1
|
Lv H, Yang H, Jiang C, Shi J, Chen RA, Huang Q, Shao D. Microgravity and immune cells. J R Soc Interface 2023; 20:20220869. [PMID: 36789512 PMCID: PMC9929508 DOI: 10.1098/rsif.2022.0869] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The microgravity environment experienced during spaceflight severely impaired immune system, making astronauts vulnerable to various diseases that seriously threaten the health of astronauts. Immune cells are exceptionally sensitive to changes in gravity and the microgravity environment can affect multiple aspects of immune cells through different mechanisms. Previous reports have mainly summarized the role of microgravity in the classification of innate and adaptive immune cells, lacking an overall grasp of the laws that microgravity effects on immune cells at different stages of their entire developmental process, such as differentiation, activation, metabolism, as well as function, which are discussed and concluded in this review. The possible molecular mechanisms are also analysed to provide a clear understanding of the specific role of microgravity in the whole development process of immune cells. Furthermore, the existing methods by which to reverse the damage of immune cells caused by microgravity, such as the use of polysaccharides, flavonoids, other natural immune cell activators etc. to target cell proliferation, apoptosis and impaired function are summarized. This review will provide not only new directions and ideas for the study of immune cell function in the microgravity environment, but also an important theoretical basis for the development of immunosuppression prevention and treatment drugs for spaceflight.
Collapse
Affiliation(s)
- Hongfang Lv
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huan Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ren-an Chen
- Hematology Department, Shaanxi Provincial Tumor Hospital, 309 Yanta West Road, Xi'an, Shaanxi 710072, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
2
|
Drvar V, Ćurko-Cofek B, Karleuša L, Aralica M, Rogoznica M, Kehler T, Legović D, Rukavina D, Laskarin G. Granulysin expression and granulysin-mediated apoptosis in the peripheral blood of osteoarthritis patients. Biomed Rep 2022; 16:44. [PMID: 35478928 PMCID: PMC9016702 DOI: 10.3892/br.2022.1527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease caused by mechanical damage and metabolic factors that support the development of low-grade inflammation. Increased levels of T helper 1 pro-inflammatory cytokines in the serum of OA patients may support granulysin (GNLY) mediated cytotoxicity, which in-turn may contribute to the pathogenesis of OA. In the present study, GNLY expression and cytotoxic/apoptotic mechanisms mediated by GNLY in the peripheral blood of OA patients were assessed. A total of 40 non-obese women (median age of 64 years old) with knee OA, and 40 controls (median age 62 years old) were enrolled in the study. GNLY, IFN-γ and IL-4 expression levels were investigated in peripheral blood lymphocytes (PBLs) using flow cytometry, immunocytochemistry and/or confocal microscopy. Natural killer (NK) GNLY-mediated apoptosis through NK effectors against K-562 targets was analyzed using the PKH-26 18-h cytotoxicity assay. Serum GNLY levels were assessed using ELISA. The percentage of GNLY+PBLs was higher in the OA patients than that in the controls due to the increase in the proportions of GNLY+ cells in the natural killer (NK), T and natural killer T (NKT) subsets. GNLY localization inside exocytotic lysosomal-associated membrane protein-1+ granules was ~40% in both groups. However, the intensity of GNLY labeling in PBLs was higher in OA patients than in the controls, and it was supported by the increased expression of IFN-γ relative to IL-4 in NK and T cells from OA patients. The serum GNLY concentration was <0.3 ng/ml in both groups. RC8 anti-GNLY mAb by itself was unable to significantly alter early apoptosis, whereas RC8 anti-GNLY mAb combined with anti-perforin mAb significantly reduced NK-mediated early apoptosis of K-562 targets in the OA patients, whilst not exerting a notable effect in the controls. Anti-perforin mAb by itself did not affect apoptosis significantly. These results suggest that in women with knee OA, GNLY expression in the PBL subsets and GNLY-mediated early apoptosis of K-562 targets are increased compared with the controls and accompanied by intracellular dominance of IFN-γ over IL-4 in NK cells.
Collapse
Affiliation(s)
- Vedrana Drvar
- Clinical Department of Laboratory Diagnostics, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Correspondence to: Dr Božena Ćurko-Cofek, Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Merica Aralica
- Clinical Department of Laboratory Diagnostics, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Marija Rogoznica
- Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia
| | - Tatjana Kehler
- Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia,Department of Medical Rehabilitation, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dalen Legović
- Clinic for Orthopaedic Surgery Lovran, 51415 Lovran, Croatia
| | - Daniel Rukavina
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Department of Biomedical Sciences in Rijeka, Croatian Academy of Sciences and Arts, 51000 Rijeka, Croatia
| | - Gordana Laskarin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia
| |
Collapse
|
3
|
Zhang S, Zhao J, Bai X, Handley M, Shan F. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int Immunopharmacol 2020; 91:107318. [PMID: 33383444 DOI: 10.1016/j.intimp.2020.107318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-15 (IL-15) has recently emerged as a novel immunomodulatory cytokine in cancer immunotherapy. IL-15 has the potential to reject and destroy cancer cells in the tumor microenvironment by expanding and activating natural killer (NK), natural killer T (NKT), and memory (m) CD8+T cells. Due to the feasible outcomes obtained from preclinical studies and phase 1/2 clinical trials, IL-15-based therapy, including chimeric antigen receptor (CAR) T cell or CAR NK cell infusion following in vitro expansion in the presence of IL-15, used in combination with checkpoint inhibitors and other therapy may extend to clinical practice in the future. It is also important to understand the biological characteristics of IL-15 to ensure the maximal benefit of therapeutic strategies. Here, we summarize the current development of IL-15 in the following areas: anti-tumor mechanisms in the tumor microenvironment, advances in IL-15-based therapy itself or in combination with other methods, including biological agents, monoclonal antibodies, and adoptive immunotherapy.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueli Bai
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, China
| | - Mike Handley
- Cytocm lnc, 3001 Aloma Ave, Winter Park, FL 32792, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Silva LLDL, Gomes RS, Silva MVT, Joosten LAB, Ribeiro-Dias F. IL-15 enhances the capacity of primary human macrophages to control Leishmania braziliensis infection by IL-32/vitamin D dependent and independent pathways. Parasitol Int 2020; 76:102097. [PMID: 32114085 DOI: 10.1016/j.parint.2020.102097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
How human macrophages can control the intracellular infection with Leishmania is not completely understood. IL-15 and IL-32 are cytokines produced by monocytes/macrophages that can induce antimicrobial mechanisms. Here, we evaluated the effects of recombinant human IL-15 (rhIL-15) on primary human macrophage infection and response to L. braziliensis. Priming with rhIL-15 reduced the phagocytosis of L. braziliensis and increased the killing of the parasites in monocyte-derived macrophages from healthy donors. rhIL-15 induced TNFα and IL-32 in uninfected cells. After infection, the high levels of rhIL-15-induced TNFα and IL-32 were maintained. In addition, there was an increase of NO and an inhibition of the parasite-induced IL-10 production. Inhibition of NO reversed the leishmanicidal effects of rhIL-15. Although rhIL-15 did not increase L. braziliensis-induced reactive oxygen intermediates (ROS) production, inhibition of ROS reversed the control of infection induced by rhIL-15. Treatment of the cells with rhIL-32γ increased microbicidal capacity of macrophages in the presence of high levels of vitamin D (25D3), but not in low concentrations of this vitamin. rhIL-15 together with rhIL-32 lead to the highest control of the L. braziliensis infection in high concentrations of vitamin D. In this condition, NO and ROS mediated rhIL-32γ effects on microbicidal activity. The data showed that priming of human macrophages with rhIL-15 or rhIL-32γ results in the control of L. braziliensis infection through induction of NO and ROS. In addition, rhIL-32γ appears to synergize with rhIL-15 for the control of L. braziliensis infection in a vitamin D-dependent manner.
