1
|
Arora JK, Matangkasombut P, Charoensawan V, Opasawatchai A. Single-cell RNA sequencing reveals the expansion of circulating tissue-homing B cell subsets in secondary acute dengue viral infection. Heliyon 2024; 10:e30314. [PMID: 38818157 PMCID: PMC11137366 DOI: 10.1016/j.heliyon.2024.e30314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The roles of antibodies secreted by subsets of B cells in dengue virus (DENV) infection have been extensively studied, yet, the contribution of tissue-homing B cells to antiviral immunity remains unclear. In this study, we performed a comprehensive analysis of B cell subpopulations in peripheral blood samples from DENV-infected patients using single-cell RNA-sequencing (scRNA-seq) datasets and flow cytometry. We showed that plasma cells (PCs) and plasmablasts (PBs) were the predominant B cell populations during the acute phase of secondary natural DENV infection, but not in convalescent phase nor in healthy controls. Interestingly, these cells expressed proliferation, adhesion, and tissue-homing genes, including SELPLG, a homing marker of the skin, the initial infected site of DENV. Flow cytometry analysis confirmed a significant upregulation of cell surface expression of a cutaneous lymphocyte-associated antigen (CLA) encoded by SELPLG in PCs and PBs, compared to naive and memory B cells from the same patients. The analysis of an independent single-cell B-cell receptor sequencing (scBCR-seq) dataset of DENV-infected patients revealed that the peripheral blood PCs and PBs exhibited the highest clonal expansion in secondary DENV infection compared to other B cell subsets. These clonally expanded cells also expressed the highest levels of tissue-homing genes, including SELPLG. In addition, by utilizing a public scRNA-seq dataset of SARS-CoV2 infection, we demonstrated the upregulation of several tissue-homing genes in PCs and PBs. Our study provides evidence for the potential roles of tissue-homing B cell subsets in the context of immune responses against viral infections in humans.
Collapse
Affiliation(s)
- Jantarika Kumar Arora
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anunya Opasawatchai
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Lee EG, Oh JE. From neglect to spotlight: the underappreciated role of B cells in cutaneous inflammatory diseases. Front Immunol 2024; 15:1328785. [PMID: 38426103 PMCID: PMC10902158 DOI: 10.3389/fimmu.2024.1328785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
The skin, covering our entire body as its largest organ, manifests enormous complexities and a profound interplay of systemic and local responses. In this heterogeneous domain, B cells were considered strangers. Yet, recent studies have highlighted their existence in the skin and their distinct role in modulating cutaneous immunity across various immune contexts. Accumulating evidence is progressively shedding light on the significance of B cells in maintaining skin health and in skin disorders. Herein, we integrate current insights on the systemic and local contributions of B cells in three prevalent inflammatory skin conditions: Pemphigus Vulgaris (PV), Systemic Lupus Erythematosus (SLE), and Atopic Dermatitis (AD), underscoring the previously underappreciated importance of B cells within skin immunity. Moreover, we address the potential adverse effects of current treatments used for skin diseases, emphasizing their unintentional consequences on B cells. These comprehensive approaches may pave the way for innovative therapeutic strategies that effectively address the intricate nature of skin disorders.
