the JAK/SYK Pathway in Promoting Th17 Response in Psoriasis. Balkan Med J 2024; 41:174-185. [PMID: 38700313 PMCID: PMC11077931 DOI: 10.4274/balkanmedj.galenos.2024.2024-1-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disease that has no cure. While the specific cause of psoriasis is unknown, interactions between immune cells and inflammatory cytokines are believed to be important in its pathogenesis. Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells that profoundly affects dendritic cells (DCs) and is involved in allergy and inflammatory diseases. In some studies, its expression is higher in the skin of psoriasis patients, whereas it is increased in treated psoriasis patients when compared with untreated patients in others. Aims To investigate the role of TSLP in the pathogenesis of psoriasis. Study Design In vitro and in vivo study. Methods To investigate the effect of TSLP on psoriasis in vivo, a mouse psoriasis model and shRNA targeting TSLP to reduce its expression were used. Mouse primary bone marrow dendritic cells (BMDCs) were cultured in vitro and used to investigate the signaling pathways activated by TSLP. Results: We found that reducing TSLP expression in psoriasis skin alleviated disease severity. TSLP activated the Janus kinase (JAK)/SYK pathway in psoriatic skin. In vitro studies with BMDCs demonstrated that TSLP increased DC maturation through the JAK/SYK pathway and activated DCs-secreted cytokines that stimulated CD4+ T cells to develop into T helper 17 (Th17) cells by activating STAT3 signaling. The JAK/SYK pathway inhibitor reduced the effect of TSLP on activating BMDCs and promoting Th17 differentiation by CD4+ T cells. Conclusion These findings indicated that TSLP exerted its immune-modulating effect in psoriasis through the JAK/SYK pathway.
Collapse
Affiliation(s)
- Cuihao Song
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Jie Sun
- 305 Hospital of People’s Liberation Army, Beijing, China
| | - Zhenkai Zhao
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Clinical Laboratory, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xiangyu Ding
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Xiaoqiang Liang
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Jia Bai
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Liyuan Xing
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Lingling Gong
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Chengxin Li
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Biwen Lin
- Department of Dermatology, PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Canè L, Poto R, Palestra F, Iacobucci I, Pirozzi M, Parashuraman S, Ferrara AL, Illiano A, La Rocca A, Mercadante E, Pucci P, Marone G, Spadaro G, Loffredo S, Monti M, Varricchi G. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci 2024; 25:4049. [PMID: 38612858 PMCID: PMC11012384 DOI: 10.3390/ijms25074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Amalia Illiano
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Antonello La Rocca
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Edoardo Mercadante
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Piero Pucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
5
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
6
|
Afshari M, Kolackova M, Rosecka M, Čelakovská J, Krejsek J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front Immunol 2024; 15:1361005. [PMID: 38500882 PMCID: PMC10944924 DOI: 10.3389/fimmu.2024.1361005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Atopic dermatitis, also known as atopic eczema, is a chronic inflammatory skin disease characterized by red pruritic skin lesions, xerosis, ichthyosis, and skin pain. Among the social impacts of atopic dermatitis are difficulties and detachment in relationships and social stigmatization. Additionally, atopic dermatitis is known to cause sleep disturbance, anxiety, hyperactivity, and depression. Although the pathological process behind atopic dermatitis is not fully known, it appears to be a combination of epidermal barrier dysfunction and immune dysregulation. Skin is the largest organ of the human body which acts as a mechanical barrier to toxins and UV light and a natural barrier against water loss. Both functions face significant challenges due to atopic dermatitis. The list of factors that can potentially trigger or contribute to atopic dermatitis is extensive, ranging from genetic factors, family history, dietary choices, immune triggers, and environmental factors. Consequently, prevention, early clinical diagnosis, and effective treatment may be the only resolutions to combat this burdensome disease. Ensuring safe and targeted drug delivery to the skin layers, without reaching the systemic circulation is a promising option raised by nano-delivery systems in dermatology. In this review, we explored the current understanding and approaches of atopic dermatitis and outlined a range of the most recent therapeutics and dosage forms brought by nanotechnology. This review was conducted using PubMed, Google Scholar, and ScienceDirect databases.
Collapse
Affiliation(s)
- Moeina Afshari
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| |
Collapse
|
7
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
García-Reyes MM, Zumaya-Pérez LC, Pastelin-Palacios R, Moreno-Eutimio MA. Serum thymic stromal lymphopoietin (TSLP) levels in atopic dermatitis patients: a systematic review and meta-analysis. Clin Exp Med 2023; 23:4129-4139. [PMID: 37515689 PMCID: PMC10725349 DOI: 10.1007/s10238-023-01147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is critical in developing allergic responses, including atopic dermatitis (AD). We systematically reviewed the literature to complete a meta-analysis to quantitatively summarize the levels of serum TSLP in AD. The study was prospectively registered in the PROSPERO database (ID = CRD42021242628). The PUBMED, SCOPUS, and Cochrane Library databases were reviewed, and original articles investigating serum TSLP in AD patients were included. Differences in TSLP levels of AD patients and controls were summarized by standardized mean differences (SMD) using a random effects model. Study quality was assessed by applying the Newcastle‒Ottawa Scale. Fourteen studies, which included 1,032 AD patients and 416 controls, were included. Meta-analysis showed that TSLP levels were significantly higher in the AD group than in the control group (SMD = 2.21, 95% CI 1.37-3.06, p < 0.001). Stratification by geographical region, age, disease severity, TSLP determination method, sample size, and study quality revealed significantly elevated TSLP levels in European AD patients (SMD = 3.48, 95% CI 1.75-5.21, p < 0.0001), adult AD patients (SMD = 4.10, 95% CI 2.00-6.21, p < 0.0001), child AD patients (SMD = 0.83, 95% CI 0.08-1.59, p = 0.031), and all severity groups with AD compared with the control group (mild: SMD = 1.15, 95% CI 0.14-2.16, p = 0.025; moderate: SMD = 2.48, 95% CI 0.33-4.62, p = 0.024; and severe: SMD = 8.28, 95% CI 4.82-11.74, p = 2.72e-6). Noticeably, adults showed higher serum TSLP levels than children with AD, and serum TSL levels increased according to AD severity. In conclusion, our meta-analysis demonstrates that circulating TSLP levels are elevated in patients with AD. Future studies are warranted to further elucidate the sources of heterogeneity.
Collapse
Affiliation(s)
- Marlenne Marisol García-Reyes
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, CP 11350, Mexico City, Mexico
| | - Luis Carlos Zumaya-Pérez
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
| | - Rodolfo Pastelin-Palacios
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico.
| |
Collapse
|
9
|
Marcella S, Petraroli A, Canè L, Ferrara AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L, Galdiero MR, Monti M, Marone G, Triggiani M, Varricchi G, Loffredo S. Thymic stromal lymphopoietin (TSLP) is a substrate for tryptase in patients with mastocytosis. Eur J Intern Med 2023; 117:111-118. [PMID: 37500310 DOI: 10.1016/j.ejim.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant β-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.