Collapse
Affiliation(s)
- Lucas Luiz de Lima Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Muriel Vilela Teodoro Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
6
|
Hu L, Zhu Y, Zhang J, Chen W, Li Z, Li L, Zhang L, Cao D. Potential circulating biomarkers of circulating chemokines CCL5, MIP-1β and HA as for early detection of cirrhosis related to chronic HBV (hepatitis B virus) infection. BMC Infect Dis 2019; 19:523. [PMID: 31200663 PMCID: PMC6567396 DOI: 10.1186/s12879-019-4130-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/24/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Due to no clinical symptoms in the compensated stage of cirrhosis, it is usually diagnosed when decompensated complications occur. In this study, the noninvasive circulating biomarkers for early detection to compensated stage of cirrhosis in patients with chronic HBV (hepatitis B virus) infection was explored. METHODS According to the Guideline of Prevention and Treatment of Chronic Hepatitis B (2015 Update), 78 patients with CHB (chronic hepatitis B) were divided into mild group, moderate-to-advanced group, while 73 patients with HBV-related cirrhosis were divided into compensated group and decompensated group. Nineteen cytokines and chemokines, four serum liver fibrosis markers were measured using chemiluminescence. The expression of CCL5 in liver tissue was determined with immunohistochemistry. RESULTS The CCL5 expression level in serum increased in CHB patients with aggravated liver injury and significantly decreased in cirrhosis patients with advanced liver fibrosis. ROC analysis revealed that the serum levels of CCL5, HA and MIP-1β were effective in distinguishing patients with cirrhosis from patients with CHB, especially for CCL5. Increasing serum level of CCL5 in CHB patients was severely associated with disease progression. CONCLUSIONS The serum levels of CCL5, HA and MIP-1β maybe used to distinguish cirrhosis from CHB patients, moreover, CCL5 was the most reliable marker. The increasing serum levels of CCL5 were significantly related to disease progression in CHB patients.
Collapse
Affiliation(s)
- Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Yan Zhu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Jingqian Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Wei Chen
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Zeyong Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Lihua Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China
| | - Liping Zhang
- Department of Laboratory Medicine, The First People's Hospital of Kashgar Prefecture Xinjiang, Kashgar, Xinjiang, People's Republic of China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No.466 Xingang Middle Road, Haizhu, Guangzhou, 510317, People's Republic of China.
| |
Collapse
|
7
|
Lin S, Huang G, Xiao Y, Sun W, Jiang Y, Deng Q, Peng M, Wei X, Ye W, Li B, Lin S, Wang S, Wu Q, Liang Q, Li Y, Zhang X, Wu Y, Liu P, Pei D, Yu F, Wen Z, Yao Y, Wu D, Li P. CD215+ Myeloid Cells Respond to Interleukin 15 Stimulation and Promote Tumor Progression. Front Immunol 2017; 8:1713. [PMID: 29255466 PMCID: PMC5722806 DOI: 10.3389/fimmu.2017.01713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Interleukin 15 (IL-15) regulates the development, survival, and functions of multiple innate and adaptive immune cells and plays a dual role in promoting both tumor cell growth and antitumor immunity. Here, we demonstrated that the in vivo injection of recombinant human IL-15 (200 µg/kg) or murine IL-15 (3 µg/kg) to tumor-bearing NOD-SCID-IL2Rg−/− (NSI) mice resulted in increased tumor progression and CD45+ CD11b+ Gr-1+ CD215+ cell expansion in the tumors and spleen. In B16F10-bearing C57BL/6 mice model, we found that murine IL-15 has antitumoral effect since the activation and expansion of CD8+ T cells with murine IL-15 treatment. But no enhanced or reduced tumor growth was observed in mice when human IL-15 was used. However, both murine and human IL-15 promote CD45+ CD11b+ Gr-1+ CD215+ cells expansion. In xenograft tumor models, CD215+ myeloid cells, but not CD215− cells, responded to human IL-15 stimulation and promoted tumor growth. Furthermore, we found that human IL-15 mediated insulin-like growth factor-1 production in CD215+ myeloid cells and blocking IGF-1 reduced the tumor-promoting effect of IL-15. Finally, we observed that higher IGF-1 expression is an indicator of poor prognosis among lung adenocarcinoma patients. These findings provide evidence that IL-15 may promote tumor cell progression via CD215+ myeloid cells, and IGF-1 may be an important candidate that IL-15 facilitates tumor growth.