Collapse
Affiliation(s)
- Eun-Gang Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
4
|
Hanton AJ, Waddell LA, Hope JC, Gray M, Wu Z. Bovine NK subsets in the afferent lymph and lymph nodes have distinct expression of naïve and activation-associated cell surface expressed molecules, and are differentially stimulated by BCG vaccination. Vet Immunol Immunopathol 2023; 266:110682. [PMID: 38000215 DOI: 10.1016/j.vetimm.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Bovine natural killer (bNK) cells are heterogeneous cell populations defined by constitutive expression of the natural cytotoxicity receptor, NKp46 (CD335). Two major subsets of bNK cells, classified by differential expression of CD2, display divergent functions in innate immunity, and are hypothesised to contribute to adaptive immunity following vaccination. Here we characterised phenotypic variation of bNK cells within afferent lymph and lymph node (LN) tissues and between CD2+ and CD2- bNK subsets, and report phenotypic changes induced by BCG vaccination. CD2- bNK cells, which dominate in the afferent lymph and LN, displayed lower expression of the activation marker CD25 within the LN, with CD25+ cells being less than half as frequent as in afferent lymph. Furthermore, we found bNK cells had a lower expression of CD45RB, associated in cattle with naïve cell status, within LN compared to afferent lymph. Following BCG vaccination, bNK cells in afferent lymph draining the vaccination site showed increased CD2-CD25+ frequencies and increased expression of CD25 on CD2+ bNK cells, although the frequency of these cells remained unchanged. In summary, we provide an overview of the phenotype of bNK cells within bovine lymphatic tissues, and provide an indication of how subsets may diverge following BCG vaccination.
Collapse
Affiliation(s)
| | | | - Jayne C Hope
- The Roslin Institute, University of Edinburgh, EH25 9RG, UK
| | - Mark Gray
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, UK
| | - Zhiguang Wu
- The Roslin Institute, University of Edinburgh, EH25 9RG, UK.
| |
Collapse
|
5
|
Suchanek O, Clatworthy MR. Homeostatic role of B-1 cells in tissue immunity. Front Immunol 2023; 14:1106294. [PMID: 37744333 PMCID: PMC10515722 DOI: 10.3389/fimmu.2023.1106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 09/26/2023] Open
Abstract
To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
6
|
Li W, Crouse KK, Alley J, Frisbie RK, Fish SC, Andreyeva TA, Reed LA, Thorn M, DiMaggio G, Donovan CB, Bennett D, Garren J, Oziolor E, Qian J, Newman L, Vargas AP, Kumpf SW, Steyn SJ, Schnute ME, Thorarensen A, Hegen M, Stevens E, Collinge M, Lanz TA, Vincent F, Vincent MS, Berstein G. A Novel C-C Chemoattractant Cytokine (Chemokine) Receptor 6 (CCR6) Antagonist (PF-07054894) Distinguishes between Homologous Chemokine Receptors, Increases Basal Circulating CCR6 + T Cells, and Ameliorates Interleukin-23-Induced Skin Inflammation. J Pharmacol Exp Ther 2023; 386:80-92. [PMID: 37142443 DOI: 10.1124/jpet.122.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Blocking chemokine receptor C-C chemoattractant cytokine (chemokine) receptor (CCR) 6-dependent T cell migration has therapeutic promise in inflammatory diseases. PF-07054894 is a novel CCR6 antagonist that blocked only CCR6, CCR7, and C-X-C chemoattractant cytokine (chemokine) receptor (CXCR) 2 in a β-arrestin assay panel of 168 G protein-coupled receptors. Inhibition of CCR6-mediated human T cell chemotaxis by (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) was insurmountable by CCR6 ligand, C-C motif ligand (CCL) 20. In contrast, blockade of CCR7-dependent chemotaxis in human T cells and CXCR2-dependent chemotaxis in human neutrophils by PF-07054894 were surmountable by CCL19 and C-X-C motif ligand 1, respectively. [3H]-PF-07054894 showed a slower dissociation rate for CCR6 than for CCR7 and CXCR2 suggesting that differences in chemotaxis patterns of inhibition could be attributable to offset kinetics. Consistent with this notion, an analog of PF-07054894 with fast dissociation rate showed surmountable inhibition of CCL20/CCR6 chemotaxis. Furthermore, pre-equilibration of T cells with PF-07054894 increased its inhibitory potency in CCL20/CCR6 chemotaxis by 10-fold. The functional selectivity of PF-07054894 for inhibition of CCR6 relative to CCR7 and CXCR2 is estimated to be at least 50- and 150-fold, respectively. When administered orally to naïve cynomolgus monkeys, PF-07054894 increased the frequency of CCR6+ peripheral blood T cells, suggesting that blockade of CCR6 inhibited homeostatic migration of T cells from blood to tissues. PF-07054894 inhibited interleukin-23-induced mouse skin ear swelling to a similar extent as genetic ablation of CCR6. PF-07054894 caused an increase in cell surface CCR6 in mouse and monkey B cells, which was recapitulated in mouse splenocytes in vitro. In conclusion, PF-07054894 is a potent and functionally selective CCR6 antagonist that blocks CCR6-mediated chemotaxis in vitro and in vivo. SIGNIFICANCE STATEMENT: The chemokine receptor, C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) plays a key role in the migration of pathogenic lymphocytes and dendritic cells into sites of inflammation. (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) is a novel CCR6 small molecule antagonist that illustrates the importance of binding kinetics in achieving pharmacological potency and selectivity. Orally administered PF-07054894 blocks homeostatic and pathogenic functions of CCR6, suggesting that it is a promising therapeutic agent for the treatment of a variety of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wei Li
