1
|
Meng L, Zhou M, Wang Y, Pan Y, Chen Z, Wu B, Zhao Y. CD177 on neutrophils engages stress-related behavioral changes in male mice. Brain Behav Immun 2024; 120:403-412. [PMID: 38871062 DOI: 10.1016/j.bbi.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.
Collapse
Affiliation(s)
- Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunpeng Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Kaiser R, Gold C, Joppich M, Loew Q, Akhalkatsi A, Mueller TT, Offensperger F, Droste Zu Senden A, Popp O, di Fina L, Knottenberg V, Martinez-Navarro A, Eivers L, Anjum A, Escaig R, Bruns N, Briem E, Dewender R, Muraly A, Akgöl S, Ferraro B, Hoeflinger JKL, Polewka V, Khaled NB, Allgeier J, Tiedt S, Dichgans M, Engelmann B, Enard W, Mertins P, Hubner N, Weckbach L, Zimmer R, Massberg S, Stark K, Nicolai L, Pekayvaz K. Peripheral priming induces plastic transcriptomic and proteomic responses in circulating neutrophils required for pathogen containment. SCIENCE ADVANCES 2024; 10:eadl1710. [PMID: 38517968 DOI: 10.1126/sciadv.adl1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christoph Gold
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Joppich
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | | | - Tonina T Mueller
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Felix Offensperger
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lea di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | | | - Luke Eivers
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Afra Anjum
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nils Bruns
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robin Dewender
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Sezer Akgöl
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Bartolo Ferraro
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jonathan K L Hoeflinger
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Najib Ben Khaled
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Julian Allgeier
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ludwig Weckbach
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ralf Zimmer
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Traum A, Jehle S, Waxmann Y, Litmeyer AS, Berghöfer H, Bein G, Dammann R, Perniss A, Burg-Roderfeld M, Sachs UJ, Bayat B. The CD177 c.1291A Allele Leads to a Loss of Membrane Expression and Mimics a CD177-Null Phenotype. Int J Mol Sci 2024; 25:2877. [PMID: 38474126 DOI: 10.3390/ijms25052877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.
Collapse
Affiliation(s)
- Annalena Traum
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Stefanie Jehle
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Yannick Waxmann
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Anne-Sophie Litmeyer
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Heike Berghöfer
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Reinhard Dammann
- Institute for Genetics, Faculty of Biology and Chemistry, Justus-Liebig-University, 35390 Giessen, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, 35392 Giessen, Germany
| | - Monika Burg-Roderfeld
- Faculty of Biology and Chemistry, Fresenius University of Applied Sciences, 65510 Idstein, Germany
| | - Ulrich J Sachs
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
- Department of Thrombosis and Haemostasis, Giessen University Hospital, 35390 Giessen, Germany
| | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
4
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Akhtar J, Jain V, Kansal R, Priya R, Sakhuja P, Goyal S, Agarwal AK, Ghose V, Polisetty RV, Sirdeshmukh R, Kar S, Gautam P. Quantitative tissue proteome profile reveals neutrophil degranulation and remodeling of extracellular matrix proteins in early stage gallbladder cancer. Front Oncol 2023; 12:1046974. [PMID: 36686780 PMCID: PMC9853450 DOI: 10.3389/fonc.2022.1046974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy of the gastrointestinal tract with a poor prognosis. It is important to understand the molecular processes associated with the pathogenesis of early stage GBC and identify proteins useful for diagnostic and therapeutic strategies. Here, we have carried out an iTRAQ-based quantitative proteomic analysis of tumor tissues from early stage GBC cases (stage I, n=7 and stage II, n=5) and non-tumor controls (n=6) from gallstone disease (GSD). We identified 357 differentially expressed proteins (DEPs) based on ≥ 2 unique peptides and ≥ 2 fold change with p value < 0.05. Pathway analysis using the STRING database showed, 'neutrophil degranulation' to be the major upregulated pathway that includes proteins such as MPO, PRTN3, S100A8, MMP9, DEFA1, AZU, and 'ECM organization' to be the major downregulated pathway that includes proteins such as COL14A1, COL1A2, COL6A1, COL6A2, COL6A3, BGN, DCN. Western blot and/or IHC analysis confirmed the elevated expression of MPO, PRTN3 and S100A8 in early stage of the disease. Based on the above results, we hypothesize that there is an increased neutrophil infiltration in tumor tissue and neutrophil degranulation leading to degradation of extracellular matrix (ECM) proteins promoting cancer cell invasion in the early stage GBC. Some of the proteins (MPO, MMP9, DEFA1) associated with 'neutrophil degranulation' showed the presence of 'signal sequence' suggesting their potential as circulatory markers for early detection of GBC. Overall, the study presents a protein dataset associated with early stage GBC.
Collapse
Affiliation(s)
- Javed Akhtar
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR) - National Institute of Pathology, New Delhi, India,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vaishali Jain
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR) - National Institute of Pathology, New Delhi, India,Department (Nil), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Radhika Kansal
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR) - National Institute of Pathology, New Delhi, India
| | - Ratna Priya
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR) - National Institute of Pathology, New Delhi, India,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India,*Correspondence: Poonam Gautam, ; ; Puja Sakhuja,
| | - Surbhi Goyal
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anil Kumar Agarwal
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Vivek Ghose
- Department (Nil), Manipal Academy of Higher Education (MAHE), Manipal, India,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | | | - Ravi Sirdeshmukh
- Department (Nil), Manipal Academy of Higher Education (MAHE), Manipal, India,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Sudeshna Kar
- Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR) - National Institute of Pathology, New Delhi, India,*Correspondence: Poonam Gautam, ; ; Puja Sakhuja,
| |
Collapse
|
6
|
Agarwal S. Neutrophil-Lymphocyte Ratio Predicting Case Severity in SARS-CoV-2 Infection: A Review. Cureus 2022; 14:e29760. [PMID: 36187170 PMCID: PMC9521818 DOI: 10.7759/cureus.29760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
|
7
|
Jurgec S, Jezernik G, Gorenjak M, Büdefeld T, Potočnik U. Meta-Analytic Comparison of Global RNA Transcriptomes of Acute and Chronic Myeloid Leukemia Cells Reveals Novel Gene Candidates Governing Myeloid Malignancies. Cancers (Basel) 2022; 14:cancers14194681. [PMID: 36230605 PMCID: PMC9562668 DOI: 10.3390/cancers14194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite advances in the understanding of genetic risk factors and molecular mechanisms underlying acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), clinical outcomes of current therapies in terms of disease relapse and mortality rate pose a great economic and social burden. To overcome this, the identification of new molecular prognostic biomarkers and pharmacological targets is crucial. Recent studies have suggested that AML and CML may share common pathogenic mechanisms and cellular substrates. To this end, in the present study, global transcriptome profiles of AML and CML at the molecular and cellular level were directly compared using a combination of meta-analysis and modern statistics, and novel candidate genes and specific biological processes associated with the pathogenesis of AML and CML were characterized. Our study significantly improves our current understanding of myeloid leukemia and will help develop new therapeutic targets and biomarkers for disease progression, management and treatment response. Abstract Background: Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) represent a group of hematological malignancies characterized by the pathogenic clonal expansion of leukemic myeloid cells. The diagnosis and clinical outcome of AML and CML are complicated by genetic heterogeneity of disease; therefore, the identification of novel molecular biomarkers and pharmacological targets is of paramount importance. Methods: RNA-seq-based transcriptome data from a total of five studies were extracted from NCBI GEO repository and subjected to an in-depth bioinformatics analysis to identify differentially expressed genes (DEGs) between AML and CML. A systemic literature survey and functional gene ontology (GO) enrichment analysis were performed for the top 100 DEGs to identify novel candidate genes and biological processes associated with AML and CML. Results: LINC01554, PTMAP12, LOC644936, RPS27AP20 and FAM133CP were identified as novel risk genes for AML and CML. GO enrichment analysis showed that DEGs were significantly associated with pre-RNA splicing, reactive oxygen species and glycoprotein metabolism, the cellular endomembrane system, neutrophil migration and antimicrobial immune response. Conclusions: Our study revealed novel biomarkers and specific biological processes associated with AML and CML. Further studies are required to evaluate their value as molecular targets for managing and treating the myeloid malignancies.