Collapse
Affiliation(s)
- Shouheng Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Huang
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Jiang
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuhua Deng
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Muyun Peng
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinru Wei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baiheng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiubin Liang
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd., Guangzhou, China
| | - Yangqiu Li
- Medical College, Institute of Hematology, Jinan University, Guangzhou, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fenglei Yu
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhesheng Wen
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
9
|
IL-15 stimulates NKG2D while promoting IgM expression of B-1a cells. Cytokine 2017; 95:43-50. [DOI: 10.1016/j.cyto.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
|
10
|
Nowak K, Linzner D, Thrasher AJ, Lambert PF, Di WL, Burns SO. Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment. J Invest Dermatol 2017. [PMID: 28634034 DOI: 10.1016/j.jid.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4+ T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches.
Collapse
Affiliation(s)
- Karolin Nowak
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Daniela Linzner
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Wei-Li Di
- Immunobiology, Institute of Child Health, University College London, London, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK; Department of Immunology, Royal Free Hospital Foundation Trust, London, UK.
| |
Collapse
|
11
|
Nandi A, Bishayi B. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response. Innate Immun 2017; 23:345-372. [PMID: 28409543 DOI: 10.1177/1753425917697806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| |
Collapse
|
12
|
EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. J Bacteriol 2016; 199:JB.00527-16. [PMID: 27795322 DOI: 10.1128/jb.00527-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus, an invasive pathogen of humans and animals, requires a specialized ESS pathway to secrete proteins (EsxA, EsxB, EsxC, and EsxD) during infection. Expression of ess genes is required for S. aureus establishment of persistent abscess lesions following bloodstream infection; however, the mechanisms whereby effectors of the ESS pathway implement their virulence strategies were heretofore not known. Here, we show that EssE forms a complex with other members of the ESS secretion pathway and its substrates, promoting the secretion of EsxA, EsxB, EsxC, EsxD, and EssD. During bloodstream infection of mice, the S. aureus essE mutant displays defects in host cytokine responses, specifically in the production of interleukin-12 (IL-12) (p40/p70) and the suppression of RANTES (CCL5), activators of TH1 T cell responses and immune cell chemotaxis, respectively. Thus, essE-mediated secretion of protein effectors via the ESS pathway may enable S. aureus to manipulate host immune responses by modifying the production of cytokines. IMPORTANCE Staphylococcus aureus and other firmicutes evolved a specialized ESS (EsxA/ESAT-6-like secretion system) pathway for the secretion of small subsets of proteins lacking canonical signal peptides. The molecular mechanisms for ESS-dependent secretion and their functional purpose are still unknown. We demonstrate here that S. aureus EssE functions as a membrane assembly platform for elements of the secretion machinery and their substrates. Furthermore, S. aureus EssE-mediated secretion contributes to the production or the suppression of specific cytokines during host infection, thereby modifying immune responses toward this pathogen.
Collapse
|
13
|
Wang J, Liu W, Marion C, Singh R, Andrews N, Lee CG, Elias JA, Dela Cruz CS. Regulation of Retinoic Acid Receptor Beta by Interleukin-15 in the Lung during Cigarette Smoking and Influenza Virus Infection. Am J Respir Cell Mol Biol 2016; 53:822-33. [PMID: 25923039 DOI: 10.1165/rcmb.2014-0448oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-induced exacerbations often lead to further impairment of lung function in chronic obstructive pulmonary disease. IL-15 is critical in antiviral immune responses. Retinoic acid (RA) signaling plays an important role in tissue maintenance and repair, particularly in the lung. We studied RA signaling and its relation to IL-15 in the lung during cigarette smoke (CS) exposure and influenza virus infection. In vivo studies show that RA signaling is diminished by long-term CS exposure or influenza virus infection alone, which is further attenuated during infection after CS exposure. RA receptor β (RARβ) is specifically decreased in the lung of IL-15 transgenic (overexpression; IL-15Tg) mice, and a greater reduction in RARβ is found in these mice compared with wild-type (WT) mice after infection. RARβ is increased in IL-15 knockout (IL-15KO) mice compared with WT mice after infection, and the additive effect of CS and virus on RARβ down-regulation is diminished in IL-15KO mice. IL-15 receptor α (IL-15Rα) is increased and RARβ is significantly decreased in lung interstitial macrophages from IL-15Tg mice compared with WT mice. In vitro studies show that IL-15 down-regulates RARβ in macrophages via IL-15Rα signaling during influenza virus infection. These studies suggest that RA signaling is significantly diminished in the lung by CS exposure and influenza virus infection. IL-15 specifically down-regulates RARβ expression, and RARβ may play a protective role in lung injury caused by CS exposure and viral infections.
Collapse
Affiliation(s)
- Jianmiao Wang
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut.,2 Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Wei Liu
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chad Marion
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Rajvir Singh
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Nathaniel Andrews
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chun Geun Lee
- 3 Medicine and Biologic Sciences, Brown University, Warren Alpert Medical School, Providence, Rhode Island
| | - Jack A Elias
- 3 Medicine and Biologic Sciences, Brown University, Warren Alpert Medical School, Providence, Rhode Island
| | - Charles S Dela Cruz
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Jiang J, Yang B, An H, Wang X, Liu Y, Cao Z, Zhai F, Wang R, Cao Y, Cheng X. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect 2015; 72:338-52. [PMID: 26724769 DOI: 10.1016/j.jinf.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/02/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To identify factors which regulate MAIT cell response to Mycobacterium tuberculosis antigens, and to investigate the role of MAIT cells in patients with active tuberculosis. METHODS Immune response of MAIT cells to M. tuberculosis antigens were compared between patients with active TB and healthy controls by flow cytometry and RNA sequencing. RESULTS IFN-γ response of MAIT cells to M. tuberculosis lysates was dramatically improved by signal 3 cytokine IL-15 (p = 0.0002). Patients with active TB exhibited highly reduced IFN-γ production in MAIT cells stimulated with M. tuberculosis lysates/IL-15 compared with healthy controls (p < 0.0001) and individuals with latent TB infection (p = 0.0008). RNA sequencing of flow-sorted MAIT cells from patients with TB and healthy controls identified numerous differentially expressed genes, and the expression of genes that encode IFN-γ, TNF-α, IL-17F, granulysin and granzyme B were all down-regulated in patients with TB. MAIT cells from patients with TB has significantly lower expression of γc receptor than those from healthy controls under condition of Mtb lysates/IL-15 stimulation (p = 0.0028). Blockade of both γc and IL-2Rβ receptors resulted in highly reduced frequency of IFN-γ-producing MAIT cells (79.4%) (p = 0.0011). CONCLUSIONS MAIT cells from patients with active TB exhibited impaired cytokine and cytotoxic response to M. tuberculosis antigens.