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Kimberly K Crouse
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jennifer Alley
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Richard K Frisbie
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Susan C Fish
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Tatyana A Andreyeva
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Lori A Reed
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mitchell Thorn
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Giovanni DiMaggio
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Carol B Donovan
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Donald Bennett
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jeonifer Garren
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Elias Oziolor
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jesse Qian
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Leah Newman
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Amanda P Vargas
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Steven W Kumpf
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Stefan J Steyn
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mark E Schnute
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Atli Thorarensen
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Martin Hegen
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Erin Stevens
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mark Collinge
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Thomas A Lanz
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Fabien Vincent
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Michael S Vincent
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Gabriel Berstein
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| |
Collapse
|
7
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
8
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
9
|
Abstract
Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary mucosa, compose the body’s front line of defense. Since barrier tissues are persistently exposed to microbial challenges, a rapid response that can deal with diverse invading pathogens is crucial. Because B cells have been perceived as indirectly contributing to immune responses through antibody production, B cells functioning in the peripheral organs have been outside the scope of researchers. However, recent evidence supports the existence of tissue-resident memory B cells (BRMs) in the lungs. This population’s defensive response was stronger and faster than that of their circulating counterparts and could resist heterogeneous strains. With such traits, BRMs could be a promising target for vaccine design, but much about them remains to be revealed, including their locations, origin, specific markers, and the mechanisms of their establishment and maintenance. There is evidence for resident B cells in organs other than the lungs, suggesting that B cells are directly involved in the immune reactions of multiple non-lymphoid organs. This review summarizes the history of the discovery of BRMs and discusses important unresolved questions. Unique characteristics of humoral immunity that play an important role in the peripheral organs will be described briefly. Future research on B cells residing in non-lymphoid organs will provide new insights to help solve major problems regarding human health.
Collapse
Affiliation(s)
- Choong Man Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- BioMedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Ji Eun Oh,
| |
Collapse
|
10
|
Khalil S, Donthi D, Gru AA. Cutaneous Reactive B-cell Lymphoid Proliferations. J Cutan Pathol 2022; 49:898-916. [PMID: 35656820 DOI: 10.1111/cup.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Cutaneous lymphoid hyperplasia (CLH), also known as cutaneous pseudolymphoma, is a spectrum of benign conditions characterized by reactive B- and T-cell cutaneous lymphocytic infiltrates. B-cell lymphoid proliferations are a heterogenous group of non-neoplastic cutaneous diseases that must be histopathologically distinguished from cutaneous B-cell lymphomas. These proliferations can be observed as reactive phenomena to infections, medications, allergens, neoplasms, and more. Further, there are many inflammatory conditions that present with reactive B-cell infiltrates, including actinic prurigo, Zoon balanitis, Rosai-Dorfman, and cutaneous plasmacytosis. This review summarizes multiple cutaneous B-cell lymphoid proliferations within the major categories of reactive and disease-associated CLH. Further we discuss major discriminating features of atypical CLH and malignancy. Understanding the specific patterns of B-cell CLH is essential for the proper diagnosis and treatment of patients presenting with such lesions.