Collapse
Affiliation(s)
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| |
Collapse
|
10
|
Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023; 24:12725. [PMID: 37628907 PMCID: PMC10454039 DOI: 10.3390/ijms241612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that has emerged as a critical player in the development and progression of allergy and asthma. It is primarily produced by epithelial cells and functions as a potent immune system activator. TSLP acts through interaction with its receptor complex, composed of the TSLP receptor (TSLPR) and interleukin-7 receptor alpha chain (IL-7Rα), activating downstream complex signalling pathways. The TSLP major isoform, known as long-form TSLP (lfTSLP), is upregulated in the airway epithelium of patients with allergic diseases. More research is warranted to explore the precise mechanisms by which short-form TSLP (sfTSLP) regulates immune responses. Understanding the dynamic interplay between TSLP and the dysfunctional epithelium provides insights into the mechanisms underlying allergy and asthma pathogenesis. Targeting TSLP represents an important therapeutic strategy, as it may upstream disrupt the inflammatory cascade and alleviate symptoms associated with allergic inflammation.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Darío Antolín-Amérigo
- Servicio de Alergia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Florin-Dan Popescu
- Department of Allergology “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 022441 Bucharest, Romania;
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- “ALL-MED” Research Medical Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
11
|
A CpG-Oligodeoxynucleotide Suppresses Th2/Th17 Inflammation by Inhibiting IL-33/ST2 Signaling in Mice from a Model of Adoptive Dendritic Cell Transfer of Smoke-Induced Asthma. Int J Mol Sci 2023; 24:ijms24043130. [PMID: 36834541 PMCID: PMC9962992 DOI: 10.3390/ijms24043130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Tobacco smoke exposure is a major environmental risk factor that facilitates the development and progression of asthma. Our previous study showed that CpG oligodeoxynucleotide (CpG-ODN) inhibits thymic stromal lymphopoietin (TSLP)-dendritic cells (DCs) to reduce Th2/Th17-related inflammatory response in smoke-related asthma. However, the mechanism underlying CpG-ODN -downregulated TSLP remains unclear. A combined house dust mite (HDM)/cigarette smoke extract (CSE) model was used to assess the effects of CpG-ODN on airway inflammation, Th2/Th17 immune response, and amount of IL-33/ST2 and TSLP in mice with smoke-related asthma induced by adoptive transfer of bone-marrow-derived dendritic cells (BMDCs) and in the cultured human bronchial epithelium (HBE) cells administered anti-ST2, HDM, and/or CSE. In vivo, compared to the HDM alone model, the combined HDM/CSE model had aggravated inflammatory responses, while CpG-ODN attenuated airway inflammation, airway collagen deposition, and goblet cell hyperplasia and reduced the levels of IL-33/ST2, TSLP, and Th2/Th17-cytokines in the combined model. In vitro, IL-33/ST2 pathway activation promoted TSLP production in HBE cells, which could be inhibited by CpG-ODN. CpG-ODN administration alleviated Th2/Th17 inflammatory response, decreased the infiltration of inflammatory cells into the airway, and improved the remodeling of smoke-related asthma. The underlying mechanism may be that CpG-ODN inhibits the TSLP-DCs pathway by downregulating the IL-33/ST2 axis.
Collapse
|
12
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Li W, Liao C, Du J, Hu J, Wang L, Song X, He Z, Xiao X, Ye L. Increased expression of long-isoform thymic stromal lymphopoietin is associated with rheumatoid arthritis and fosters inflammatory responses. Front Immunol 2023; 13:1079415. [PMID: 36726974 PMCID: PMC9885117 DOI: 10.3389/fimmu.2022.1079415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that is involved in the pathogenesis of inflammatory diseases and asthma, but the expression and biological implications of the existence of two isoforms, long TSLP (lTSLP) and short TSLP (sTSLP), in RA have yet to be elucidated. Here we report that lTSLP is the predominant TSLP isoform in RA and active RA, whereas sTSLP is the major TSLP isoform in inactive RA and healthy controls. lTSLP expression is associated with disease activity, including 28-joint Disease Activity Score (DAS28) and erythrocyte sedimentation rate (ESR), as well as proinflammatory cytokine expression, irrespective of other laboratory parameters. Importantly, lTSLP alone or combined with LPS promotes the expression of proinflammatory cytokines IL-1β, IL-6, and IL-8 in PBMCs of RA, but restrains anti-inflammatory cytokine IL-10 expression in PBMCs of RA. Furthermore, we found that STAT5 signaling is involved in lTSLP-induced inflammatory accumulation in PBMCs of RA. Therefore, these results highlight the clinical significance of lTSLP in RA pathology and inflammatory response in acute-phase disease, which may provide a therapeutic target for RA.
Collapse
Affiliation(s)
- Wanlin Li
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chenghui Liao
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Hu
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Lu Wang
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xun Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhendan He
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| | - Xiaohua Xiao
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| | - Liang Ye
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| |
Collapse
|
15
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, Deng F, Chang B, Zhou J, Sun L. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators Inflamm 2023; 2023:7697699. [PMID: 37096155 PMCID: PMC10122597 DOI: 10.1155/2023/7697699] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 04/26/2023] Open
Abstract
Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yumeng Zhai
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junxiang Zeng
- Department of Bioinformation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Møller DL, Kielsen K, Nielsen CH, Sengeløv H, Pedersen AE, Ryder LP, Müller K. Thymic stromal lymphopoietin levels after allogeneic hematopoietic stem cell transplantation. Immunopharmacol Immunotoxicol 2022; 44:1004-1012. [PMID: 35899395 DOI: 10.1080/08923973.2022.2102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an immunoregulatory, Th2-polarizing cytokine produced by epithelial cells. We hypothesized that TSLP affects immune reconstitution after hematopoietic stem cell transplantation (HSCT) leading to increased alloreactivity. METHODS We measured plasma TSLP by ELISA in 38 patients and assessed the immune reconstitution by flow cytometry. RESULTS TSLP levels rose after initiation of the conditioning to peak at day +21 after HSCT (p = .03), where TSLP levels correlated with counts of neutrophils (rho = 0.36, p = .04), monocytes (rho = 0.58, p = .006), and lymphocytes (rho = 0.59, p = .02). Overall absolute TSLP levels were not associated with acute or chronic graft-vs-host disease (a/cGvHD). However, patients mounting a sustained increase in TSLP levels at day +90 had a higher risk of cGvHD compared to patients who had returned to pre-conditioning levels at that stage (cumulative incidence: 77% vs. 38%, p = .01). CONCLUSION In conclusion, this study suggests a role of TSLP in immune reconstitution and alloreactivity post-HSCT. lymphopoietin (TSLP) is an immunoregulatory, Th2-polarizing cytokine produced by epithelial cells. We hypothesized that TSLP affects immune reconstitution after hematopoietic stem cell transplantation (HSCT) leading to increased alloreactivity. We measured plasma TSLP by ELISA in 38 patients and assessed the immune reconstitution by flow cytometry.
Collapse
Affiliation(s)
- Dina Leth Møller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Lars Peter Ryder
- The Tissue Typing Laboratory, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Home Dust Mites Promote MUC5AC Hyper-Expression by Modulating the sNASP/TRAF6 Axis in the Airway Epithelium. Int J Mol Sci 2022; 23:ijms23169405. [PMID: 36012669 PMCID: PMC9408837 DOI: 10.3390/ijms23169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
House dust mites (HDMs) are a common source of respiratory allergens responsible for allergic asthma and innate immune responses in human diseases. Since HDMs are critical factors in the triggering of allergen-induced airway mucosa from allergic asthma, we aimed to investigate the mechanisms of Toll-like receptors (TLR) in the signaling of the HDM extract that is involved in mucus hypersecretion and airway inflammation through the engagement of innate immunity. Previously, we reported that the somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis controls the initiation of TLRs to maintain the homeostasis of the innate immune response. The present study showed that the HDM extract stimulated the biogenesis of Mucin 5AC (MUC5AC) in bronchial epithelial cells via the TLR2/4 signaling pathway involving MyD88 and TRAF6. Specifically, sNASP binds to TRAF6 in unstimulated bronchial epithelial cells to prevent the activation of TRAF6-depenedent kinases. Upon on HDMs’ stimulation, sNASP is phosphorylated, leading to the activation of TRAF6 downstream of the p38 MAPK and NF-κB signaling pathways. Further, NASP-knockdown enhanced TRAF6 signaling and MUC5AC biogenesis. In the HDM-induced mouse asthma model, we found that the HDM extract promoted airway hyperresponsiveness (AHR), MUC5AC, and allergen-specific IgE production as well as IL-5 and IL-13 for recruiting inflammatory cells. Treatment with the PEP-NASP peptide, a selective TRAF6-blocking peptide, ameliorated HDM-induced asthma in mice. In conclusion, this study indicated that the sNASP/TRAF6 axis plays a regulatory role in asthma by modulating mucus overproduction, and the PEP-NASP peptide might be a potential target for asthma treatment.