Collapse
Affiliation(s)
- Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Bingfen Yang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Hongjuan An
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Xinjing Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Yanhua Liu
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Ruo Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Yan Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China.
| |
Collapse
|
15
|
Ojha D, Das R, Sobia P, Dwivedi V, Ghosh S, Samanta A, Chattopadhyay D. Pedilanthus tithymaloides Inhibits HSV Infection by Modulating NF-κB Signaling. PLoS One 2015; 10:e0139338. [PMID: 26405764 PMCID: PMC4583282 DOI: 10.1371/journal.pone.0139338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/11/2015] [Indexed: 01/19/2023] Open
Abstract
Pedilanthus tithymaloides (PT), a widely used ethnomedicinal plant, has been employed to treat a number of skin conditions. To extend its utility and to fully exploit its medicinal potential, we have evaluated the in vitro antiviral activity of a methanolic extract of PT leaves and its isolated compounds against Herpes Simplex Virus type 2 (HSV-2). Bioactivity-guided studies revealed that the extract and one of its constituents, luteolin, had potent antiviral activity against wild-type and clinical isolates of HSV-2 (EC50 48.5–52.6 and 22.4–27.5 μg/ml, respectively), with nearly complete inhibition at 86.5–101.8 and 40.2–49.6 μg/ml, respectively. The inhibitory effect was significant (p<0.001) when the drug was added 2 h prior to infection, and was effective up to 4 h post-infection. As viral replication requires NF-κB activation, we examined whether the observed extract-induced inhibition of HSV-2 was related to NF-κB inhibition. Interestingly, we observed that treatment of HSV-2-infected cells with extract or luteolin suppressed NF-κB activation. Although NF-κB, JNK and MAPK activation was compromised during HSV replication, neither the extract nor luteolin affected HSV-2-induced JNK1/2 and MAPK activation. Moreover, the PT leaf extract and luteolin potently down-regulated the expression of tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-6, NO and iNOS and the production of gamma interferon (IFN-γ), which are directly involved in controlling the NF-κB signaling pathway. Thus, our results indicate that both PT leaf extract and luteolin modulate the NF-κB signaling pathway, resulting in the inhibition of HSV-2 replication.
Collapse
Affiliation(s)
- Durbadal Ojha
- ICMR Virus Unit, ID and BG Hospital, General Block 4, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Rashmi Das
- ICMR Virus Unit, ID and BG Hospital, General Block 4, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Parveen Sobia
- Department of Microbiology, College of Cell Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Vedprakash Dwivedi
- Department of Microbiology, College of Cell Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Soma Ghosh
- ICMR Virus Unit, ID and BG Hospital, General Block 4, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
- Department of Pharmaceutical Technology, Jadavpur University, Raja SC Mallick Road, Kolkata 700032, India
| | - Amalesh Samanta
- Department of Pharmaceutical Technology, Jadavpur University, Raja SC Mallick Road, Kolkata 700032, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID and BG Hospital, General Block 4, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
- * E-mail:
| |
Collapse
|
16
|
Bortell N, Morsey B, Basova L, Fox HS, Marcondes MCG. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system. Front Microbiol 2015; 6:900. [PMID: 26441851 PMCID: PMC4568411 DOI: 10.3389/fmicb.2015.00900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the blood–brain barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc) cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, methamphetamine and IL15 may be critical in the development and aggravation of central nervous system immune-mediated inflammatory pathology in HIV-infected drug abusers.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | - Liana Basova
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
17
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
18
|
Bahri R, Pateras IS, D'Orlando O, Goyeneche-Patino DA, Campbell M, Polansky JK, Sandig H, Papaioannou M, Evangelou K, Foukas PG, Gorgoulis VG, Bulfone-Paus S. IL-15 suppresses colitis-associated colon carcinogenesis by inducing antitumor immunity. Oncoimmunology 2015; 4:e1002721. [PMID: 26405589 DOI: 10.1080/2162402x.2014.1002721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
IL-15 regulates the development, survival, and proliferation of multiple innate and adaptive immune cells and plays a dual role, inducing both tumor cell growth and antitumor immunity. However, the role of IL-15 in inflammation-induced cancer remains unclear. To explore this, we have compared the colon carcinoma burden of Il15-/- and Il15rα -/- mice with wild type (WT) mice after induction of colitis-associated colon carcinogenesis utilizing the AOM/DSS model. Compared to WT mice, Il15-/- but not Il15rα -/- mice showed reduced survival, along with higher tumor incidence, colon weight, and tumor size. This suggests that low affinity IL-15 signaling via the shared IL-2Rβ/γc decreases the risk for developing colitis-associated cancer. CD11c-Il15 mice, in which IL-15 expression is reconstituted in Il15-/- mice under the control of the CD11c-promoter, showed that selective reconstitution of IL-15 in antigen-presenting cells restored the CD8+ T and NK cell compartments, serum levels of IFNγ, G-CSF, IL-10, and CXCL1 and reduced tumor burden. After demonstrating IL-15 expression in human colorectal cancer (CRC) cells in situ, we investigated the role of this cytokine in the modulation of key colonic oncogenic pathways in the tumor. While these pathways were found to be unaltered in the absence of IL-15, tumor transcriptome analysis showed that the loss of IL-15 upregulates key inflammatory mediators associated with colon cancer progression, such as IL-1β, IL-22, IL-23, Cxcl5, and Spp1. These findings provide evidence that IL-15 suppresses colitis-associated colon carcinogenesis through regulation of antitumor cytotoxicity, and modulation of the inflammatory tumor micromilieu.