Collapse
Affiliation(s)
- Shadi Khalil
- Department of Dermatology, University of California San Diego
| | | | | |
Collapse
|
11
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
12
|
Chen B, Yang J, Song Y, Zhang D, Hao F. Skin Immunosenescence and Type 2 Inflammation: A Mini-Review With an Inflammaging Perspective. Front Cell Dev Biol 2022; 10:835675. [PMID: 35281103 PMCID: PMC8908007 DOI: 10.3389/fcell.2022.835675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Skin-resident stromal cells, including keratinocytes, fibroblasts, adipocytes, and immune cells including Langerhans cells, dendritic cells, T cells, and innate lymphoid cells, and their functional products work in concert to ensure the realization of skin barrier immunity. However, aging-induced immunosenescence predisposes the elderly to pruritic dermatoses, including type 2 inflammation-mediated. Inflammaging, characterized by chronic low level of pro-inflammatory cytokines released from senescent cells with the senescence-associated secretory phenotype (SASP), may drive immunosenescence and tangle with type 2 inflammatory dermatoses. The present mini-review summarizes current evidence on immunosenescence and type 2 inflammation in the skin and further focuses on future needs from an inflammaging perspective to clarify their complexity.
Collapse
Affiliation(s)
- Bangtao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yao Song
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daojun Zhang
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Fei Hao,
| |
Collapse
|
13
|
Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, Sokullu E, Rahbarghazi R. Application of microneedle patches for drug delivery; doorstep to novel therapies. J Tissue Eng 2022; 13:20417314221085390. [PMID: 35516591 PMCID: PMC9065468 DOI: 10.1177/20417314221085390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
In the past decade, microneedle-based drug delivery systems showed promising approaches to become suitable and alternative for hypodermic injections and can control agent delivery without side effects compared to conventional approaches. Despite these advantages, the procedure of microfabrication is facing some difficulties. For instance, drug loading method, stability of drugs, and retention time are subjects of debate. Besides, the application of novel refining fabrication methods, types of materials, and instruments are other issues that need further attention. Herein, we tried to summarize recent achievements in controllable drug delivery systems (microneedle patches) in vitro and in vivo settings. In addition, we discussed the influence of delivered drugs on the cellular mechanism and immunization molecular signaling pathways through the intradermal delivery route. Understanding the putative efficiency of microneedle patches in human medicine can help us develop and design sophisticated therapeutic modalities.
Collapse
Affiliation(s)
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Lee DSW, Yam JY, Grasmuck C, Dasoveanu D, Michel L, Ward LA, Rojas OL, Zandee S, Bourbonnière L, Ramaglia V, Bar-Or A, Prat A, Gommerman JL. CCR6 Expression on B Cells Is Not Required for Clinical or Pathological Presentation of MOG Protein-Induced Experimental Autoimmune Encephalomyelitis despite an Altered Germinal Center Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:1513-1521. [PMID: 34400521 DOI: 10.4049/jimmunol.2001413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jennifer Y Yam
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Camille Grasmuck
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | - Dragos Dasoveanu
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Laure Michel
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Stephanie Zandee
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA; and.,Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Alexandre Prat
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
15
|
McGettigan SE, Debes GF. Immunoregulation by antibody secreting cells in inflammation, infection, and cancer. Immunol Rev 2021; 303:103-118. [PMID: 34145601 PMCID: PMC8387433 DOI: 10.1111/imr.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) are considered work horses of the humoral immune response for their tireless effort to produce large amounts of antibodies that fulfill an array of functions in host defense, inflammation, and maintenance of homeostasis. While traditionally considered largely senescent cells, surprising recent findings demonstrate that subsets of ASCs downmodulate ongoing immune responses independent of antibody formation. Such regulatory ASCs produce IL-10 or IL-35 and are implicated in maintaining tissue and immune homeostasis. They also serve to suppress pathogenic leukocytes in infection, allergy, and inflammatory diseases that affect tissues, such as the central nervous system and the respiratory tract. Additionally, regulatory ASCs infiltrate various cancer types and restrict effective anti-tumor T cell responses. While incompletely understood, there is significant overlap in factors that control ASC differentiation, IL-10 expression by B cells and the generation of ASCs that secrete both antibodies and IL-10. In this review, we will cover the biology, phenotype, generation, maintenance and function of regulatory ASCs in various tissues under pathological and steady states. An improved understanding of the development of regulatory ASCs and their biological roles will be critical for generating novel ASC-targeted therapies for the treatment of inflammatory diseases, infection, and cancer.