Collapse
Affiliation(s)
- Staša Jurgec
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Büdefeld
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2345-854
| |
Collapse
|
8
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
9
|
Li R, Song L, Quan Q, Liu MW, Chai W, Lu Q, Li X, Qin J, Chen JY. Detecting Periprosthetic Joint Infection by Using Mass Spectrometry. J Bone Joint Surg Am 2021; 103:1917-1926. [PMID: 34097653 DOI: 10.2106/jbjs.20.01944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Novel methods for diagnosing periprosthetic joint infection (PJI) are currently being explored. Mass spectrometry (MS) is an approach that can detect whole-protein changes in synovial fluid and may represent a promising method. METHODS Between March 2017 and July 2018, we successively collected synovial fluid samples from patients who were undergoing diagnostic hip or knee aspiration because PJI was suspected. A PJI diagnosis was based on the modified Musculoskeletal Infection Society (MSIS) criteria. Cluster analysis and receiver operating characteristic (ROC) curves were used to evaluate the results, which were quantitatively confirmed with parallel reaction monitoring in another patient group who underwent aspiration between August 2018 and January 2019. RESULTS A total of 117 synovial samples, including 51 PJI and 66 non-PJI samples, were analyzed with liquid chromatography-tandem MS (LC-MS/MS). The cluster analysis sensitivity and specificity based on differentially expressed proteins were 0.961 (95% confidence interval [CI], 0.854 to 0.993) and 0.924 (95% CI, 0.825 to 0.972), respectively. Myeloid nuclear differentiation antigen (MNDA) and polymorphonuclear leukocyte serine protease 3 (PRTN3) were the 2 most important markers for detecting PJI. The areas under the curves (AUCs) of MNDA and PRTN3 were 0.969 (95% CI, 0.936 to 1.000) and 0.900 (95% CI, 0.844 to 0.956), respectively. When MNDA and PRTN3 were combined as variables of a predictive model to diagnose PJI, the AUC reached 0.975 (95% CI, 0.943 to 1.000). Our parallel reaction monitoring-based quantitative analysis of another 40 synovial samples confirmed this result. CONCLUSIONS MS could be a powerful tool for diagnosing PJI using proteome information or 2 specific markers, MNDA and PRTN3. The parallel reaction monitoring strategy simplified the PJI detection process and provided quantitative results with similar conclusions. CLINICAL RELEVANCE The clinical application of MS adds a new powerful tool for the diagnosis of PJI, and the parallel reaction monitoring strategy lays a foundation for the clinical application of MS. LEVEL OF EVIDENCE Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Rui Li
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Qi Quan
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ming-Wei Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Wei Chai
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Lu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiang Li
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Ji-Ying Chen
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
10
|
Patterson EK, Gillio-Meina C, Martin CM, Fraser DD, Van Nynatten LR, Slessarev M, Cepinskas G. Proteinase 3 contributes to endothelial dysfunction in an experimental model of sepsis. Exp Biol Med (Maywood) 2021; 246:2338-2345. [PMID: 34292081 DOI: 10.1177/15353702211029284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In sepsis-induced inflammation, polymorphonuclear neutrophils (PMNs) contribute to vascular dysfunction. The serine proteases proteinase 3 (PR3) and human leukocyte elastase (HLE) are abundant in PMNs and are released upon degranulation. While HLE's role in inflammation-induced endothelial dysfunction is well studied, PR3's role is largely uninvestigated. We hypothesized that PR3, similarly to HLE, contributes to vascular barrier dysfunction in sepsis. Plasma PR3 and HLE concentrations and their leukocyte mRNA levels were measured by ELISA and qPCR, respectively, in sepsis patients and controls. Exogenous PR3 or HLE was applied to human umbilical vein endothelial cells (HUVECs) and HUVEC dysfunction was assessed by FITC-dextran permeability and electrical resistance. Both PR3 and HLE protein and mRNA levels were significantly increased in sepsis patients (P < 0.0001 and P < 0.05, respectively). Additionally, each enzyme independently increased HUVEC monolayer FITC-dextran permeability (P < 0.01), and decreased electrical resistance in a time- and dose-dependent manner (P < 0.001), an effect that could be ameliorated by novel treatment with carbon monoxide-releasing molecule 3 (CORM-3). The serine protease PR3, in addition to HLE, lead to vascular dysfunction and increased endothelial permeability, a hallmark pathological consequence of sepsis-induced inflammation. CORMs may offer a new strategy to reduce serine protease-induced vascular dysfunction.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada
| | - Carolina Gillio-Meina
- Children's Health Research Institute and Translational Research Centre, Lawson Health Research Institute, London, N6A 5W9, Canada
| | - Claudio M Martin
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Children's Health Research Institute and Translational Research Centre, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Logan R Van Nynatten
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Marat Slessarev
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Medical Biophysics, Western University, London, N6A 5C1, Canada
| |
Collapse
|
11
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Traum A, Hofmann C, Haas S, Schmidt S, Bein G, Sachs UJ, Bayat B. Characterization of CD177-reactive iso- and auto-antibodies. Transfusion 2021; 61:1916-1922. [PMID: 33734454 DOI: 10.1111/trf.16359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND CD177 is a surface protein on neutrophils and a main mediator for the surface expression of proteinase 3 (PR3). Its functions are largely unknown. At least three types of antibodies have been described to target CD177: isoantibodies, which are formed in CD177-null individuals as a result of an immune reaction following transfusion or pregnancy; autoantibodies present in sera from patients with autoimmune neutropenia; and antineutrophil cytoplasmic antibodies in sera from patients with glomerulonephritis with polyangiitis. In this study, we aimed to compare the binding characteristics of auto- and iso-antibodies to optimize their detectability in the neutrophil serology laboratory. STUDY DESIGN AND METHODS The reactivity of iso- and auto-antibodies against CD177 was studied using granulocytes, "native" CD177/PR3 complex, and recombinant CD177 or PR3. RESULTS All iso- and auto-antibodies were reactive with CD177/PR3 when immobilized with monoclonal antibody (moab) 7D8. Seventy-five percent of autoantibodies, but none of the isoantibodies, did not react with CD177/PR3 immobilized with moab MEM166. The majority of autoantibodies did not react with recombinant CD177, whereas most isoantibodies tested positive. DISCUSSION Our results suggest that iso- and auto-antibodies against CD177 target different epitopes. Isoantibodies mainly target CD177 alone, while the majority of autoantibodies target a native epitope present on the neutrophil surface, but absent from recombinant CD177 which lacks PR3. Moab MEM166 binds to the native epitope and hinders the binding of CD177 autoantibodies. The results may help to design diagnostic strategies, especially for the identification of autoantibodies.