Collapse
Affiliation(s)
- Rajia Bahri
- Institute of Inflammation and Repair and MCCIR; University of Manchester ; Manchester, UK ; Priority Area Asthma and Allergies; Research Center Borstel ; Borstel, Germany
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group; Department of Histology & Embryology; School of Medicine; University of Athens ; Athens, Greece
| | - Orietta D'Orlando
- Priority Area Asthma and Allergies; Research Center Borstel ; Borstel, Germany
| | | | - Michelle Campbell
- Institute of Inflammation and Repair and MCCIR; University of Manchester ; Manchester, UK
| | - Julia K Polansky
- Priority Area Asthma and Allergies; Research Center Borstel ; Borstel, Germany
| | - Hilary Sandig
- Institute of Inflammation and Repair and MCCIR; University of Manchester ; Manchester, UK
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group; Department of Histology & Embryology; School of Medicine; University of Athens ; Athens, Greece
| | - Kostas Evangelou
- Molecular Carcinogenesis Group; Department of Histology & Embryology; School of Medicine; University of Athens ; Athens, Greece
| | - Periklis G Foukas
- Molecular Carcinogenesis Group; Department of Histology & Embryology; School of Medicine; University of Athens ; Athens, Greece ; 2nd Department of Pathology; University of Athens Medical School; "Attikon" University Hospital ; Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group; Department of Histology & Embryology; School of Medicine; University of Athens ; Athens, Greece ; Biomedical Research Foundation; Academy of Athens ; Athens, Greece ; Faculty Institute for Cancer Sciences; University of Manchester; Manchester Academic Health Science Centre ; Manchester, UK
| | - Silvia Bulfone-Paus
- Institute of Inflammation and Repair and MCCIR; University of Manchester ; Manchester, UK
| |
Collapse
|
19
|
Ye J. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes. Front Med 2014; 9:139-45. [PMID: 25511621 DOI: 10.1007/s11684-015-0377-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/12/2014] [Indexed: 01/28/2023]
Abstract
In obesity, chronic inflammation is believed to induce insulin resistance and impairs adipose tissue function. Although this view is supported by a large body of literature, it has been challenged by growing evidence that pro-inflammatory cytokines may favor insulin sensitivity through induction of energy expenditure. In this review article, interleukin 15 (IL-15) is used as a new example to explain the beneficial effects of the proinflammatory cytokines. IL-15 is secreted by multiple types of cells including macrophages, neutrophils and skeletal muscle cells. IL-15 expression is induced in immune cells by endotoxin and in muscle cells by physical exercise. Its transcription is induced by transcription factor NF-κB. IL-15 binds to its receptor that contains three different subunits (α, β and γ) to activate JAK/STAT, PI3K/Akt, IKK/NF-κB and JNK/AP1 pathways in cells. In the regulation of metabolism, IL-15 reduces weight gain without inhibiting food intake in rodents. IL-15 suppresses lipogenesis, stimulates brown fat function, improves insulin sensitivity through weight loss and energy expenditure. In human, circulating IL-15 is negatively associated with body weight. In the immune system, IL-15 stimulates proliferation and differentiation of T cells, NK cells, monocytes and neutrophils. In the anti-obesity effects of IL-15, T cells and NK cells are not required, but leptin receptor is required. In summary, evidence from human and rodents supports that the pro-inflammatory cytokine IL-15 may enhance energy expenditure to protect the body from obesity and type 2 diabetes. The mechanism of IL-15 action remains to be fully uncovered in the regulation of energy expenditure.
Collapse
Affiliation(s)
- Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA,
| |
Collapse
|
20
|
Hou MS, Huang ST, Tsai MH, Yen CC, Lai YG, Liou YH, Lin CK, Liao NS. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus. J Autoimmun 2014; 56:118-29. [PMID: 25500198 DOI: 10.1016/j.jaut.2014.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
The interleukin-15 (IL-15) system is important for regulating both innate and adaptive immune responses, however, its role in autoimmune disease remained unclear. Here we found that Il15(-/-) and Il15ra(-/-) mice spontaneously developed late-onset autoimmune phenotypes. CD4(+) T cells of the knockout mice showed elevated autoreactivity as demonstrated by the induction of lymphocyte infiltration in the lacrimal and salivary glands when transferred into nude mice. The antigen-presenting cells in the thymic medullary regions expressed IL-15 and IL-15Rα, whose deficiency resulted in insufficient negative selection and elevated number of natural IL-17A-producing CD4(+) thymocytes. These findings reveal previously unknown functions of the IL-15 system in thymocyte development, and thus a new layer of regulation in T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Mau-Sheng Hou
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Ting Huang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Han Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Cheng Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Kung Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Nan-Shih Liao
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
21
|
Oghumu S, Terrazas CA, Varikuti S, Kimble J, Vadia S, Yu L, Seveau S, Satoskar AR. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. FASEB J 2014; 29:1019-28. [PMID: 25466888 DOI: 10.1096/fj.14-264507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate CD8(+) T cells are a heterogeneous population with developmental pathways distinct from conventional CD8(+) T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8(+) T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3(+) innate CD8(+) T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ(-/-) mice compared with similarly activated CXCR3(-) subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3(+) cells. Further, CXCR3(+) innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3(+) subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3(+) populations. Our results demonstrate that CXCR3 expression in innate CD8(+) T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3(+) innate CD8(+) T-cell populations as novel clinical intervention strategies.