Collapse
Affiliation(s)
- Shannon E. McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Gudrun F. Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
16
|
Egbuniwe IU, Harris RJ, Nakamura M, Nestle FO, Akbar AN, Karagiannis SN, Lacy KE. B Lymphocytes Accumulate and Proliferate in Human Skin at Sites of Cutaneous Antigen Challenge. J Invest Dermatol 2021; 142:726-731.e4. [PMID: 34450137 PMCID: PMC8880055 DOI: 10.1016/j.jid.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Isioma U Egbuniwe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Translational Medical Sciences Unit, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, Massachusetts, USA
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
17
|
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight 2021; 6:148035. [PMID: 34061047 PMCID: PMC8262471 DOI: 10.1172/jci.insight.148035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The skin lesion erythema migrans (EM) is an initial sign of the Ixodes tick-transmitted Borreliella spirochetal infection known as Lyme disease. T cells and innate immune cells have previously been shown to predominate the EM lesion and promote the reaction. Despite the established importance of B cells and antibodies in preventing infection, the role of B cells in the skin immune response to Borreliella is unknown. Here, we used single-cell RNA-Seq in conjunction with B cell receptor (BCR) sequencing to immunophenotype EM lesions and their associated B cells and BCR repertoires. We found that B cells were more abundant in EM in comparison with autologous uninvolved skin; many were clonally expanded and had circulating relatives. EM-associated B cells upregulated the expression of MHC class II genes and exhibited preferential IgM isotype usage. A subset also exhibited low levels of somatic hypermutation despite a gene expression profile consistent with memory B cells. Our study demonstrates that single-cell gene expression with paired BCR sequencing can be used to interrogate the sparse B cell populations in human skin and reveals that B cells in the skin infection site in early Lyme disease expressed a phenotype consistent with local antigen presentation and antibody production.
Collapse
Affiliation(s)
| | | | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ira Fleming
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | | | | | - Alexia A. Belperron
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - David A. Hafler
- Department of Immunobiology
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Steven H. Kleinstein
- Department of Immunobiology
- Department of Pathology, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
19
|
Jang JW, Park S, Moon EY. Spleen tyrosine kinase regulates crosstalk of hypoxia-inducible factor-1α and nuclear factor (erythroid-derived2)-like 2 for B cell survival. Int Immunopharmacol 2021; 95:107509. [PMID: 33761438 DOI: 10.1016/j.intimp.2021.107509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/29/2022]
Abstract
B cells play a major role in regulating disease incidence through various factors, including spleen tyrosine kinase (Syk), which transmits signals to all hematopoietic lineage cells. Hypoxia-inducible factor (HIF)-1α accumulates under hypoxic conditions, which is also oxidative stress to induce nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responsible for gene expression of antioxidant enzymes. In the present study, we investigated whether B cells are regulated by crosstalk of HIF-1α and Nrf2 via reactive oxygen species (ROS)-mediated Syk activation. When B cells were incubated under hypoxic conditions, Syk phosphorylation, HIF-1α, and Nrf2 levels were increased. Hypoxia-inducible results were consistent with CoCl2 treatment, which mimics hypoxic conditions. Cell viability was reduced by the Syk inhibitor BAY 61-3606. Increased Nrf2 levels due to hypoxia or CoCl2 were inhibited by treatment with a HIF inhibitor. Hypoxia- or CoCl2-induced ROS increased HIF-1α and Nrf2 levels, which were attenuated by treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. HIF-1α levels were reduced in doxycycline-treated shNrf2 cells. Clobetasol propionate, a Nrf2 inhibitor, also inhibited HIF-1α levels induced by hypoxia or CoCl2. ROS-mediated Syk phosphorylation at tyrosine 525/526 was confirmed by treatment with H2O2, hypoxia, and CoCl2, and attenuated with NAC treatment. Inhibition of Syk phosphorylation by BAY 61-3606 is consistent with a decrease in protein HIF-1α and Nrf2 levels. Taken together, HIF-1α levels might control Nrf2 levels and vice versa, and could be associated with Syk phosphorylation in B cells. The results indicate that B cells could be regulated by crosstalk of HIF-1α and Nrf2 through ROS-mediated Syk activation.