Collapse
|
19
|
Klimek L, Hagemann J, Welkoborsky HJ, Cuevas M, Casper I, Förster-Ruhrmann U, Klimek F, Hintschich CA, Huppertz T, Bergmann C, Tomazic PV, Becker S. Epithelial immune regulation of inflammatory airway diseases: Chronic rhinosinusitis with nasal polyps (CRSwNP). Allergol Select 2022; 6:148-166. [PMID: 35572064 PMCID: PMC9097524 DOI: 10.5414/alx02296e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The epithelial immune regulation is an essential and protective feature of the barrier function of the mucous membranes of the airways. Damage to the epithelial barrier can result in chronic inflammatory diseases, such as chronic rhinosinusitis (CRS) or bronchial asthma. Thymic stromal lymphopoietin (TSLP) is a central regulator in the epithelial barrier function and is associated with type 2 (T2) and non-T2 inflammation. MATERIALS AND METHODS The immunology of chronic rhinosinusitis with polyposis nasi (CRSwNP) was analyzed in a literature search, and the existing evidence was determined through searches in Medline, Pubmed as well as the national and international study and guideline registers and the Cochrane Library. Human studies or studies on human cells that were published between 2010 and 2020 and in which the immune mechanisms of TSLP in T2 and non-T2 inflammation were examined were considered. RESULTS TSLP is an epithelial cytokine (alarmin) and a central regulator of the immune reaction, especially in the case of chronic airway inflammation. Induction of TSLP is implicated in the pathogenesis of many diseases like CRS and triggers a cascade of subsequent inflammatory reactions. CONCLUSION Treatment with TSLP-blocking monoclonal antibodies could therefore open up interesting therapeutic options. The long-term safety and effectiveness of TSLP blockade has yet to be investigated.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | - Jan Hagemann
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | - Hans-Jürgen Welkoborsky
- Clinic for Ear, Nose and Throat Medicine, Head and Neck Surgery, Nordstadt Clinic of the KRH, Hannover
| | - Mandy Cuevas
- Clinic and Polyclinic for Otolaryngology, University Hospital Carl Gustav Carus, TU Dresden, Dresden
| | | | | | | | - Constantin A Hintschich
- Clinic and Polyclinic for Ear, Nose and Throat Medicine, University Hospital Regensburg, Regensburg
| | - Tilman Huppertz
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | | | | | | |
Collapse
|
20
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
21
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
22
|
Braile M, Fiorelli A, Sorriento D, Di Crescenzo RM, Galdiero MR, Marone G, Santini M, Varricchi G, Loffredo S. Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells 2021; 10:cells10082012. [PMID: 34440780 PMCID: PMC8392295 DOI: 10.3390/cells10082012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.
Collapse
Affiliation(s)
- Mariantonia Braile
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosa Maria Di Crescenzo
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Maria Rosaria Galdiero
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gianni Marone
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Mario Santini
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Gilda Varricchi
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| |
Collapse
|
23
|
Wang SH, Zuo YG. Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Front Immunol 2021; 12:698522. [PMID: 34249003 PMCID: PMC8264505 DOI: 10.3389/fimmu.2021.698522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) was initially demonstrated to be critical in regulating inflammatory responses among various allergic disorders (such as atopic dermatitis, food allergy, and asthma). Although two isoforms (short form and long form) of TSLP have been demonstrated in human tissues, the long form of TSLP (lfTSLP) is strongly implicated in the pathogenesis of allergies and cutaneous immune-mediated diseases. The immunomodulatory activity of lfTSLP varies widely, driving T helper (Th) cells polarizing Th2 and Th17 immune responses and inducing itch. Moreover, lfTSLP is closely associated with skin fibrosis, epidermal hyperplasia, angiogenesis, and homeostatic tolerogenic regulations. This review highlights significant progress from experimental and clinical studies on lfTSLP in cutaneous immune-mediated diseases (atopic dermatitis, psoriasis, bullous pemphigoid, systemic sclerosis, chronic spontaneous urticaria, Behçet's disease, vitiligo, rosacea, systemic lupus erythematosus, and alopecia areata). We also offer original insights into the pleiotropic properties of the cytokine TSLP in various pathophysiological conditions, with significant clinical implications of TSLP-targeted therapies for immune-mediated skin diseases in the future.
Collapse
Affiliation(s)
| | - Ya-Gang Zuo
- Department of Dermatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
25
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
26
|
Malinczak CA, Parolia A, Fonseca W, Morris S, Rasky AJ, Bawa P, Zhang Y, Mire MM, Ziegler SF, Ptaschinski C, Chinnaiyan AM, Lukacs NW. TSLP-Driven Chromatin Remodeling and Trained Systemic Immunity after Neonatal Respiratory Viral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:1315-1328. [PMID: 33514510 DOI: 10.4049/jimmunol.2001205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Our studies have previously shown a role for persistent TSLP production in the lungs of mice after early-life respiratory syncytial virus (RSV) infection that leads to an altered immune phenotype, including accumulation of "inflammatory" dendritic cells (DC). This study investigates the role of TSLP driving systemic trained immunity in DC in early-life RSV-infected mice. Bone marrow-derived DCs (BMDC) from early-life RSV-infected mice at 4 wk postinfection showed enhanced expression of costimulatory molecules and cytokines, including Tslp, that regulate immune cell function. The adoptive transfer of BMDC grown from early-life RSV-infected mice was sufficient to exacerbate allergic disease development. The addition of recombinant TSLP during differentiation of BMDC from naive mice induced a similar altered phenotype as BMDC grown from early-life RSV-infected mice, suggesting a role for TSLP in the phenotypic changes. To assess the role of TSLP in these changes, global transcriptomic characterization of TSLPR-/- BMDC infected with RSV was performed and showed a higher upregulation of type 1 IFN genes and concomitant downregulation of inflammatory genes. Assay for transposase-accessible chromatin using sequencing analysis demonstrated that TSLPR-/- BMDC had a parallel gain in physical chromatin accessibility near type 1 genes and loss in accessibility near genes related to RSV pathology, with IFN regulatory factor 4 (IRF4) and STAT3 predicted as top transcription factors binding within differentially accessible regions in wild-type. Importantly, these studies show that in the absence of TSLP signaling, BMDC are able to mount an appropriate type 1 IFN-associated antiviral response to RSV. In summary, RSV-induced TSLP alters chromatin structure in DC to drive trained innate immunity and activates pathogenic gene programs in mice.