Collapse
Affiliation(s)
- Annalena Traum
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Christine Hofmann
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Sabine Haas
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Schmidt
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Ulrich J Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Behnaz Bayat
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
13
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J 2021; 289:3932-3953. [PMID: 33683814 PMCID: PMC9546106 DOI: 10.1111/febs.15803] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Neutrophil granulocytes form the first line of host defense against invading pathogens and tissue injury. They are rapidly recruited from the blood to the affected sites, where they deploy an impressive arsenal of effectors to eliminate invading microbes and damaged cells. This capacity is endowed in part by readily mobilizable proteins acquired during granulopoiesis and stored in multiple types of cytosolic granules with each granule type containing a unique cargo. Once released, granule proteins contribute to killing bacteria within the phagosome or the extracellular milieu, but are also capable of inflicting collateral tissue damage. Neutrophil-driven inflammation underlies many common diseases. Research over the last decade has documented neutrophil heterogeneity and functional versatility far beyond their antimicrobial function. Emerging evidence indicates that neutrophils utilize granule proteins to interact with innate and adaptive immune cells and orchestrate the inflammatory response. Granule proteins have been identified as important modulators of neutrophil trafficking, reverse transendothelial migration, phagocytosis, neutrophil life span, neutrophil extracellular trap formation, efferocytosis, cytokine activity, and autoimmunity. Hence, defining their roles within the inflammatory locus is critical for minimizing damage to the neighboring tissue and return to homeostasis. Here, we provide an overview of recent advances in the regulation of degranulation, granule protein functions, and signaling in modulating neutrophil-mediated immunity. We also discuss how targeting granule proteins and/or signaling could be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
15
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Dahlstrand Rudin A, Amirbeagi F, Davidsson L, Khamzeh A, Thorbert Mros S, Thulin P, Welin A, Björkman L, Christenson K, Bylund J. The neutrophil subset defined by CD177 expression is preferentially recruited to gingival crevicular fluid in periodontitis. J Leukoc Biol 2020; 109:349-362. [PMID: 32531826 DOI: 10.1002/jlb.3a0520-081rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Firoozeh Amirbeagi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Davidsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sara Thorbert Mros
- Specialist Clinic of Periodontics, Gothenburg, Public Dental Service, Region Västra Götaland, Sweden
| | - Pontus Thulin
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Unit of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Narasaraju T, Tang BM, Herrmann M, Muller S, Chow VTK, Radic M. Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19. Front Pharmacol 2020; 11:870. [PMID: 32581816 PMCID: PMC7291833 DOI: 10.3389/fphar.2020.00870] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19.
Collapse
Affiliation(s)
- Teluguakula Narasaraju
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Benjamin M. Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France
- Laboratory of Excellence Medalis, Institut de science et d'ingénierie supramoléculaire, and University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Vincent T. K. Chow
- Department of Microbiology and Immunology, Infectious Diseases Program, School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Jiang Y, Lin L, Chen S, Jiang L, Kriegbaum MC, Gårdsvoll H, Hansen LV, Li J, Ploug M, Yuan C, Huang M. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain. Int J Biol Sci 2020; 16:981-993. [PMID: 32140067 PMCID: PMC7053344 DOI: 10.7150/ijbs.39919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Ly6/uPAR/α-neurotoxin domain (LU-domain) is characterized by the presence of 4-5 disulfide bonds and three flexible loops that extend from a core stacked by several conversed disulfide bonds (thus also named three-fingered protein domain). This highly structurally stable protein domain is typically a protein-binder at extracellular space. Most LU proteins contain only single LU-domain as represented by Ly6 proteins in immunology and α-neurotoxins in snake venom. For Ly6 proteins, many are expressed in specific cell lineages and in differentiation stages, and are used as markers. In this study, we report the crystal structures of the two LU-domains of human C4.4A alone and its complex with a Fab fragment of a monoclonal anti-C4.4A antibody. Interestingly, both structures showed that C4.4A forms a very compact globule with two LU-domain packed face to face. This is in contrast to the flexible nature of most LU-domain-containing proteins in mammals. The Fab combining site of C4.4A involves both LU-domains, and appears to be the binding site for AGR2, a reported ligand of C4.4A. This work reports the first structure that contain two LU-domains and provides insights on how LU-domains fold into a compact protein and interacts with ligands.
Collapse
Affiliation(s)
- Yunbin Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Mette C Kriegbaum
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Line V Hansen
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Pijnappel EN, Rijkers GT, Overveld FJV. Saint John on Patmos: Revelations of the Role of Antineutrophil Cytoplasmic Antibody (ANCA) in Vasculitis. Curr Med Chem 2019; 27:2852-2862. [PMID: 31838986 DOI: 10.2174/0929867327666191213112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
Diagnosis of vasculitis is based on the presence of histologic features and serological testing for antineutrophil cytoplasmic antibodies (ANCA). In patients with vasculitis, two types of ANCA have been identified: ANCA directed against the neutrophil serine protease proteinase-3 (PR3) which results in a cytoplasmic immunofluorescence pattern (c-ANCA) and ANCA directed against the neutrophil enzyme myeloperoxidase (MPO), which results in a perinuclear immunofluorescence pattern (p-ANCA). Question is if the presence of ANCA is the consequence of abnormal neutrophil adhesion, activation, and apoptosis. Or is it, through mechanisms which are not totally clear for the moment, the cause of vasculitis. In the latter case it has to be postulated that ANCA autoantigens are expressed on the cell surface of viable, or activated, or early-apoptotic neutrophils.
Collapse
Affiliation(s)
- Esther N Pijnappel
- Department. of Science, University College Roosevelt, Middelburg, Netherlands.,Faculty of Health, Medicine, and Life Science, University of Maastricht, 6211 LK Maastricht, Netherlands
| | - Ger T Rijkers
- Department. of Science, University College Roosevelt, Middelburg, Netherlands.,Laboratory of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, Netherlands.,Laboratory for Medical Microbiology and Immunology, St. Elisabeth Hospital, Tilburg, Netherlands
| | | |
Collapse
|
20
|
|
21
|
Volkmann J, Schmitz J, Nordlohne J, Dong L, Helmke A, Sen P, Immenschuh S, Bernhardt WM, Gwinner W, Bräsen JH, Schmitt R, Haller H, von Vietinghoff S. Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 in vivo. Clin Exp Immunol 2019; 199:97-108. [PMID: 31509227 PMCID: PMC6904607 DOI: 10.1111/cei.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G‐CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia–reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G‐CSF‐responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G‐CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G‐CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia–reperfusion and unilateral ureteral obstruction injuries in mice, renal G‐CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G‐CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group‐incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G‐CSF expression. Our data demonstrate that kidney injury induces renal G‐CSF expression and modulates granulopoiesis. They delineate differential G‐CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.