Collapse
Affiliation(s)
- Ju-Won Jang
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Sojin Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
20
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
21
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
22
|
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021; 11:700. [PMID: 34066746 PMCID: PMC8150999 DOI: 10.3390/biom11050700] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Skin wounds greatly affect the global healthcare system, creating a substantial burden on the economy and society. Moreover, the situation is exacerbated by low healing rates, which in fact are overestimated in reports. Cutaneous wounds are generally classified into acute and chronic. The immune response plays an important role during acute wound healing. The activation of immune cells and factors initiate the inflammatory process, facilitate wound cleansing and promote subsequent tissue healing. However, dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wounds. The microenvironment of a chronic wound is characterized by high quantities of pro-inflammatory macrophages, overexpression of inflammatory mediators such as TNF-α and IL-1β, increased activity of matrix metalloproteinases and abundance of reactive oxygen species. Moreover, chronic wounds are frequently complicated by bacterial biofilms, which perpetuate the inflammatory phase. Continuous inflammation and microbial biofilms make it very difficult for the chronic wounds to heal. In this review, we discuss the role of innate and adaptive immunity in the pathogenesis of acute and chronic wounds. Furthermore, we review the latest immunomodulatory therapeutic strategies, including modifying macrophage phenotype, regulating miRNA expression and targeting pro- and anti-inflammatory factors to improve wound healing.
Collapse
Affiliation(s)
- Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| |
Collapse
|
23
|
Ford ES, Sholukh AM, Boytz R, Carmack SS, Klock A, Phasouk K, Shao D, Rossenkhan R, Edlefsen PT, Peng T, Johnston C, Wald A, Zhu J, Corey L. B cells, antibody-secreting cells, and virus-specific antibodies respond to herpes simplex virus 2 reactivation in skin. J Clin Invest 2021; 131:142088. [PMID: 33784252 PMCID: PMC8087200 DOI: 10.1172/jci142088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-based T cells are important effectors in the prevention and control of mucosal viral infections; less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting cells (ASCs) are present in inflammatory infiltrates in skin biopsy specimens from study participants during symptomatic herpes simplex virus 2 (HSV-2) reactivation and early healing. Both CD20+ B cells, most of which are antigen inexperienced based on their coexpression of IgD, and ASCs - characterized by dense IgG RNA expression in combination with CD138, IRF4, and Blimp-1 RNA - were found to colocalize with T cells. ASCs clustered with CD4+ T cells, suggesting the potential for crosstalk. HSV-2-specific antibodies to virus surface antigens were also present in tissue and increased in concentration during HSV-2 reactivation and healing, unlike in serum, where concentrations remained static over time. B cells, ASCs, and HSV-specific antibody were rarely detected in biopsies of unaffected skin. Evaluation of samples from serial biopsies demonstrated that B cells and ASCs followed a more migratory than resident pattern of infiltration in HSV-affected genital skin, in contrast to T cells. Together, these observations suggest the presence of distinct phenotypes of B cells in HSV-affected tissue; dissecting their role in reactivation may reveal new therapeutic avenues to control these infections.