Collapse
Affiliation(s)
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Pushpinder Bawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed M Mire
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, Seattle, WA 98101
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109; and.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
28
|
Polymorphisms within the TNFSF4 and MAPKAPK2 Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium. J Fungi (Basel) 2020; 7:jof7010004. [PMID: 33374839 PMCID: PMC7823601 DOI: 10.3390/jof7010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4
rs7526628T/T genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4
rs7526628T allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2
rs12137965G allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2
rs17013271T allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2
rs12137965G allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2
rs17013271T allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.
Collapse
|
29
|
Andrea M, Susanna B, Francesca N, Enrico M, Alessandra V. The emerging role of type 2 inflammation in asthma. Expert Rev Clin Immunol 2020; 17:63-71. [PMID: 33280431 DOI: 10.1080/1744666x.2020.1860755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Bronchial asthma (BA) is a chronic airways inflammatory disease. Based on the biological mechanisms that underline the disease, asthma has been classified as type 2 or non-type 2 phenotype.Areas covered: An emerging role has been identified for group 2 innate lymphoid cells (ILC2s) able to produce the classical type 2 cytokines. The role of Th2 cells and IL-4 is crucial in the pathogenesis of allergic BA as supported by asthma models. IL-13, shares many biological functions with IL-4 such as induction of IgE synthesis and regulation of eosinophil trafficking. However, IL-13 does not induce Th2 cell differentiation. The Authors reviewed evidence on the new concept of type 2 inflammation and the cellular and molecular network behind this process. Literature data in the PubMed were analyzed for peer-reviewed articles published until September 2020.Expert opinion: The current trend is to consider Th2- and ILC2-driven pathways as two separate pathogenic mechanisms, recent data underscore that adaptive Th2- and innate cell responses represent two integrated systems in the production of IL-4, IL-5, and IL-13 leading to the current 'concept' of type 2 inflammation. This review highlights the role of Th2 cells and ILC2 in the recent new concept of type 2 inflammation.
Collapse
Affiliation(s)
- Matucci Andrea
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Bormioli Susanna
- Immunology and Cellular Therapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Nencini Francesca
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Maggi Enrico
- Immunology Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Vultaggio Alessandra
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
30
|
Protti MP, De Monte L. Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and -Independent Mechanisms. Front Immunol 2020; 11:2088. [PMID: 33042121 PMCID: PMC7524868 DOI: 10.3389/fimmu.2020.02088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine originally cloned from a murine thymic stromal cell line, and subsequently a human homolog was identified using database search methods. Human TSLP is mostly expressed in epithelial cells, among which are keratinocytes as well as stromal cells such as fibroblasts and immune cells. Human TSLP was first described to activate myeloid dendritic cells, which prime naïve T helper cells to produce high concentrations of Th2 cytokines, thus representing a key cytokine in triggering dendritic cells-mediated allergic Th2 inflammation. TSLP and/or its receptor has been shown to be expressed in several tumor types, where TSLP expression is associated with functional activities that can be associated or not with the induction of a Th2-prone tumor microenvironment, i.e., Th2-dependent and Th2-independent mechanisms. These mechanisms involve tissue- and immune cell target-dependent tumor-promoting or tumor-suppressive functions in different or even the same tumor type. Here we report and discuss the Th2-dependent and Th2-independent roles of TSLP in cancer and possible therapeutic targeting.
Collapse
Affiliation(s)
- Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
TSLP as druggable target - a silver-lining for atopic diseases? Pharmacol Ther 2020; 217:107648. [PMID: 32758645 DOI: 10.1016/j.pharmthera.2020.107648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Atopic diseases refer to common allergic inflammatory diseases such as atopic dermatitis (AD), allergic rhinitis (AR), and allergic asthma (AA). AD often develops in early childhood and may herald the onset of other allergic disorders such as food allergy (FA), AR, and AA. This progression of the disease is also known as the atopic march, and it goes hand in hand with a significantly impaired quality of life as well as a significant economic burden. Atopic diseases usually are considered as T helper type 2 (Th2) cell-mediated inflammatory diseases. Thymic stromal lymphopoietin (TSLP), an epithelium-derived pro-inflammatory cytokine, activates distinct immune and non-immune cells. It has been shown to be a master regulator of type 2 immune responses and atopic diseases. In experimental settings, the inhibition or knockout of TSLP signaling has shown great therapeutic potential. This, in conjunction with the increasing knowledge about the central role of TSLP in the pathogenesis of atopic diseases, has sparked an interest in TSLP as a druggable target. In this review, we will discuss the autocrine and paracrine effects of TSLP, how it regulates the tissue microenvironment and drives atopic diseases, which provide the rationale for the increasing interest in TSLP as a druggable target.
Collapse
|
32
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
33
|
Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 2020; 24:777-792. [PMID: 32567399 DOI: 10.1080/14728222.2020.1783242] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thymic stromal lymphopoietin (TSLP), an epithelial cytokine (alarmin), is a central regulator of the immune response to inhaled environmental insults such as allergens, viruses and pollutants, initiating a cascade of downstream inflammation. There is compelling evidence that TSLP plays a major role in the pathology of asthma, and therapies that aim to block its activity are in development. AREAS COVERED We review studies conducted in humans and human cells, largely published in PubMed January 2010-October 2019, that investigated the innate and adaptive immune mechanisms of TSLP in asthma relevant to type 2-driven (eosinophilic/allergic) inflammation and non-type 2-driven (non-eosinophilic/non-allergic) inflammation, and the role of TSLP as a mediator between immune cells and structural cells in the airway. Clinical data from studies evaluating TSLP blockade are also discussed. EXPERT OPINION The position of TSLP at the top of the inflammatory cascade makes it a promising therapeutic target in asthma. Systemic anti-TSLP monoclonal antibody therapy with tezepelumab has yielded positive results in clinical trials to date, reducing exacerbations and biomarkers of inflammation in patients across the spectrum of inflammatory endotypes. Inhaled anti-TSLP is an alternative route currently under evaluation. The long-term safety and efficacy of TSLP blockade need to be evaluated.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D , Gaithersburg, MD, USA
| |
Collapse
|
34
|
Steinmetz M, Laurans L, Nordsiek S, Weiß L, van der Veken B, Ponnuswamy P, Esposito B, Vandestienne M, Giraud A, Göbbel C, Steffen E, Radecke T, Potteaux S, Nickenig G, Rassaf T, Tedgui A, Mallat Z. Thymic stromal lymphopoietin is a key cytokine for the immunomodulation of atherogenesis with Freund's adjuvant. J Cell Mol Med 2020; 24:5731-5739. [PMID: 32285594 PMCID: PMC7214169 DOI: 10.1111/jcmm.15235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 01/06/2023] Open
Abstract
Adaptive immune responses regulate the development of atherosclerosis, with a detrimental effect of type 1 but a protective role of type 2 immune responses. Immunization of Apolipoprotein E‐deficient (ApoE−/−) mice with Freund's adjuvant inhibits the development of atherosclerosis. However, the underlying mechanisms are not fully understood. Thymic stromal lymphopoietin (TSLP) is an IL7‐like cytokine with essential impact on type 2 immune responses (Th2). Thymic stromal lymphopoietin is strongly expressed in epithelial cells of the skin, but also in various immune cells following appropriate stimulation. In this study, we investigated whether TSLP may be crucial for the anti‐atherogenic effect of Freund's adjuvant. Subcutaneous injection of complete Freund's adjuvant (CFA) rapidly led to the expression of TSLP and IL1β at the site of injection. In male mice, CFA‐induced TSLP occurred in immigrated monocytes—and not epithelial cells—and was dependent on NLRP3 inflammasome activation and IL1β‐signalling. In females, CFA‐induced TSLP was independent of IL1β and upon ovariectomy. CFA/OVA led to a more pronounced imbalance of the T cell response in TSLPR−/− mice, with increased INFγ/IL4 ratio compared with wild‐type controls. To test whether TSLP contributes to the anti‐atherogenic effects of Freund's adjuvant, we treated ApoE−/− and ApoE−/−/TSLPR−/− mice with either CFA/IFA or PBS. ApoE−/− mice showed less atherogenesis upon CFA/IFA compared with PBS injections. ApoE−/−/TSLPR−/− mice had no attenuation of atherogenesis upon CFA/IFA treatment. Freund's adjuvant executes significant immune‐modulating effects via TSLP induction. TSLP‐TSLPR signalling is critical for CFA/IFA‐mediated attenuation of atherosclerosis.