Collapse
Affiliation(s)
- J Volkmann
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - J Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - L Dong
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - A Helmke
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - P Sen
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - W M Bernhardt
- Clinic for Hypertension, Kidney- and Metabolic Diseases Hannover, Hannover, Germany
| | - W Gwinner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J H Bräsen
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - R Schmitt
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Gonzalez-Orozco M, Barbosa-Cobos RE, Santana-Sanchez P, Becerril-Mendoza L, Limon-Camacho L, Juarez-Estrada AI, Lugo-Zamudio GE, Moreno-Rodriguez J, Ortiz-Navarrete V. Endogenous stimulation is responsible for the high frequency of IL-17A-producing neutrophils in patients with rheumatoid arthritis. Allergy Asthma Clin Immunol 2019; 15:44. [PMID: 31388340 PMCID: PMC6676628 DOI: 10.1186/s13223-019-0359-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Background Neutrophils play an important role in the pathogenesis of rheumatoid arthritis (RA). It has recently been reported that in addition to T helper (Th) 17 cells, other cells, including neutrophils, produce IL-17A, an important inflammatory cytokine involved in the pathogenesis of RA. The purpose of this study was to examine the presence of interleukin 17A-producing neutrophils in patients with RA. Methods We performed a cross-sectional study including 106 patients with RA and 56 healthy individuals. Whole peripheral blood cells were analyzed by flow cytometry to identify CD66b+ CD177+ IL-17A+ neutrophils and CD3+ CD4+ IL-17A+ T cells. Serum levels of IL-17A and IL-6 were measured by means of cytometry bead array (CBA). In purified neutrophils, mRNA levels of IL-17 and RORγ were measured by RT-PCR. In addition, purified neutrophils from patients and healthy controls were stimulated with the cytokines IL-6 and IL-23 to evaluate differences in their capacity to produce IL-17A. Results Neutrophils from RA patients expressed IL-17 and RORγ mRNA. Consequently, these cells also expressed IL-17A. Serum IL-17A levels but not Th17 cell numbers were increased in RA patients. Neutrophils positive for cytoplasmic IL-17A were more abundant in patients with RA (mean 1.2 ± 3.18%) than in healthy individuals (mean 0.07 ± 0.1%) (p < 0.0001). Although increased IL-17A+ neutrophil numbers were present in RA patients regardless of disease activity (mean 6.5 ± 5.14%), they were more frequent in patients with a more recent diagnosis (mean time after disease onset 3.5 ± 4.24 years). IL-6 and IL-23 induced the expression of RORγ but failed to induce IL-17A expression by neutrophils from RA patients and healthy individuals after a 3 h stimulation. Conclusion IL-17A-producing neutrophils are increased in some RA patients, which are not related to disease activity but have an increased frequency in patients with recent-onset disease. This finding suggests that IL-17A-producing neutrophils play an early role in the development of RA. Electronic supplementary material The online version of this article (10.1186/s13223-019-0359-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- 1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508, 07360 Mexico City, Mexico
| | - Rosa E Barbosa-Cobos
- 2Servicio de Reumatología, Hospital Juarez de Mexico, Av. IPN 5160, 07760 Mexico City, Mexico
| | - Paola Santana-Sanchez
- 1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508, 07360 Mexico City, Mexico
| | | | - Leonardo Limon-Camacho
- 3Servicio de Reumatología, Hospital Central Norte, Pemex, Campo Matillas 52, 02720 Mexico City, Mexico
| | - Ana I Juarez-Estrada
- 1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508, 07360 Mexico City, Mexico
| | - Gustavo E Lugo-Zamudio
- 2Servicio de Reumatología, Hospital Juarez de Mexico, Av. IPN 5160, 07760 Mexico City, Mexico
| | - Jose Moreno-Rodriguez
- 4Direccion de Enseñanza e Investigacion, Hospital Juarez de Mexico, Av. IPN 5160, 07760 Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- 1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508, 07360 Mexico City, Mexico
| |
Collapse
|
23
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
25
|
Flesch BK, Reil A. Molecular Genetics of the Human Neutrophil Antigens. Transfus Med Hemother 2018; 45:300-309. [PMID: 30498408 PMCID: PMC6257083 DOI: 10.1159/000491031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/17/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Antibodies to human neutrophil antigens (HNAs) have been implicated in transfusion-related acute lung injury and allo- and autoimmune neutropenia. To date, five HNA systems are assigned, and during the last decades enormous efforts have been undertaken to identify the underlying genes and to characterize the antigens. This review of the literature will provide the current genetic, molecular and functional information on HNAs. RECENT FINDINGS New information on alleles and antigens has been added to nearly each of the five HNA systems. HNA-1d has been added as the antithetical epitope to HNA-1c that is located on the glycoprotein encoded by FCGR3B*02 but not by FCGR3B. FCGR3B*04 and *05 now are included as new alleles. A CD177*787A>T substitution was demonstrated as the main reason for the HNA-2-negative phenotype on neutrophils. The target glycoprotein of HNA-3 antibodies could be identified as choline transporter-like protein 2 (CTL2) encoded by SLC44A2. The conformation sensitive epitope discriminates between arginine and glutamine at position 152 resulting in HNA-3a and HNA-3b. An additional Leu151Phe substitution can impair HNA-3a antibody binding. Recently an alloantibody against HNA-4b which discriminates from HNA-4a by an Arg61His exchange of the glycoprotein encoded by the ITGAM gene was reported in neonatal alloimmune neutropenia. An update of the current HNA nomenclature based on the new findings was provided in 2016 by the ISBT Granulocyte Immunobiology Working Party nomenclature subcommittee. CONCLUSIONS The molecular basis of each of the five HNA antigen systems has been decoded during the past decades. This enables reliable molecular typing strategies, antibody detection and specification as well as development of new assays based on recombinant antigens. However, research on HNA alleles, antigens, and antibodies is not finally terminated and also in the future will add new findings.
Collapse
|
26
|
Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res 2018; 19:180. [PMID: 30236095 PMCID: PMC6149181 DOI: 10.1186/s12931-018-0883-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common, multifactorial lung disease which results in significant impairment of patients' health and a large impact on society and health care burden. It is believed to be the result of prolonged, destructive neutrophilic inflammation which results in progressive damage to lung structures. During this process, large quantities of neutrophil serine proteinases (NSPs) are released which initiate the damage and contribute towards driving a persistent inflammatory state.Neutrophil elastase has long been considered the key NSP involved in the pathophysiology of COPD. However, in recent years, a significant role for Proteinase 3 (PR3) in disease development has emerged, both in COPD and other chronic inflammatory conditions. Therefore, there is a need to investigate the importance of PR3 in disease development and hence its potential as a therapeutic target. Research into PR3 has largely been confined to its role as an autoantigen, but PR3 is involved in triggering inflammatory pathways, disrupting cellular signalling, degrading key structural proteins, and pathogen response.This review summarises what is presently known about PR3, explores its involvement particularly in the development of COPD, and indicates areas requiring further investigation.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK.
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| |
Collapse
|
27
|
|
28
|
Miettinen HM, Gripentrog JM, Lord CI, Nagy JO. CD177-mediated nanoparticle targeting of human and mouse neutrophils. PLoS One 2018; 13:e0200444. [PMID: 29990379 PMCID: PMC6039027 DOI: 10.1371/journal.pone.0200444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant white blood cells, with a vital role in innate immune defense against bacterial and fungal pathogens. Although mostly associated with pathological processes directly related to immune defense, they can also play a detrimental role in inflammatory conditions and have been found to have a pro-metastatic role in the spread of cancer cells. Here, we explore ways to temporarily suppress these detrimental activities. We first examined the possibility of using siRNA and antisense oligonucleotides (ASOs) for transient knockdown of the human and mouse C5a receptor, an important chemoattractant receptor involved in neutrophil-mediated injury that is associated with myocardial infarction, sepsis, and neurodegenerative diseases. We found that siRNAs and ASOs transfected into cultured cell lines can eliminate 70–90% of C5a receptor mRNA and protein within 72 h of administration, a clinically relevant time frame after a cardiovascular event. Targeted drug delivery to specific cells or tissues of interest in a mammalian host, however, remains a major challenge. Here, using phage display technology, we have identified peptides that bind specifically to CD177, a neutrophil-specific surface molecule. We have attached these peptides to fluorescent, lipid-based nanoparticles and confirmed targeting and delivery to cultured cells ectopically presenting either human or mouse CD177. In addition, we have shown peptide-nanoparticle binding specifically to neutrophils in human and mouse blood. We anticipate that these or related tagged nanoparticles may be therapeutically useful for delivery of siRNAs or ASOs to neutrophils for transient knockdown of pro-inflammatory proteins such as the C5a receptor.