Collapse
Affiliation(s)
- Emily S. Ford
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - RuthMabel Boytz
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Alexis Klock
- Department of Laboratory Medicine and Pathology, and
| | - Khamsone Phasouk
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raabya Rossenkhan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tao Peng
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Christine Johnston
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anna Wald
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
| |
Collapse
|
24
|
Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the Skin. J Invest Dermatol 2021; 141:1087-1095. [DOI: 10.1016/j.jid.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
|
25
|
Wang T, Li K, Xiao S, Xia Y. A Plausible Role for Collectins in Skin Immune Homeostasis. Front Immunol 2021; 12:594858. [PMID: 33790889 PMCID: PMC8006919 DOI: 10.3389/fimmu.2021.594858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is a complex organ that faces the external environment and participates in the innate immune system. Skin immune homeostasis is necessary to defend against external microorganisms and to recover from stress to the skin. This homeostasis depends on interactions among a variety of cells, cytokines, and the complement system. Collectins belong to the lectin pathway of the complement system, and have various roles in innate immune responses. Mannose-binding lectin (MBL), collectin kidney 1, and liver (CL-K1, CL-L1) activate the lectin pathway, while all have multiple functions, including recognition of pathogens, opsonization of phagocytosis, and modulation of cytokine-mediated inflammatory responses. Certain collectins are localized in the skin, and their expressions change during skin diseases. In this review, we summarize important advances in our understanding of how MBL, surfactant proteins A and D, CL-L1, and CL-K1 function in skin immune homeostasis. Based on the potential roles of collectins in skin diseases, we suggest therapeutic strategies for skin diseases through the targeting of collectins and relevant regulators.
Collapse
Affiliation(s)
- Tian Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Ruiz F, Wyss A, Rossel JB, Sulz MC, Brand S, Moncsek A, Mertens JC, Roth R, Clottu AS, Burri E, Juillerat P, Biedermann L, Greuter T, Rogler G, Pot C, Misselwitz B. A single nucleotide polymorphism in the gene for GPR183 increases its surface expression on blood lymphocytes of patients with inflammatory bowel disease. Br J Pharmacol 2021; 178:3157-3175. [PMID: 33511653 DOI: 10.1111/bph.15395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Benoît Rossel
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Michael Christian Sulz
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Stephan Brand
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René Roth
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aurélie S Clottu
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, University Medical Clinic, Kantonsspital Baselland, Liestal, Switzerland
| | - Pascal Juillerat
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Greuter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
27
|
Lerman I, Mitchell DC, Richardson CT. Human cutaneous B cells: what do we really know? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:440. [PMID: 33842661 PMCID: PMC8033329 DOI: 10.21037/atm-20-5185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B cells play many critical roles in the systemic immune response, including antibody secretion, antigen presentation, T cell co-stimulation, and pro- and anti-inflammatory cytokine production. However, the contribution of B cells to the local immune response in many non-lymphoid tissues, such as the skin, is incompletely understood. Cutaneous B cells are scarce except in certain malignant and inflammatory conditions, and as such, have been poorly characterized until recently. Emerging evidence now suggests an important role for cutaneous B in both skin homeostasis and pathogenesis of skin disease. Herein, we discuss the potential mechanisms for cutaneous B cell recruitment, localized antibody production, and T cell interaction in human skin infections and primary skin malignancies (i.e., melanoma, squamous cell carcinoma). We further consider the likely contribution of cutaneous B cells to the pathogenesis of inflammatory skin diseases, including pemphigus vulgaris, lupus erythematosus, systemic sclerosis, hidradenitis suppurativa, and atopic dermatitis. Finally, we examine the feasibility of B cell targeted therapy in the dermatologic setting, emphasizing areas that are still open to investigation. Through this review, we hope to highlight what we really know about cutaneous B cells in human skin, which can sometimes be lost in reviews that more broadly incorporate extensive data from animal models.