Collapse
Affiliation(s)
- Steve Oghumu
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Cesar A Terrazas
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Sanjay Varikuti
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer Kimble
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Stephen Vadia
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie Seveau
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Abhay R Satoskar
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|
23
|
Marra P, Mathew S, Grigoriadis A, Wu Y, Kyle-Cezar F, Watkins J, Rashid M, De Rinaldis E, Hessey S, Gazinska P, Hayday A, Tutt A. IL15RA drives antagonistic mechanisms of cancer development and immune control in lymphocyte-enriched triple-negative breast cancers. Cancer Res 2014; 74:4908-21. [PMID: 24980552 DOI: 10.1158/0008-5472.can-14-0637] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its aggressive nature, triple-negative breast cancer (TNBC) often exhibits leucocyte infiltrations that correlate with favorable prognosis. In this study, we offer an explanation for this apparent conundrum by defining TNBC cell subsets that overexpress the IL15 immune receptor IL15RA. This receptor usually forms a heterotrimer with the IL2 receptors IL2RB and IL2RG, which regulates the proliferation and differentiation of cytotoxic T cells and NK cells. However, unlike IL15RA, the IL2RB and IL2RG receptors are not upregulated in basal-like TNBC breast cancer cells that express IL15RA. Mechanistic investigations indicated that IL15RA signaling activated JAK1, STAT1, STAT2, AKT, PRAS40, and ERK1/2 in the absence of IL2RB and IL2RG, whereas neither STAT5 nor JAK2 were activated. RNAi-mediated attenuation of IL15RA established its role in cell growth, apoptosis, and migration, whereas expression of the IL15 cytokine in IL15RA-expressing cells stimulated an autocrine signaling cascade that promoted cell proliferation and migration and blocked apoptosis. Notably, coexpression of IL15RA and IL15 was also sufficient to activate peripheral blood mononuclear cells upon coculture in a paracrine signaling manner. Overall, our findings offer a mechanistic explanation for the paradoxical association of some high-grade breast tumors with better survival outcomes, due to engagement of the immune stroma.
Collapse
Affiliation(s)
- Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Sumi Mathew
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Anita Grigoriadis
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College of London, London, United Kingdom
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, King's College of London, London, United Kingdom
| | - Johnathan Watkins
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Mamunur Rashid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Emanuele De Rinaldis
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College of London, London, United Kingdom
| | - Sonya Hessey
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Patrycja Gazinska
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College of London, London, United Kingdom
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom.
| |
Collapse
|
24
|
Gomes-Giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX, Wong HC, Rosser CJ. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One 2014; 9:e96705. [PMID: 24896845 PMCID: PMC4045574 DOI: 10.1371/journal.pone.0096705] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/10/2014] [Indexed: 02/03/2023] Open
Abstract
Intravesical Bacillus Calmette-Guérin (BCG) has been shown to induce a specific immunologic response (i.e., activation of IL-2 and effector T-cells), while preclinical studies using ALT-803 (mutated IL-15 analogue combined with IL-15Rα-Fc fusion) have shown promising results by prolonging the agent's half-life and stimulating CD8+ T-cells. Based on these results, we hypothesized that the intravesical administration of ALT-803 along with BCG will generate an immunologic response leading to significant bladder tumor burden reduction. Using a well-established carcinogen induced rat non-muscle invasive bladder cancer (NMIBC) model, we studied the effects of intravesical ALT-803 with and without BCG. Rat tissues were evaluated to document treatment response. Intravesical ALT-803 was safe and well tolerated alone and in combination with BCG. As a single treatment agent, ALT-803 reduced tumor burden by 35% compared to control whereas BCG alone only reduced tumor burden by 15%. However, the combination of ALT-803 plus BCG reduced tumor burden by 46% compared to control. Immune monitoring suggested that the antitumor response was linked to the production and secretion of IL-1α, IL-1β and RANTES, which in turn, induced the proliferation and activation of NK cells. Lastly, tumoral responses of the combinational treatment were associated with 76% reduction in angiogenesis, which is significantly higher than when assessed with either agent alone. The enhanced therapeutic index seen with this duplet provides justification for the development of this regimen for future clinical trials.
Collapse
Affiliation(s)
- Evan Gomes-Giacoia
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America
| | - Makito Miyake
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America
| | - Steve Goodison
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America; Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Aravindhan Sriharan
- Department of Pathology, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America
| | - Ge Zhang
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America
| | - Lijing You
- Altor Bioscience Corporation, Miramar, Florida, United States of America
| | - Jack O Egan
- Altor Bioscience Corporation, Miramar, Florida, United States of America
| | - Peter R Rhode
- Altor Bioscience Corporation, Miramar, Florida, United States of America
| | - Alexander S Parker
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Karl X Chai
- Burnett College of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Hing C Wong
- Altor Bioscience Corporation, Miramar, Florida, United States of America
| | - Charles J Rosser
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida, United States of America; Clinical and Translational Research, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| |
Collapse
|
25
|
do Prado KM, Correa-Silva S, Oliveira LG, Camara NOS, Ono É, Sandri S, Tourino MC, Campa A, de Sá Lima L, Scavone C, Bevilacqua E. Indoleamine 2,3-dioxygenase (IDO) Activity in Placental Compartments of Renal-Transplanted Pregnant Women. Am J Reprod Immunol 2014; 72:45-56. [DOI: 10.1111/aji.12233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Karen Matias do Prado
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Simone Correa-Silva
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
- Post-graduate Program in Gynecology Obstetrics and Mastology; Botucatu Medical School; UNESP - São Paulo State University; Botucatu Brazil
| | - Leandro Gustavo Oliveira
- Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Niels Olsen Saraiva Camara
- Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Érica Ono
- Department of Pediatrics; School of Medicine; Federal University of São Paulo; São Paulo SP Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analysis; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Melissa Cavalheiro Tourino
- Department of Clinical and Toxicological Analysis; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Ana Campa
- Department of Clinical and Toxicological Analysis; Faculty of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Cristoforo Scavone
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
26
|
Increasing the biological activity of IL-2 and IL-15 through complexing with anti-IL-2 mAbs and IL-15Rα-Fc chimera. Immunol Lett 2014; 159:1-10. [PMID: 24512738 DOI: 10.1016/j.imlet.2014.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/22/2022]
Abstract
IL-2 and IL-15 are structurally relative cytokines that share two receptor subunits, CD132 (γ(c) chain) and CD122 (β chain). However, the expression pattern and physiological role of IL-2 and IL-15 private receptor α chains CD25 and IL-15Rα, respectively, are strikingly different. CD25, together with CD122 and CD132, forms a trimeric high affinity IL-2 receptor that is expressed and functions on cells acquiring an IL-2 signal. Conversely, IL-15Rα is expressed and binds IL-15 with high affinity per se already in the endoplasmic reticulum of the IL-15 producing cells and it presents IL-15 to cells expressing CD122/CD132 dimeric receptor in trans. Thus, while IL-2 is secreted almost exclusively by activated T cells and acts as a free molecule, IL-15 is expressed mostly by myeloid cells and works as a cell surface-associated cytokine. Interestingly, the in vivo biological activity of IL-2 can be dramatically increased through complexing with certain anti-IL-2 mAbs; such IL-2/anti-IL-2 mAbs immunocomplexes selectively stimulate the proliferation of a distinct population of immune cells, depending on the clone of the anti-IL-2 mAb used. IL-2/S4B6 mAb immunocomplexes are highly stimulatory for CD122(high) populations (memory CD8(+) T and NK cells) and intermediately also for CD25(high) populations (Treg and activated T cells), while IL-2/JES6-1 mAb immunocomplexes enormously expand only CD25(high) cells. Although IL-2 immunocomplexes are much more potent than IL-2 in vivo, they show comparable to slightly lower activity in vitro. The in vivo biological activity of IL-15 can be dramatically increased through complexing with recombinant IL-15Rα-Fc chimera; however, IL-15/IL-15Rα-Fc complexes are significantly more potent than IL-15 both in vivo and in vitro. In this review we summarize and discuss the features and biological relevance of IL-2/anti-IL-2 mAbs and IL-15/IL-15Rα-Fc complexes, and try to foreshadow their potential in immunological research and immunotherapy.