Collapse
Affiliation(s)
- Heini M. Miettinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| | - Jeannie M. Gripentrog
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Connie I. Lord
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Jon O. Nagy
- NanoValent Pharmaceuticals, Inc., Bozeman, MT, United States of America
| |
Collapse
|
29
|
The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res Ther 2018; 20:134. [PMID: 29976235 PMCID: PMC6034343 DOI: 10.1186/s13075-018-1632-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dermatomyositis and polymyositis are the best known idiopathic inflammatory myopathies (IIMs). Classic histopathologic findings include the infiltration of inflammatory cells into muscle tissues. Neutrophil serine proteinases (NSPs) are granule-associated enzymes and play roles in inflammatory cell migration by increasing the permeability of vascular endothelial cells. In this study, we aimed to find the roles of NSPs in pathogenesis of IIMs. Methods RNA and DNA were isolated to measure the relative expression of NSPs and their methylation levels. The expression of NSPs in serum and muscle tissues was tested by enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence, respectively. Serum from patients was used to culture the human dermal microvascular endothelial cells (HDMECs), and then we observed the influence of serum on expression of VE-cadherin, endothelial cell tube formation, and transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results We found that the expression of NSPs was increased in PBMCs, serum, and muscle tissues of IIM patients; these NSPs were hypomethylated in the PBMCs of patients. Serum NSPs were positively correlated with clinical indicators of IIM patients, including lactic dehydrogenase, erythrocyte sedimentation rate, C-reactive protein, immunoglobulin G, immunoglobulin M, and immunoglobulin A. Patients with anti-Jo-1, with anti-Ro-52, or without interstitial lung disease had lower levels of proteinase 3. Serum NSPs degraded the VE-cadherin of HDMECs, and serum NSP application increased the permeability of HDMECs. Conclusions Our studies indicate, for the first time, that NSPs play an important role in muscle inflammatory cell infiltration by increasing the permeability of vascular endothelial cells in IIM patients. Electronic supplementary material The online version of this article (10.1186/s13075-018-1632-x) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood 2017; 130:2092-2100. [PMID: 28807980 DOI: 10.1182/blood-2017-03-768507] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177pos and CD177neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration.
Collapse
|
31
|
Scapini P, Marini O, Tecchio C, Cassatella MA. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev 2017; 273:48-60. [PMID: 27558327 DOI: 10.1111/imr.12448] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent findings have uncovered novel fascinating aspects of the biology of neutrophils, which ultimately attribute to these cells a broader role in inflammation and immunity. One aspect that is currently under intensive investigation is the notion of neutrophil 'heterogeneity'. Studies examining neutrophils in a variety of acute and chronic inflammatory conditions report, in fact, the recovery of CD66b(+) cells displaying neutrophil-like morphology at different degrees of maturation/activation, able to exert either immunosuppressive or proinflammatory properties. These heterogeneous populations of mature and immature neutrophils are indicated with a variety of names, including 'low density neutrophils (LDNs)', 'low density granulocytes (LDGs)', 'granulocytic-myeloid derived suppressor cells (G-MDSCs)', and immunosuppressive neutrophils. However, due to the lack of discrete markers that can unequivocally allow their specific identification and isolation, the precise phenotype and function of all these presumably novel, neutrophil-like, populations have not been correctly defined yet. Aim of this article is to summarize current knowledge on the mature and immature neutrophil populations described to date, featuring immunosuppressive or proinflammatory properties, often defined as 'subsets', as well as to critically discuss unresolved issues in the field.
Collapse
Affiliation(s)
- Patrizia Scapini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Olivia Marini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Division of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | | |
Collapse
|
32
|
Elevated Leukocyte Azurophilic Enzymes in Human Diabetic Ketoacidosis Plasma Degrade Cerebrovascular Endothelial Junctional Proteins. Crit Care Med 2017; 44:e846-53. [PMID: 27071071 DOI: 10.1097/ccm.0000000000001720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro. DESIGN Prospective clinical and laboratory study. SETTING The Children's Hospital, London Health Sciences Centre. SUBJECTS Pediatric type 1 diabetes patients; acute diabetic ketoacidosis or age-/sex-matched insulin-controlled. MEASUREMENTS AND MAIN RESULTS Acute diabetic ketoacidosis in children was associated with elevated polymorphonuclear neutrophils. Plasma azurophilic enzymes were elevated in diabetic ketoacidosis patients, including human leukocyte elastase (p < 0.001), proteinase-3 (p < 0.01), and myeloperoxidase (p < 0.001). A leukocyte origin of human leukocyte elastase and proteinase-3 in diabetic ketoacidosis was confirmed with buffy coat quantitative real-time polymerase chain reaction (p < 0.01). Of the three azurophilic enzymes elevated, only proteinase-3 levels correlated with diabetic ketoacidosis severity (p = 0.002). Recombinant proteinase-3 applied to human brain microvascular endothelial cells degraded both the tight junction protein occludin (p < 0.05) and the adherens junction protein VE-cadherin (p < 0.05). Permeability of human brain microvascular endothelial cell monolayers was increased by recombinant proteinase-3 application (p = 0.010). CONCLUSIONS Our results indicate that diabetic ketoacidosis is associated with systemic polymorphonuclear neutrophil activation and degranulation. Of all the polymorphonuclear neutrophil azurophilic enzymes examined, only proteinase-3 correlated with diabetic ketoacidosis severity and potently degraded the blood-brain barrier in vitro. Proteinase-3 might mediate vasogenic edema during diabetic ketoacidosis, and selective proteinase-3 antagonists may offer future vascular- and neuroprotection.