Collapse
Affiliation(s)
- Martin Steinmetz
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany.,Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Ludivine Laurans
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Sarah Nordsiek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Lena Weiß
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Bruno Esposito
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | | | - Andreas Giraud
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Cristina Göbbel
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Eva Steffen
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Tobias Radecke
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Tienush Rassaf
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Ziad Mallat
- Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol Int 2020; 69:197-203. [PMID: 31974038 DOI: 10.1016/j.alit.2020.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
TSLP is an epithelial cell-derived cytokine synthesized in response to various stimuli, including protease allergens and microorganisms like viruses and bacteria. Biological functions of TSLP require heterodimer formation between the TSLP receptor (TSLPR) and IL-7 receptor-α, which polarize dendritic cells to induce type 2 inflammation and directly expand and/or activate Th2 cells, group 2 innate lymphoid cells, basophils, and other immune cells. TSLP is thus considered a master regulator of type 2 immune responses at the barrier surfaces of skin and the respiratory/gastrointestinal tract. Indeed, genetic, experimental, and clinical evidence suggests that the TSLP-TSLPR pathway is associated with the pathogenesis of allergic diseases such as atopic dermatitis (AD) and asthma. Tezepelumab (AMG-157/MEDI9929) is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. A phase 2 trial for moderate to severe AD showed that a greater but not statistically significant percentage of tezepelumab-treated patients showed clinical improvements compared to the placebo group. A phase 2 trial for uncontrolled, severe asthma showed significant decreases in asthma exacerbation rate and improved pulmonary function and asthma control for tezepelumab-treated patients. Levels of biomarkers of type 2 inflammation, such as blood/sputum eosinophil counts and fraction of exhaled nitric oxide decreased, however, clinical efficacy was observed irrespective of the baseline levels of these biomarkers. A blockade of the TSLP-TSLPR pathway likely will exert significant clinical effects on AD, asthma, and other allergic diseases. The efficacy of anti-TSLP antibodies compared to other biologics needs to be further examined.
Collapse
|
36
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
37
|
Marone G, Spadaro G, Braile M, Poto R, Criscuolo G, Pahima H, Loffredo S, Levi-Schaffer F, Varricchi G. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin Investig Drugs 2019; 28:931-940. [PMID: 31549891 DOI: 10.1080/13543784.2019.1672657] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Thymic stromal lymphopoietin (TSLP) is overexpressed in the airways of severe asthmatics and is an upstream cytokine that orchestrates inflammatory responses in asthma. TSLP exerts its effects by binding to a high affinity heteromeric receptor complex composed of TSLPR and IL-7Rα. An association of polymorphisms in TSLP with airway hyperresponsiveness, IgE, eosinophilia and asthma has been documented. TSLP has been implicated in asthma pathophysiology. Tezepelumab is a first-in-class human monoclonal antibody that binds to TSLP, thus inhibiting its interaction with TSLP receptor complex. Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma has shown safety, tolerability and efficacy. Several trials are evaluating the long-term safety and the efficacy of tezepelumab in adults and adolescents with severe uncontrolled asthma.Areas covered: We provide an overview of the monoclonal antibody therapeutics market for severe uncontrolled asthma, examine the underlying pathophysiology that drives TSLP and discuss the use of tezepelumab for the treatment of severe uncontrolled asthma,Expert opinion: TSLP is a promising target for T2-high and perhaps some patients with T2-low asthma. The results of preliminary clinical trials are encouraging. Several unanswered questions concerning basic pathophysiological aspects of TSLP variants, the long-term safety and efficacy of tezepelumab with different phenotypes/endotypes of asthma should be addressed.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
38
|
Overexpression of thymic stromal lymphopoietin is correlated with poor prognosis in epithelial ovarian carcinoma. Biosci Rep 2019; 39:BSR20190116. [PMID: 31023965 PMCID: PMC6522712 DOI: 10.1042/bsr20190116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine that has been reported to be associated with several malignant tumors. The present study aimed to evaluate its role in epithelial ovarian carcinoma (EOC). The mRNA levels of TSLP in human EOC samples and EOC cell lines were determined. Then, the expression of TSLP was examined in 144 clinical tissue microarray samples and correlated with clinicopathological factors. Finally, the correlation between TSLP overexpression and prognosis of EOC patients was analyzed. Our data show that mRNA levels of TSLP were significantly higher in EOC tissues and cell lines. Chi-square tests revealed that TSLP overexpression in EOC was significantly associated with age, histological type, Federation of Gynecology and Obstetrics (FIGO) stage, histological differentiation, pelvic involvement, and lymphatic metastasis. Kaplan–Meier survival analysis revealed that poor prognosis was significantly correlated with older age, advanced FIGO stage, poor histological differentiation, pelvic involvement, lymphatic involvement, or TSLP overexpression (P<0.05). Additionally, multivariate Cox regression analysis confirmed pelvic involvement and TSLP overexpression as independent prognostic factors for both overall and disease-free survival. Taken altogether, TSLP overexpression reflects a more malignant phenotype and TSLP may be a novel biomarker for EOC.
Collapse
|
39
|
Elder MJ, Webster SJ, Fitzmaurice TJ, Shaunak ASD, Steinmetz M, Chee R, Mallat Z, Cohen ES, Williams DL, Gaston JSH, Goodall JC. Dendritic Cell-Derived TSLP Negatively Regulates HIF-1α and IL-1β During Dectin-1 Signaling. Front Immunol 2019; 10:921. [PMID: 31139177 PMCID: PMC6519317 DOI: 10.3389/fimmu.2019.00921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a functionally pleotropic cytokine important in immune regulation, and TSLP dysregulation is associated with numerous diseases. TSLP is produced by many cell types, but has predominantly been characterized as a secreted factor from epithelial cells which activates dendritic cells (DC) that subsequently prime T helper (TH) 2 immunity. However, DC themselves make significant amounts of TSLP in response to microbial products, but the functional role of DC-derived TSLP remains unclear. We show that TSLPR signaling negatively regulates IL-1β production during dectin-1 stimulation of human DC. This regulatory mechanism functions by dampening Syk phosphorylation and is mediated via NADPH oxidase-derived ROS, HIF-1α and pro-IL-1β expression. Considering the profound effect TSLPR signaling has on the metabolic status and the secretome of dectin-1 stimulated DC, these data suggest that autocrine TSLPR signaling could have a fundamental role in modulating immunological effector responses at sites removed from epithelial cell production of TSLP.