Collapse
|
27
|
The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014; 2014:292376. [PMID: 24523569 PMCID: PMC3910068 DOI: 10.1155/2014/292376] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Until recently, inflammatory chemokines were viewed mainly as indispensable “gate keepers” of immunity and inflammation. However, updated research indicates that cancer cells subvert the normal chemokine system and these molecules and their receptors become important constituents of the tumor microenvironment with very different ways to exert tumor-promoting roles. The CCR5 and the CCL5 ligand have been detected in some hematological malignancies, lymphomas, and a great number of solid tumors, but extensive studies on the role of the CCL5/CCR axis were performed only in a limited number of cancers. This review summarizes updated information on the role of CCL5 and its receptor CCR5 in cancer cell proliferation, metastasis, and the formation of an immunosuppressive microenvironment and highlights the development of newer therapeutic strategies aimed to inhibit the binding of CCL5 to CCR5, to inhibit CCL5 secretion, or to inhibit the interactions among tumor cells and the microenvironment leading to CCL5 secretion.
Collapse
|
28
|
TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 2013; 92:256-62. [PMID: 24366517 DOI: 10.1038/icb.2013.99] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are important in innate immunity, first described as guardians for the detection and clearance of transformed or virus-infected cells. Later, this cell type was revealed to be also able to recognize and respond to bacteria-infected cells. NK cells possess receptors allowing them to sense and respond to viral and bacterial patterns, including Toll-like receptors (TLRs). Initially described in other innate immune cells, particularly monocytes/macrophages, TLRs have more recently been characterized in NK cells. Controversies remain regarding the TLR expression in NK cells and their responsiveness to agonists, specifically the requirement for the presence of accessory cells, such as dendritic cells, or of accessory cytokines (IL-2, IL-12, IL-15 and IL-18) to respond to TLR agonists. Upon TLR activation, NK cells are an important source of IFN-γ and granulocyte macrophage colony-stimulating factor, cytokines necessary to fight infection but that can also contribute to deleterious inflammation if produced in excessive amounts. Here, we review the current knowledge concerning the expression of TLRs in and on NK cells and the responsiveness to their agonists and review the literature on the role of NK cells in the sensing of bacterial or viral patterns and in combatting infection.
Collapse
|
29
|
Karimi K, Forsythe P. Natural killer cells in asthma. Front Immunol 2013; 4:159. [PMID: 23801996 PMCID: PMC3689036 DOI: 10.3389/fimmu.2013.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/09/2013] [Indexed: 12/23/2022] Open
Abstract
The worldwide prevalence, morbidity, and mortality of asthma have dramatically increased over the last few decades and there is a clear need to identify new effective therapeutic and prophylactic strategies. Despite high numbers of NK cells in the lung and their ability to generate a variety of immunomodulatory mediators, the potential of NK cells as therapeutic targets in allergic airway disease has been largely overlooked. The fact that IgE, acting through FcγRIII, can activate NK cells resulting in cytokine/chemokine production implies that NK cells may contribute to IgE-mediated allergic responses. Indeed, current evidence suggests that NK cells can promote allergic airway responses during sensitization and ongoing inflammation. In animal models, increased NK cells are observed in the lung following antigen challenge and depletion of the cells before immunization inhibits allergic airway inflammation. Moreover, in asthmatics, NK cell phenotype is altered and may contribute to the promotion of a pro-inflammatory Th2-type environment. Conversely, driving NK cells toward an IFN-γ-secreting phenotype can reduce features of the allergic airway response in animal models. However, we have limited knowledge of the signals that drive the development of distinct subsets and functional phenotypes of NK cells in the lung and thus the role and therapeutic potential of NK cells in the allergic airway remains unclear. Here we review the potentially diverse role of NK cells in allergic airway disease, identify gaps in current knowledge, and discuss the potential of modulating NK cell function as a treatment strategy in asthma.