Collapse
|
33
|
Garley M, Jabłońska E. Heterogeneity Among Neutrophils. Arch Immunol Ther Exp (Warsz) 2017; 66:21-30. [PMID: 28560557 PMCID: PMC5767199 DOI: 10.1007/s00005-017-0476-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/03/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils (PMNs) play a key role in innate defence mechanisms. Generally, PMNs were considered to have a homogeneous population of mature and diversified cells. It seems, however, that their pleiotropic action results from the existence of different subpopulations in this group of cells. There are data that confirm the involvement of PMNs in the direct activation of other cells in non-specific response, as well as specialised cells in specific response. For example, there have been observations of PMNs with different levels of activity in relation to lymphocytes, and a population was identified which had characteristics similar to those of cells which are capable of presenting antigens. There are also reports of PMNs which demonstrate different survival time or capacity for chemotaxis. Other studies suggest that the neutrophil response to Staphylococcus aureus is diverse (not identical among all neutrophil). There are also reports of PMNs with varying activity during inflammation, which might explain many as yet unknown pathophysiological aspects of their hyperreactivity. The functional dualism of PMNs in the course of neoplastic disorders raises a lot of controversy. This paper presents the current state of knowledge of the heterogeneity of PMNs and their potential roles in different stages of disease.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Białystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Białystok, Poland
| |
Collapse
|
34
|
Eulenberg-Gustavus C, Bähring S, Maass PG, Luft FC, Kettritz R. Gene silencing and a novel monoallelic expression pattern in distinct CD177 neutrophil subsets. J Exp Med 2017; 214:2089-2101. [PMID: 28559244 PMCID: PMC5502425 DOI: 10.1084/jem.20161093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022] Open
Abstract
CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Eulenberg-Gustavus et al. show that epigenetic silencing causes CD177negative neutrophils, whereas a novel pattern of monoallelic CD177 expression results in a variable percentage of CD177positive neutrophils in bimodal individuals. CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177neg and CD177pos neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals. CD177pos, but not CD177neg neutrophils, produced CD177 protein and mRNA. Haplotype analysis indicated a unique monoallelic CD177 expression pattern, where the offspring stably transcribed either the maternal or paternal allele. Hematopoietic stem cells expressed both CD177 alleles and silenced one copy during neutrophil differentiation. ChIP and reporter assays in HeLa cells with monoallelic CD177 expression showed that methylation reduced reporter activity, whereas demethylation caused biallelic CD177 expression. HeLa cell transfection with c-Jun and c-Fos increased CD177 mRNA. Importantly, CD177pos human neutrophils, but not CD177neg neutrophils, showed a euchromatic CD177 promoter, unmethylated CpGs, and c-Jun and c-Fos binding. We describe epigenetic mechanisms explaining the two distinct CD177 neutrophil subsets and a novel monoallelic CD177 expression pattern that does not follow classical random monoallelic expression or imprinting.
Collapse
Affiliation(s)
- Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Philipp G Maass
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany .,Nephrology and Intensive Care Medicine, Campus Virchow, Medical Faculty of the Charité, Berlin, Germany
| |
Collapse
|
35
|
Martin KR, Witko-Sarsat V. Proteinase 3: the odd one out that became an autoantigen. J Leukoc Biol 2017; 102:689-698. [PMID: 28546501 DOI: 10.1189/jlb.3mr0217-069r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are critical in the defense against bacterial and fungal pathogens, and they also modulate the inflammatory process. The areas where neutrophils are studied have expanded from the restricted field of antibacterial defense to the modulation of inflammation and finally, to fine-tuning immune responses. As a result, recent studies have shown that neutrophils are implicated in several systemic autoimmune diseases, although exactly how neutrophils contribute to these diseases and the molecular mechanisms responsible are still under investigation. In a group of autoimmune vasculitides associated with anti-neutrophil cytoplasmic antibodies (AAVs), granulomatosis with polyangiitis (GPA) illustrates the concept that autoimmunity can develop against one specific neutrophil protein, namely, proteinase 3 (PR3), one of the four serine protease homologs contained within azurophilic granules. In this review, we will focus on recent molecular analyses combined with functional studies that provide clear evidence that the pathogenic properties of PR3 are not only a result of its enzymatic activity but also mediated by a particular structural element-the hydrophobic patch-which facilitates associations with various proteins and lipids and permits anchorage into the plasma membrane. Furthermore, these unique structural and functional characteristics of PR3 might be key contributors to the systemic inflammation and to the immune dysregulation observed in GPA.
Collapse
Affiliation(s)
- Katherine R Martin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; .,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| |
Collapse
|
36
|
Characterization of the CD177 interaction with the ANCA antigen proteinase 3. Sci Rep 2017; 7:43328. [PMID: 28240246 PMCID: PMC5327412 DOI: 10.1038/srep43328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Proteinase 3 is a serine protease found in neutrophil granules and on the extracellular neutrophil membrane (mPR3). mPR3 is a major antigen for anti-neutrophil cytoplasmic antibodies (PR3-ANCAs), autoantibodies causing fatal autoimmune diseases. In most individuals, a subpopulation of neutrophils also produce CD177, proposed to present additional PR3 on the surface, resulting in CD177neg/mPR3low and CD177pos/mPR3high neutrophil subsets. A positive correlation has been shown between mPR3 abundance, disease incidence, and clinical outcome. We present here a detailed investigation of the PR3:CD177 complex, verifying the interaction, demonstrating the effect of binding on PR3 proteolytic activity and explaining the accessibility of major PR3-ANCA epitopes. We observed high affinity PR3:CD177 complex formation by surface plasmon resonance. Using flow cytometry and a PR3-specific FRET assay, we found that CD177 binding reduced the proteolytic activity of PR3 in vitro using purified proteins, in neutrophil degranulation supernatants containing wtPR3 and directly on mPR3high neutrophils and PR3-loaded HEK cells. Finally, CD177pos/mPR3high neutrophils showed no migration advantage in vitro or in vivo when migrating from the blood into the oral cavity. We illuminate details of the PR3:CD177 interaction explaining mPR3 membrane orientation and proteolytic activity with relevance to ANCA activation of the distinct mPR3 neutrophil populations.
Collapse
|
37
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
38
|
Manes TD, Pober JS. Significant Differences in Antigen-Induced Transendothelial Migration of Human CD8 and CD4 T Effector Memory Cells. Arterioscler Thromb Vasc Biol 2016; 36:1910-8. [PMID: 27444200 DOI: 10.1161/atvbaha.116.308039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Circulating human T effector memory cell (TEM) recognition of nonself MHC (major histocompatibility complex) molecules on allograft endothelial cells can initiate graft rejection despite elimination of professional antigen-presenting cells necessary for naive T-cell activation. Our previous studies of CD4 TEM have established that engagement of the T-cell receptor not only activates T cells but also triggers transendothelial migration (TEM) by a process that is distinct from that induced by activating chemokine receptors on T cells, being slower, requiring microtubule-organizing center-directed cytolytic granule polarization to and release from the leading edge of the T cell, and requiring engagement of proteins of the endothelial cell lateral border recycling compartment. Although CD4 TEM may contribute to acute allograft rejection, the primary effectors are alloreactive CD8 TEM. Whether and how T-cell receptor engagement affects TEM of human CD8 TEM is unknown. APPROACH AND RESULTS We modeled TEM of CD8 TEM across cultured human microvascular endothelial cells engineered to present superantigen under conditions of venular shear stress in vitro in a flow chamber. Here, we report that T-cell receptor engagement can also induce TEM of this population that similarly differs from chemokine receptor-driven TEM with regard to kinetics, morphological manifestations, and microtubule-organizing center dynamics as with CD4 TEM. However, CD8 TEM do not require either cytolytic granule release or interactions with proteins of the lateral border recycling compartment. CONCLUSIONS These results imply that therapeutic strategies designed to inhibit T-cell receptor-driven recruitment based on targeting granule release or components of the lateral border recycling compartment will not affect CD8 TEM and are unlikely to block acute rejection in the clinic.
Collapse
Affiliation(s)
- Thomas D Manes
- From the Department of Immunobiology, Yale University School of Medicine, New Haven, CT.
| | - Jordan S Pober
- From the Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Förster Y, Schmidt JR, Wissenbach DK, Pfeiffer SEM, Baumann S, Hofbauer LC, von Bergen M, Kalkhof S, Rammelt S. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles. PLoS One 2016; 11:e0159580. [PMID: 27441377 PMCID: PMC4956113 DOI: 10.1371/journal.pone.0159580] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022] Open
Abstract
Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.