Collapse
Affiliation(s)
- Matthew J. Elder
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,Early Oncology R&D Division, AstraZeneca, Cambridge, United Kingdom
| | - Steve J. Webster
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J. Fitzmaurice
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Aran S. D. Shaunak
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Martin Steinmetz
- Unit 970, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Ronnie Chee
- Department of Immunology, Royal Free Hospital, London, United Kingdom
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - E. Suzanne Cohen
- Biopharmaceutical Research Division, AstraZeneca, Cambridge, United Kingdom
| | - David L. Williams
- Department of Surgery, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - J. S. Hill Gaston
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jane C. Goodall
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Jane C. Goodall
| |
Collapse
|
40
|
Li J, Chen Y, Chen QY, Liu D, Xu L, Cheng G, Yang X, Guo Z, Zeng Y. Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:586-594. [PMID: 30708321 DOI: 10.1016/j.envpol.2019.01.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Around the globe, worsening air pollution is spawning major public health and environmental concerns, especially in the poorest and most populous cities. As a major secondary air pollutant, ozone is a potential risk factor for exacerbated asthma, although the underlying mechanisms remain uncertain. In this study, we aim to investigate the role of ozone on asthma exacerbation using a classic asthmatic model with allergic airway inflammation by treating Balb/c mice with ovalbumin (OVA). Our study shows ozone exposure significantly exacerbated OVA-induced asthmatic phenotypes, including serum immunoglobulin, Th cytokines, inflammatory cell counts, mucus production, airway remodeling, and airway hyper-responsiveness (AHR). Interestingly, expression of transient receptor potential cation channel subfamily V member1 (TRPV1) was also significantly elevated in ozone-exacerbated asthmatic mice and that treatment with TRPV1 antagonist effectively suppressed AHR, airway inflammation and remodeling. The underlying mechanisms of these effects may be associated with suppression of neuropeptide calcitonin gene-related peptide (CGRP) and thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. Base on the role of TRPV1 in allergic asthma, this study further revealed that inhibition of TRPV1 by TRPV1 antagonist has significant anti-inflammatory effects on ozone-induced asthma exacerbation in this study. Induction of TRPV1 expression may be an important mechanism underlying the increased risks for asthma after exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China; Big Data Science and Engineering Research Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Chen
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge, Tuxedo, NY 10987, United States
| | - Dan Liu
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lang Xu
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Guirong Cheng
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Big Data Science and Engineering Research Institute, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
41
|
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 2019; 129:1441-1451. [PMID: 30932910 DOI: 10.1172/jci124606] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell-derived cytokines thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 are central regulators of type 2 immunity, which drives a broad array of allergic responses. Often characterized as "alarmins" that are released by the barrier epithelium in response to external insults, these epithelial cell-derived cytokines were initially thought to act only early in allergic inflammation. Indeed, TSLP can condition dendritic cells to initiate type 2 responses, and IL-33 may influence susceptibility to asthma through its role in establishing the immune environment in the perinatal lungs. However, TSLP, IL-33, and IL-25 all regulate a broad spectrum of innate immune cell populations and are particularly potent in eliciting and activating type 2 innate lymphoid cells (ILC2s) that may act throughout allergic inflammation. Recent data suggest that a TSLP/ILC axis may mediate steroid resistance in asthma. Recent identification of memory Th2 cell subsets that are characterized by high receptor expression for TSLP, IL-33, and IL-25 further supports a role for these cytokines in allergic exacerbations. There is therefore growing interest in developing biologics that target TSLP, IL-33, and IL-25. This Review provides an overview of TSLP, IL-33, and IL-25 and the development of blocking antibodies that target these epithelial cell-derived cytokines.
Collapse
Affiliation(s)
- Florence Roan
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Division of Allergy and Infectious Diseases and
| | | | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol 2019; 12:969-979. [PMID: 31076663 PMCID: PMC6599479 DOI: 10.1038/s41385-019-0171-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/23/2019] [Accepted: 04/22/2019] [Indexed: 02/04/2023]
Abstract
Many studies have linked severe RSV infection during early-life with an enhanced likelihood of developing childhood asthma, showing a greater susceptibility in boys. Our studies show that early-life RSV infection leads to differential long-term effects based upon the sex of the neonate; leaving male mice prone to exacerbation upon secondary allergen exposure while overall protecting female mice. During initial viral infection, we observed better viral control in the female mice with correlative expression of interferon-β that was not observed in male mice. Additionally, we observed persistent immune alterations in male mice at 4 weeks post infection. These alterations include Th2 and Th17-skewing, innate cytokine expression (Tslp and Il33), and infiltration of innate immune cells (DC and ILC2). Upon exposure to allergen, beginning at 4 weeks following early-life RSV-infection, male mice show severe allergic exacerbation while female mice appear to be protected. Due to persistent expression of TSLP following early-life RSV infection in male mice, genetically modified TSLPR-/- mice were evaluated and demonstrated an abrogation of allergen exacerbation in male mice. These data indicate that TSLP is involved in the altered immune environment following neonatal RSV-infection that leads to more severe responses in males during allergy exposure, later in life. Thus, TSLP may be a clinically relevant therapeutic target early in life.
Collapse
|
43
|
The Inflammatory Response to Enterotoxigenic E. coli and Probiotic E. faecium in a Coculture Model of Porcine Intestinal Epithelial and Dendritic Cells. Mediators Inflamm 2018; 2018:9368295. [PMID: 30670931 PMCID: PMC6317115 DOI: 10.1155/2018/9368295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
The gut epithelium constitutes an interface between the intestinal contents and the underlying gut-associated lymphoid tissue (GALT) including dendritic cells (DC). Interactions of intestinal epithelial cells (IEC) and resident DC are characterized by bidirectional crosstalk mediated by various factors, such as transforming growth factor-β (TGF-β) and thymic stromal lymphopoietin (TSLP). In the present study, we aimed (1) to model the interplay of both cell types in a porcine in vitro coculture consisting of IEC (cell line IPEC-J2) and monocyte-derived DC (MoDC) and (2) to assess whether immune responses to bacteria are altered because of the interplay between IPEC-J2 cells and MoDC. With regard to the latter, we focused on the inflammasome pathway. Here, we propose caspase-13 as a promising candidate for the noncanonical inflammasome activation in pigs. We conducted challenge experiments with enterotoxigenic Escherichia coli (ETEC) and probiotic Enterococcus faecium (E. faecium) NCIMB 10415. As potential mediators of IEC/DC interactions, TGF-β and TSLP were selected for analyses. Cocultured MoDC showed attenuated ETEC-induced inflammasome-related and proinflammatory interleukin (IL)-8 reactions compared with MoDC monocultures. Caspase-13 was more strongly expressed in IPEC-J2 cells cocultured with MoDC and upon ETEC incubation. We found that IPEC-J2 cells and MoDC were capable of releasing TSLP. The latter cells secreted greater amounts of TSLP when cocultured with IPEC-J2 cells. TGF-β was not modulated under the present experimental conditions in either cell types. We conclude that, in the presence of IPEC-J2 cells, porcine MoDC exhibited a more tolerogenic phenotype, which might be partially regulated by autocrine TSLP production. Noncanonical inflammasome signaling appeared to be modulated in IPEC-J2 cells. Our results indicate that the reciprocal interplay of the intestinal epithelium and GALT is essential for promoting balanced immune responses.