Collapse
Affiliation(s)
- Khalil Karimi
- Institut für Experimentelle Immunologie und Hepatologie, Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany ; Department of Medicine, Brain-Body Institute, McMaster University , Hamilton, ON , Canada
| | | |
Collapse
|
30
|
Croce M, Orengo AM, Azzarone B, Ferrini S. Immunotherapeutic applications of IL-15. Immunotherapy 2013; 4:957-69. [PMID: 23046239 DOI: 10.2217/imt.12.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IL-15 is a member of the IL-2 family of cytokines, which play a fundamental role in innate and adaptive immune responses. IL-15 has pleiotropic immune-enhancing activities, as it stimulates NK, T and NKT cell proliferation, survival and effector functions. In view of these properties, IL-15 is regarded as a good candidate for cancer immunotherapy. This possibility is reinforced by its low toxicity and efficacy in preclinical tumor models. The use of IL-15 to boost the immune response in HIV infection has also been proposed, although further studies are required to establish potential risks and benefits. Clinical trials of IL-15 have been initiated in cancer patients and in HIV vaccination and will elucidate the potential of IL-15-based immunotherapy. The purpose of this review is to provide an update on the potential applications of IL-15 in cancer immunotherapy and HIV infection.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS-AOU San-Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | |
Collapse
|
31
|
Souza-Fonseca-Guimaraes F, Parlato M, de Oliveira RB, Golenbock D, Fitzgerald K, Shalova IN, Biswas SK, Cavaillon JM, Adib-Conquy M. Interferon-γ and granulocyte/monocyte colony-stimulating factor production by natural killer cells involves different signaling pathways and the adaptor stimulator of interferon genes (STING). J Biol Chem 2013; 288:10715-21. [PMID: 23443666 DOI: 10.1074/jbc.m112.435602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natural killer (NK) cells are important for innate immunity in particular through the production of IFN-γ and GM-CSF. Both cytokines are important in restoration of immune function of tolerized leukocytes under inflammatory events. The expression of TLRs in NK cells has been widely studied by analyzing the mRNA of these receptors, rarely seeking their protein expression. We previously showed that murine spleen NK cells express TLR9 intracellularly and respond to CpG oligodeoxynucleotide (CpG-ODN) by producing IFN-γ and GM-CSF. However, to get such production the presence of accessory cytokines (such as IL-15 and IL-18) was required, whereas CpG-ODN or accessory cytokines alone did not induce IFN-γ or GM-CSF. We show here that TLR9 overlaps with the Golgi apparatus in NK cells. Furthermore, CpG-ODN stimulation in the presence of accessory cytokines induces the phosphorylation of c-Jun, STAT3, and IκBα. IFN-γ and GM-CSF production requires NF-κB and STAT3 activation as well as Erk-dependent mechanisms for IFN-γ and p38 signaling for GM-CSF. Using knock-out-mice, we show that UNC93b1 and IL-12 (produced by NK cells themselves) are also necessary for IFN-γ and GM-CSF production. IFN-γ production was found to be MyD88- and TLR9-dependent, whereas GM-CSF was TLR9-independent but dependent on STING (stimulator of interferon genes), a cytosolic adaptor recently described for DNA sensing. Our study thereby allows us to gain insight into the mechanisms of synergy between accessory cytokines and CpG-ODN in NK cells. It also identifies a new and alternative signaling pathway for CpG-ODN in murine NK cells.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Institut Pasteur, Unit of Cytokines and Inflammation, Department Infection et Epidémiologie, 28 rue du Dr Roux, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Giron-Michel J, Azzi S, Ferrini S, Chouaib S, Camussi G, Eid P, Azzarone B. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev 2013; 24:13-22. [DOI: 10.1016/j.cytogfr.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
33
|
Pandiyan P, Yang XP, Saravanamuthu SS, Zheng L, Ishihara S, O’Shea JJ, Lenardo MJ. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4237-46. [PMID: 22993203 PMCID: PMC3647038 DOI: 10.4049/jimmunol.1201476] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-15 is an important IL-2-related cytokine whose role in Th17 cell biology has not been fully elucidated. In this study, we show that exogenous IL-15 decreased IL-17A production in Th17 cultures. Neutralization of IL-15 using an Ab led to increases in IL-17A production in Th17 cultures. Both Il15(-/-) and Il15r(-/-) T cell cultures displayed higher frequency of IL-17A producers and higher amounts of IL-17A in the supernatants compared with those of wild-type (WT) cells in vitro. IL-15 down-modulated IL-17A production independently of retinoic acid-related orphan receptor-γt, Foxp3, and IFN-γ expression. Both Th17 cells and APCs produced IL-15, which induced binding of STAT5, an apparent repressor to the Il17 locus in CD4 T cells. Also, in a model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), Il15(-/-) mice displayed exacerbated inflammation-correlating with increased IL-17A production by their CD4(+) T cells-compared with WT controls. Exogenous IL-15 administration and IL-17A neutralization reduced the severity of EAE in Il15(-/-) mice. Taken together, these data indicate that IL-15 has a negative regulatory role in fine-tuning of IL-17A production and Th17-mediated inflammation.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Coculture Techniques
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Interleukin-15/deficiency
- Interleukin-15/physiology
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/biosynthesis
- Interleukin-17/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation/genetics
- Phosphorylation/immunology
- Promoter Regions, Genetic/immunology
- STAT5 Transcription Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th17 Cells/cytology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Zheng
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Satoru Ishihara
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 2012; 25:403-16. [PMID: 23123499 DOI: 10.1016/j.cellsig.2012.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | | | | | | | | | | |
Collapse
|
35
|
Barra NG, Chew MV, Reid S, Ashkar AA. Interleukin-15 treatment induces weight loss independent of lymphocytes. PLoS One 2012; 7:e39553. [PMID: 22768089 PMCID: PMC3387179 DOI: 10.1371/journal.pone.0039553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/26/2012] [Indexed: 01/26/2023] Open
Abstract
Obesity is a chronic inflammatory condition characterized by activation and infiltration of proinflammatory immune cells and a dysregulated production of proinflammatory cytokines. While known as a key regulator of immune natural killer (NK) cell function and development, we have recently demonstrated that reduced expression of the cytokine Interleukin-15 (IL-15) is closely linked with increased body weight and adiposity in mice and humans. Previously, we and others have shown that obese individuals have lower circulating levels of IL-15 and NK cells. Lean IL-15 overexpressing (IL-15 tg) mice had an accumulation in adipose NK cells compared to wildtype and NK cell deficient obese IL-15−/− mice. Since IL-15 induces weight loss in IL-15−/− and diet induced obese mice and has effects on various lymphocytes, the aim of this paper was to determine if lymphocytes, particularly NK cells, play a role in IL-15 mediated weight loss. Acute IL-15 treatment resulted in an increased accumulation of NK, NKT, and CD3+ T cells in adipose tissue of B6 mice. Mice depleted of NK and NKT cells had similar weight loss comparable to controls treated with IL-15. Finally, IL-15 treatment induces significant weight loss in lymphocyte deficient RAG2−/−γc−/− mice independent of food intake. Fat pad cross-sections show decreased pad size with cytokine treatment is due to adipocyte shrinkage. These results clearly suggest that IL-15 mediates weight loss independent of lymphocytes.
Collapse
Affiliation(s)
- Nicole G. Barra
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marianne V. Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Reid
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A. Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|