Collapse
Affiliation(s)
- Yvonne Förster
- University Center of Orthopedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
- * E-mail:
| | - Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Dirk K. Wissenbach
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Susanne E. M. Pfeiffer
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Centre for Microbial Communities, University of Aalborg, Aalborg East, Denmark
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, Coburg, Germany
| | - Stefan Rammelt
- University Center of Orthopedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| |
Collapse
|
40
|
Jarrot PA, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: An update. Autoimmun Rev 2016; 15:704-13. [DOI: 10.1016/j.autrev.2016.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
|
41
|
Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 2016; 127:2173-81. [DOI: 10.1182/blood-2016-01-688887] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Abstract
Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a homogenous population of terminally differentiated cells with a well-defined and highly conserved function. Indeed, their short lifespan, the absent proliferative capacity, their limited ability to produce large amounts of cytokines, and the failure to recirculate from the tissue to the bloodstream have sustained this idea. However, increasing evidence over the last decade has demonstrated an unexpected phenotypic heterogeneity and functional versatility of the neutrophil population. Far beyond their antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. These emerging discoveries open a new door to understand the role of neutrophils during homeostatic but also pathogenic immune processes. Thus, this review details novel insights of neutrophil phenotypic and functional heterogeneity during homeostasis and disease.
Collapse
|
42
|
Nicu EA, Loos BG. Polymorphonuclear neutrophils in periodontitis and their possible modulation as a therapeutic approach. Periodontol 2000 2016; 71:140-63. [DOI: 10.1111/prd.12113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/24/2022]
|
43
|
Cho KS, Lee EJ, Kim JN, Choi JW, Kim HY, Han SH, Ryu JH, Cheong JH, Shin CY, Kwon KJ. Proteinase 3 Induces Neuronal Cell Death Through Microglial Activation. Neurochem Res 2015; 40:2242-51. [PMID: 26349766 DOI: 10.1007/s11064-015-1714-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/30/2015] [Accepted: 08/28/2015] [Indexed: 01/29/2023]
Abstract
Proteinase 3 (PR3) is released from neutrophil granules and is involved in the inflammatory process. PR3 is implicated in antimicrobial defense and cell death, but the exact role of PR3 in the brain is less defined. Microglia is the major immune effector cells in the CNS and is activated by brain injury. In the present study, the effect of PR3 on glial activation was investigated. Microglial activation was assessed by the intracellular level of reactive oxygen species and expression of inflammatory cytokines. The conditioned media from activated microglia by PR3 was used for measuring the neurotoxic effects of PR3-stimulated microglia. The effects of PR3 in vivo were measured by microinjecting PR3 into the rat brain. Herein we show that PR3 increased the inflammatory responses including the intracellular ROS and pro-inflammatory cytokine production in rat primary microglia. Conditioned media from PR3-treated microglia induced neuronal cell death in a concentration dependent manner. Furthermore, microinjected PR3 into the striatum of the rat brain induced microglial activation and neuronal cell death. Interestingly treatment with anti-PR3 monoclonal antibody and protease inhibitors ameliorated microglial activation induced by PR3 in primary microglia and striatum, which also prevented neuronal cell death in both conditions. The data presented here suggest that PR3 is a direct modulator of microglial activation and causes neuronal death through the augmentation of inflammatory responses. We suggest that PR3 could be a new modulator of neuroinflammation, and blocking PR3 would be a promising novel therapeutic target for neuroinflammatory disease such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Kyu Suk Cho
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Eun Joo Lee
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Jung Nam Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Ji Woong Choi
- Department of Pharmacology, College of Pharmacy, Gachon University, Incheon, Korea
| | - Hahn Young Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea.,Department of Neurology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seol-Heui Han
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea.,Department of Neurology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Chan Young Shin
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea.
| |
Collapse
|
44
|
The role of neutrophils in causing antineutrophil cytoplasmic autoantibody-associated vasculitis. Curr Opin Hematol 2015; 22:60-6. [PMID: 25394311 DOI: 10.1097/moh.0000000000000098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Antineutrophil cytoplasmic antibody (ANCA)-activated phagocytes cause vasculitis and necrotizing crescentic glomerulonephritis. Experimental data support the notion that activation of neutrophils and monocytes by ANCA immunoglobulin G with generation of reactive oxygen species, degranulation of proteases, and formation of neutrophil extracellular traps play a role in tissue injury. RECENT FINDINGS We discuss novel findings regarding the expression of ANCA antigens and the mechanisms involved in myeloid cell activation by ANCA immunoglobulin G. The contribution of neutrophil serine proteases and their specific role in the generation of interleukin-1beta (IL-1β) is highlighted. ANCA-induced reactive oxygen species generation plays an important role in downregulating inflammation by inhibition of the inflammasome-dependent caspase-1 activation and subsequent IL-1β generation. Neutrophil extracellular trap generation by ANCA-activated neutrophils and their potential role in the pathogenesis of the disease will be discussed. Lastly, the pathogenic role of the complement system will be discussed. SUMMARY ANCA-induced activation of both neutrophils and monocytes is one of the main pathogenic mechanisms involved in disease induction. Therefore, a better understanding of the fundamental processes involved here are necessary. Specifically, the mechanisms involved in IL-1β generation have been recently identified and could lead to better targeted novel therapies.
Collapse
|
45
|
Konya V, Peinhaupt M, Heinemann A. Adhesion of eosinophils to endothelial cells or substrates under flow conditions. Methods Mol Biol 2015; 1178:143-56. [PMID: 24986614 DOI: 10.1007/978-1-4939-1016-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recruitment of eosinophils into the lung tissue is a critical event in allergic inflammatory reactions. Extravasation of eosinophils from the bloodstream is a highly dynamic multistep process that involves capture, rolling, activation, firm adhesion, and transendothelial and subendothelial migration of the cells. It is assumed that the rate-limiting step in this cascade is the capture and firm adhesion of cells to the endothelium. As such it is most critical to study endothelial-leukocyte interaction using assays which are capable of mimicking physiological flow conditions. Previously, various parallel flow chamber setups had been used for studying leukocyte adhesion to endothelial cells. Here we describe a highly reproducible technique for investigating eosinophil adhesion to endothelial cell layer or adhesion molecule/extracellular matrix protein coating in biochips by using a semiautomated microfluidic platform and live-cell imaging. In detail, we show eosinophil adhesion to endothelial cells activated by tumour necrosis factor (TNF) alpha, and adhesion to fibronectin of eosinophils stimulated by prostaglandin (PG) D2.