Collapse
|
44
|
Capucilli P, Cianferoni A, Grundmeier RW, Spergel JM. Comparison of comorbid diagnoses in children with and without eosinophilic esophagitis in a large population. Ann Allergy Asthma Immunol 2018; 121:711-716. [PMID: 30194971 DOI: 10.1016/j.anai.2018.08.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/04/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Previous reports suggest a higher prevalence of comorbid diseases in patients with eosinophilic esophagitis (EoE), although few have systematically quantified comorbidities in pediatric patients. OBJECTIVE To define the rate of comorbid diagnoses in pediatric EoE patients compared with rates in those without EoE. METHODS Retrospective cross-sectional review of electronic medical records for patients seen in a single large pediatric primary care network between January 2007 and December 2016 (n = 456,148). International Classification of Diseases, Ninth and Tenth Revision codes were used to determine prevalence rates for coexisting diagnoses. RESULTS A total of 428 patients held a diagnosis for EoE. Significant differences in rate of comorbid diseases included allergic rhinoconjunctivitis (60.0% of EoE cohort vs 17.4% of non-EoE cohort, P < .0001); asthma (59.8% of EoE, 21.4% of non-EoE, P < .0001); atopic dermatitis (17.8% of EoE, 6.6% of non-EoE, P < .0001); adrenal insufficiency (2.6% of EoE, 0.4% of non-EoE, P < .0001); autism spectrum disorder (7.5% of EoE, 1.9% of non-EoE, P < .0001); celiac disease (5.6% of EoE, 0.9% of non-EoE, P < .0001); connective tissue diseases (1.4% of EoE, 0.1% of non-EoE, P < .0001); cystic fibrosis (0.9% of EoE, 0.05% of non-EoE, P < .0001); inflammatory bowel disease (0.7% of EoE, 0.2% of non-EoE, P = .03); type 1 diabetes mellitus (1.2% of EoE, 0.3% of non-EoE, P = .0069). CONCLUSION Children with EoE have markedly higher rates of both atopic and non-atopic diseases compared with children without EoE. These associations have important implications for comprehensive EoE care and future research regarding associated disease mechanisms.
Collapse
Affiliation(s)
- Peter Capucilli
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Antonella Cianferoni
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert W Grundmeier
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jonathan M Spergel
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Lee HE, Yang G, Kim KB, Lee BM, Lee JY. Phloxine O, a Cosmetic Colorant, Suppresses the Expression of Thymic Stromal Lymphopoietin and Acute Dermatitis Symptoms in Mice. Biomol Ther (Seoul) 2018; 26:481-486. [PMID: 29310423 PMCID: PMC6131015 DOI: 10.4062/biomolther.2017.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cosmetics are primarily applied to the skin; therefore, the association of cosmetic dyes with skin diseases or inflammation is a topic of great interest. Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine that activates dendritic cells to promote Th2 inflammatory immune responses. TSLP is highly expressed in keratinocytes under inflammatory conditions, which suggests that it may play a critical role in the development of skin diseases, such as atopic dermatitis. Therefore, we investigated whether cosmetic dyes influenced the production of TSLP by keratinocytes. Phloxine O, also known as D&C Red No.27, is one of the most common red synthetic pigments and is widely used in colored cosmetics. Our results showed that Phloxine O downregulated phorbol 12-myristate 13-acetate-induced production of TSLP in a murine keratinocyte cell line (PAM212). Phloxine O also suppressed TSLP expression in KCMH-1 cells, which are mouse keratinocytes that constitutively produce high levels of TSLP. To investigate the in vivo effects of Phloxine O, we induced TSLP expression in mouse ear skin by topically applying MC903, a vitamin D3 analogue that is a well-known inducer of atopic dermatitis-like symptoms. Topical application of Phloxine O prevented MC903-induced TSLP production in mouse ear skin, attenuated the acute dermatitis-like symptoms and decreased serum IgE and histamine levels in mice. Suppression of TSLP expression by Phloxine O correlated with reduced expression of OX40 ligand and Th2 cytokines in mouse ear skin. Our results showed that Phloxine O may be beneficial to prevent dermatitis by suppressing the expression of TSLP and Th2 cytokines in skin.
Collapse
Affiliation(s)
- Hye Eun Lee
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| | - Gabsik Yang
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116,
Republic of Korea
| | - Byung-Mu Lee
- College of Pharmacy, Sungkyunkwan University, Suwon 16419,
Republic of Korea
| | - Joo Young Lee
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| |
Collapse
|
46
|
Nie SF, Zha LF, Fan Q, Liao YH, Zhang HS, Chen QW, Wang F, Tang TT, Xia N, Xu CQ, Zhang JY, Lu YZ, Zeng ZP, Jiao J, Li YY, Xie T, Zhang WJ, Wang D, Wang CC, Fa JJ, Xiong HB, Ye J, Yang Q, Wang PY, Tian SH, Lv QL, Li QX, Qian J, Li B, Wu G, Wu YX, Yang Y, Yang XP, Hu Y, Wang QK, Cheng X, Tu X. Genetic Regulation of the Thymic Stromal Lymphopoietin (TSLP)/TSLP Receptor (TSLPR) Gene Expression and Influence of Epistatic Interactions Between IL-33 and the TSLP/TSLPR Axis on Risk of Coronary Artery Disease. Front Immunol 2018; 9:1775. [PMID: 30123216 PMCID: PMC6085432 DOI: 10.3389/fimmu.2018.01775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) axis is involved in multiple inflammatory immune diseases, including coronary artery disease (CAD). To explore the causal relationship between this axis and CAD, we performed a three-stage case-control association analysis with 3,628 CAD cases and 3,776 controls using common variants in the genes TSLP, interleukin 7 receptor (IL7R), and TSLPR. Three common variants in the TSLP/TSLPR axis were significantly associated with CAD in a Chinese Han population [rs3806933T in TSLP, Padj = 4.35 × 10-5, odds ratio (OR) = 1.18; rs6897932T in IL7R, Padj = 1.13 × 10-7, OR = 1.31; g.19646A>GA in TSLPR, Padj = 2.04 × 10-6, OR = 1.20]. Reporter gene analysis demonstrated that rs3806933 and rs6897932 could influence TSLP and IL7R expression, respectively. Furthermore, the "T" allele of rs3806933 might increase plasma TSLP levels (R2 = 0.175, P < 0.01). In a stepwise procedure, the risk for CAD increased by nearly fivefold compared with the maximum effect of any single variant (Padj = 6.99 × 10-4, OR = 4.85). In addition, the epistatic interaction between TSLP and IL33 produced a nearly threefold increase in the risk of CAD in the combined model of rs3806933TT-rs7025417TT (Padj = 3.67 × 10-4, OR = 2.98). Our study illustrates that the TSLP/TSLPR axis might be involved in the pathogenesis of CAD through upregulation of mRNA or protein expression of the referenced genes and might have additive effects on the CAD risk when combined with IL-33 signaling.