Collapse
Affiliation(s)
- Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010, Graz, Austria
| | | | | |
Collapse
|
46
|
Kistemaker LEM, van Os RP, Dethmers-Ausema A, Bos IST, Hylkema MN, van den Berge M, Hiemstra PS, Wess J, Meurs H, Kerstjens HAM, Gosens R. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2014; 308:L96-103. [PMID: 25381025 DOI: 10.1152/ajplung.00259.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M(3) receptor-deficient mice (M(3)R(-/-)) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M(3) receptors are present on almost all cell types, and in this study we investigated the relative contribution of M(3) receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M(3)R(-/-) bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R(-/-) animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M(3)R(-/-) animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6-2.5 fold). These findings indicate that the M(3) receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M(3) receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald P van Os
- Section of Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Albertina Dethmers-Ausema
- Section of Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Xie Q, Klesney-Tait J, Keck K, Parlet C, Borcherding N, Kolb R, Li W, Tygrett L, Waldschmidt T, Olivier A, Chen S, Liu GH, Li X, Zhang W. Characterization of a novel mouse model with genetic deletion of CD177. Protein Cell 2014; 6:117-26. [PMID: 25359465 PMCID: PMC4312768 DOI: 10.1007/s13238-014-0109-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/25/2014] [Indexed: 01/12/2023] Open
Abstract
Neutrophils play an essential role in the innate immune response to infection. Neutrophils migrate from the vasculature into the tissue in response to infection. Recently, a neutrophil cell surface receptor, CD177, was shown to help mediate neutrophil migration across the endothelium through interactions with PECAM1. We examined a publicly available gene array dataset of CD177 expression from human neutrophils following pulmonary endotoxin instillation. Among all 22,214 genes examined, CD177 mRNA was the most upregulated following endotoxin exposure. The high level of CD177 expression is also maintained in airspace neutrophils, suggesting a potential involvement of CD177 in neutrophil infiltration under infectious diseases. To determine the role of CD177 in neutrophils in vivo, we constructed a CD177-genetic knockout mouse model. The mice with homozygous deletion of CD177 have no discernible phenotype and no significant change in immune cells, other than decreased neutrophil counts in peripheral blood. We examined the role of CD177 in neutrophil accumulation using a skin infection model with Staphylococcus aureus. CD177 deletion reduced neutrophil counts in inflammatory skin caused by S. aureus. Mechanistically we found that CD177 deletion in mouse neutrophils has no significant impact in CXCL1/KC- or fMLP-induced migration, but led to significant cell death. Herein we established a novel genetic mouse model to study the role of CD177 and found that CD177 plays an important role in neutrophils.
Collapse
Affiliation(s)
- Qing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mei H, Campbell JM, Paddock CM, Lertkiatmongkol P, Mosesson MW, Albrecht R, Newman PJ. Regulation of endothelial cell barrier function by antibody-driven affinity modulation of platelet endothelial cell adhesion molecule-1 (PECAM-1). J Biol Chem 2014; 289:20836-44. [PMID: 24936065 PMCID: PMC4110291 DOI: 10.1074/jbc.m114.557454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/10/2014] [Indexed: 12/31/2022] Open
Abstract
PECAM-1 is a 130-kDa member of the immunoglobulin (Ig) superfamily that is expressed on the surface of platelets and leukocytes, and at the intracellular junctions of confluent endothelial cell monolayers. Previous studies have shown that PECAM-1/PECAM-1 homophilic interactions play a key role in leukocyte transendothelial migration, in allowing PECAM-1 to serve as a mechanosensory complex in endothelial cells, in its ability to confer cytoprotection to proapoptotic stimuli, and in maintaining endothelial cell junctional integrity. To examine the adhesive properties of full-length PECAM-1 in a native lipid environment, we purified it from platelets and assembled it into phospholipid nanodiscs. PECAM-1-containing nanodiscs retained not only their ability to bind homophilically to PECAM-1-expressing cells, but exhibited regulatable adhesive interactions that could be modulated by ligands that bind membrane- proximal Ig Domain 6. This property was exploited to enhance the rate of barrier restoration in endothelial cell monolayers subjected to inflammatory challenge. The finding that the adhesive properties of PECAM-1 are regulatable suggests novel approaches for controlling endothelial cell migration and barrier function in a variety of vascular permeability disorders.
Collapse
Affiliation(s)
- Heng Mei
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Cathy M. Paddock
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
| | - Panida Lertkiatmongkol
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
- the Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael W. Mosesson
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ralph Albrecht
- the Departments of Animal Sciences, Pediatrics, and Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 54701, and
| | - Peter J. Newman
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
- the Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
49
|
Giese C, Marx U. Human immunity in vitro - solving immunogenicity and more. Adv Drug Deliv Rev 2014; 69-70:103-22. [PMID: 24447895 DOI: 10.1016/j.addr.2013.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 12/24/2022]
Abstract
It has been widely recognised that the phylogenetic distance between laboratory animals and humans limits the former's predictive value for immunogenicity testing of biopharmaceuticals and nanostructure-based drug delivery and adjuvant systems. 2D in vitro assays have been established in conventional culture plates with little success so far. Here, we detail the status of various 3D approaches to emulate innate immunity in non-lymphoid organs and adaptive immune response in human professional lymphoid immune organs in vitro. We stress the tight relationship between the necessarily changing architecture of professional lymphoid organs at rest and when activated by pathogens, and match it with the immunity identified in vitro. Recommendations for further improvements of lymphoid tissue architecture relevant to the development of a sustainable adaptive immune response in vitro are summarized. In the end, we sketch a forecast of translational innovations in the field to model systemic innate and adaptive immunity in vitro.
Collapse
Affiliation(s)
| | - Uwe Marx
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
50
|
Saragih H, Zilian E, Jaimes Y, Paine A, Figueiredo C, Eiz-Vesper B, Blasczyk R, Larmann J, Theilmeier G, Burg-Roderfeld M, Andrei-Selmer LC, Becker JU, Santoso S, Immenschuh S. PECAM-1-dependent heme oxygenase-1 regulation via an Nrf2-mediated pathway in endothelial cells. Thromb Haemost 2014; 111:1077-88. [PMID: 24500083 DOI: 10.1160/th13-11-0923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/07/2014] [Indexed: 01/09/2023]
Abstract
The antioxidant enzyme heme oxygenase (HO)-1, which catalyses the first and rate-limiting step of heme degradation, has major anti-inflammatory and immunomodulatory effects via its cell-type-specific functions in the endothelium. In the current study, we investigated whether the key endothelial adhesion and signalling receptor PECAM-1 (CD31) might be involved in the regulation of HO-1 gene expression in human endothelial cells (ECs). To this end PECAM-1 expression was down-regulated in human umbilical vein ECs (HUVECs) by an adenoviral vector-based knockdown approach. PECAM-1 knockdown markedly induced HO-1, but not the constitutive HO isoform HO-2. Nuclear translocation of the transcription factor NF-E2-related factor-2 (Nrf2), which is a master regulator of the inducible antioxidant cell response, and intracellular levels of reactive oxygen species (ROS) were increased in PECAM-1-deficient HUVECs, respectively. PECAM-1-dependent HO-1 regulation was also examined in PECAM-1 over-expressing Chinese hamster ovary and murine L-cells. Endogenous HO-1 gene expression and reporter gene activity of transiently transfected luciferase HO-1 promoter constructs with Nrf2 target sequences were decreased in PECAM-1 over-expressing cells. Moreover, a regulatory role of ROS for HO-1 regulation in these cells is demonstrated by studies with the antioxidant N-acetylcysteine and exogenous hydrogenperoxide. Finally, direct interaction of PECAM-1 with a native complex of its binding partner NB1 (CD177) and serine proteinase 3 (PR3) from human neutrophils, markedly induced HO-1 expression in HUVECs. Taken together, we demonstrate a functional link between HO-1 gene expression and PECAM-1 in human ECs, which might play a critical role in the regulation of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephan Immenschuh
- Dr. Stephan Immenschuh, Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany, Tel.: +49 511 532 6704, Fax: +49 511 532 2079, E-mail:
| |
Collapse
|