Collapse
Affiliation(s)
- Shao-Fang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Feng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Song Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Wen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Qi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao-Yue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Zhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Juan Zhang
- Department of Geriatrics, the Central Hospital of Wuhan, Tongji Medica College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chu-Chu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Fa
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bo Xiong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Yun Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Hua Tian
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Lun Lv
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Qing-Xian Li
- Jining Medical College Affiliated Hospital, Jining, China
| | - Jin Qian
- Suizhou Central Hospital, Suizhou, China
| | - Bin Li
- Xiangyang Central Hospital, Xiangyang, China
| | - Gang Wu
- Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Yan Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Varricchi G, Pecoraro A, Marone G, Criscuolo G, Spadaro G, Genovese A, Marone G. Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Front Immunol 2018; 9:1595. [PMID: 30057581 PMCID: PMC6053489 DOI: 10.3389/fimmu.2018.01595] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine originally isolated from a murine thymic stromal cell line. TSLP exerts its biological effects by binding to a high-affinity heteromeric complex composed of thymic stromal lymphopoietin receptor chain and IL-7Rα. TSLP is primarily expressed by activated lung and intestinal epithelial cells, keratinocytes, and fibroblasts. However, dendritic cells (DCs), mast cells, and presumably other immune cells can also produce TSLP. Different groups of investigators have demonstrated the existence of two variants for TSLP in human tissues: the main isoform expressed in steady state is the short form (sf TSLP), which plays a homeostatic role, whereas the long form (lfTSLP) is upregulated in inflammatory conditions. In addition, there is evidence that in pathological conditions, TSLP can be cleaved by several endogenous proteases. Several cellular targets for TSLP have been identified, including immune (DCs, ILC2, T and B cells, NKT and Treg cells, eosinophils, neutrophils, basophils, monocytes, mast cells, and macrophages) and non-immune cells (platelets and sensory neurons). TSLP has been originally implicated in a variety of allergic diseases (e.g., atopic dermatitis, bronchial asthma, eosinophilic esophagitis). Emerging evidence indicates that TSLP is also involved in chronic inflammatory (i.e., chronic obstructive pulmonary disease and celiac disease) and autoimmune (e.g., psoriasis, rheumatoid arthritis) disorders and several cancers. These emerging observations greatly widen the role of TSLP in different human diseases. Most of these studies have not used tools to analyze the expression of the two TSLP isoforms. The broad pathophysiologic profile of TSLP has motivated therapeutic targeting of this cytokine. Tezepelumab is a first-in-class human monoclonal antibody (1) that binds to TSLP inhibiting its interaction with TSLP receptor complex. Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma has shown safety and efficacy. Several clinical trials are evaluating the safety and the efficacy of tezepelumab in different inflammatory disorders. Monoclonal antibodies used to neutralize TSLP should not interact or hamper the homeostatic effects of sf TSLP.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Monaldi Hospital Pharmacy, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
48
|
Lin SC, Cheng FY, Liu JJ, Ye YL. Expression and Regulation of Thymic Stromal Lymphopoietin and Thymic Stromal Lymphopoietin Receptor Heterocomplex in the Innate-Adaptive Immunity of Pediatric Asthma. Int J Mol Sci 2018; 19:ijms19041231. [PMID: 29670037 PMCID: PMC5979588 DOI: 10.3390/ijms19041231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the epithelium from childhood, which causes asthma. The pathogenesis of asthma includes pathways of innate stimulation by environmental microbes and irritant pathogens. Damaged epithelial cells produce thymic stromal lymphopoietin (TSLP) and stimulate myeloid dendritic cell maturation through the thymic stromal lymphopoietin receptor (TSLPR) heterocomplex. TSLP-activated myeloid dendritic cells promote naive CD4+ T cells to differentiate into T helper type 2 (Th2) phenotype CD4+ T cells. Re-exposure to allergens or environmental stimuli causes an adaptive immune response. TSLP-activated dendritic cells expressing the OX40 ligand (OX40L; CD252) trigger naive CD4+ T cells to differentiate into inflammatory Th2 effector cells secreting the cytokines interleukin-4, 5, 9, and 13 (IL-4, IL-5, IL-9 and IL-13), and the dendritic cells (DCs) promote the proliferation of allergen-specific Th2 memory cells. Allergen presentation by Th2 cells through its interaction with their receptors in the presence of major histocompatibility complex (MHC) class II on B cells and through costimulation involving CD40 and CD40L interactions results in immunoglobulin class switching from IgM to IgE. DCs and other blood cell subsets express the TSLPR heterocomplex. The regulatory mechanism of the TSLPR heterocomplex on these different cell subsets remains unclear. The TSLPR heterocomplex is composed of the IL-7Rα chain and TSLPR chain. Moreover, two isoforms of TSLP, short isoform TSLP (sfTSLP) and long isoform TSLP (lfTSLP), have roles in atopic and allergic development. Identifying and clarifying the regulation of TSLPR and IL-7Rα in pediatric asthma are still difficult, because the type of blood cell and the expression for each blood cell in different stages of atopic diseases are poorly understood. We believe that further integrated assessments of the regulation mechanism of the TSLP–TSLPR heterocomplex axis in vitro and in vivo can provide a faster and earlier diagnosis of pediatric asthma and promote the development of more effective preventive strategies at the onset of allergies.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Fang-Yi Cheng
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin County 63201, Taiwan.
| |
Collapse
|
49
|
A tumor-myeloid cell axis, mediated via the cytokines IL-1α and TSLP, promotes the progression of breast cancer. Nat Immunol 2018; 19:366-374. [PMID: 29556001 PMCID: PMC5864553 DOI: 10.1038/s41590-018-0066-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Tumors actively manipulate the immune response through the production of factors that attract immune cells and subsequently alter their ability to recognize and effectively remove the tumor. While this immune evasion mechanism is an important aspect of tumor survival, the factors that serve as primary growth factors for the tumor are less understood. Here, we demonstrated a novel mechanism by which breast cancer cells manipulate tumor-infiltrating myeloid cells to maintain their survival. Tumor-derived interleukin 1α (IL-1α), acting on infiltrating myeloid cells, induced the expression of a critical tumor survival factor, the cytokine thymic stromal lymphopoietin (TSLP). TSLP promoted the survival of the tumor cells through induction of Bcl-2 expression. TSLP signaling was also required for metastasis to the lung. These studies define a novel IL-1α–TSLP-mediated crosstalk between tumor-infiltrating myeloid cells and tumor cells in the control of metastatic breast cancer.
Collapse
|
50
|
Rochman Y, Dienger-Stambaugh K, Richgels PK, Lewkowich IP, Kartashov AV, Barski A, Khurana Hershey GK, Leonard WJ, Singh H. TSLP signaling in CD4 + T cells programs a pathogenic T helper 2 cell state. Sci Signal 2018. [PMID: 29535264 DOI: 10.1126/scisignal.aam8858] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogenic T helper 2 (TH2) cells, which produce increased amounts of the cytokines interleukin-5 (IL-5) and IL-13, promote allergic disorders, including asthma. Thymic stromal lymphopoietin (TSLP), a cytokine secreted by epithelial and innate immune cells, stimulates such pathogenic TH2 cell responses. We found that TSLP signaling in mouse CD4+ T cells initiated transcriptional changes associated with TH2 cell programming. IL-4 signaling amplified and stabilized the genomic response of T cells to TSLP, which increased the frequency of T cells producing IL-4, IL-5, and IL-13. Furthermore, the TSLP- and IL-4-programmed TH2 cells had a pathogenic phenotype, producing greater amounts of IL-5 and IL-13 and other proinflammatory cytokines than did TH2 cells stimulated with IL-4 alone. TSLP-mediated TH2 cell induction involved distinct molecular pathways, including activation of the transcription factor STAT5 through the kinase JAK2 and repression of the transcription factor BCL6. Mice that received wild-type CD4+ T cells had exacerbated pathogenic TH2 cell responses upon exposure to house dust mites compared to mice that received TSLP receptor-deficient CD4+ T cells. Transient TSLP signaling stably programmed pathogenic potential in memory TH2 cells. In human CD4+ T cells, TSLP and IL-4 promoted the generation of TH2 cells that produced greater amounts of IL-5 and IL-13. Compared to healthy controls, asthmatic children showed enhancement of such T cell responses in peripheral blood. Our data support a sequential cytokine model for pathogenic TH2 cell differentiation and provide a mechanistic basis for the therapeutic targeting of TSLP signaling in human allergic diseases.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Krista Dienger-Stambaugh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Phoebe K Richgels
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ian P Lewkowich
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey V Kartashov
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Harinder Singh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|