Collapse
Affiliation(s)
- Irina Lerman
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Drew C Mitchell
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christopher T Richardson
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Aira LE, Debes GF. Skin-Homing Regulatory B Cells Required for Suppression of Cutaneous Inflammation. J Invest Dermatol 2021; 141:1995-2005.e6. [PMID: 33577766 DOI: 10.1016/j.jid.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Pro and anti-inflammatory B-cell subsets that localize to unperturbed and inflamed skin are newly emerging components of the skin immune system. To test the relevance of regulatory B cells (Bregs) in the suppression of cutaneous inflammation, we asked whether impaired migration of these cells into the skin exacerbates skin inflammation. Using a mouse model with a B-cell‒specific tamoxifen-inducible deletion of α4β1 integrin, we demonstrate that selective disruption of α4β1-integrin expression in B cells significantly decreases IL-10+ Bregs in inflamed skin, whereas it does not affect their counterparts in lymphoid tissues. Impaired skin homing and reduced cutaneous accumulation of IL-10+ Bregs lead to a significant increase in clinical and histopathological parameters of inflammation in both psoriasiform skin inflammation and cutaneous delayed contact hypersensitivity. Thus, our data show a crucial function of skin-homing IL-10+ Bregs in the suppression of skin inflammation, supporting the notion that Bregs are critical players in the cutaneous environment during inflammatory skin diseases.
Collapse
Affiliation(s)
- Lazaro Emilio Aira
- Department of Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gudrun Fiona Debes
- Department of Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
30
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
31
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
32
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
33
|
Kaufman CL, Kanitakis J, Weissenbacher A, Brandacher G, Mehra MR, Amer H, Zelger BG, Zelger B, Pomahac B, McDiarmid S, Cendales L, Morelon E. Defining chronic rejection in vascularized composite allotransplantation-The American Society of Reconstructive Transplantation and International Society of Vascularized Composite Allotransplantation chronic rejection working group: 2018 American Society of Reconstructive Transplantation meeting report and white paper Research goals in defining chronic rejection in vascularized composite allotransplantation. SAGE Open Med 2020; 8:2050312120940421. [PMID: 32704373 PMCID: PMC7361482 DOI: 10.1177/2050312120940421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: This report summarizes a collaborative effort between the American Society of Reconstructive Transplantation and the International Society of Vascularized Composite Allotransplantation to establish what is known about chronic rejection in recipients of vascularized composite allografts, with an emphasis on upper extremity and face transplants. As a picture of chronic rejection in hand and face vascularized composite allografts emerges, the results will be applied to other types of vascularized composite allografts, such as uterine transplantation. Methods: The overall goal is to develop a definition of chronic rejection in vascularized composite allografts so that we can establish longitudinal correlates of factors such as acute rejection, immunosuppressive therapy, de novo donor-specific antibody and trauma/infection and other external factors on the development of chronic rejection. As Dr Kanitakis eloquently stated at the 2017 International Society of Vascularized Composite Allotransplantation meeting in Salzburg, “Before we can correlate causative factors of chronic rejection, we have to define what chronic rejection in VCA is.” Results: The first meeting report was presented at the sixth Biennial meeting of the American Society of Reconstructive Transplantation in November 2018. Based on collaborative efforts and descriptions of clinical cases of chronic rejection in vascularized composite allograft recipients, a working definition of chronic rejection in vascularized composite allografts with respect to overt functional decline, subclinical functional decline, histologic evidence without functional decline, and normal allograft function in the absence of histologic evidence of chronic rejection is proposed. Conclusions: It is the intent of this collaborative working group that these working definitions will help to focus ongoing research to define the incidence, risk factors and treatment regimens that will identify mechanisms of chronic rejection in vascularized composite allografts. As with all good research, our initial efforts have generated more questions than answers. We hope that this is the first of many updates.
Collapse
Affiliation(s)
| | - Jean Kanitakis
- Department of Dermatology, Ed. Herriot Hospital, Lyon, France
| | | | | | | | | | | | | | | | - Sue McDiarmid
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | | | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Ed. Herriot Hospital, Lyon, France
| |
Collapse
|
34
|
A Niche for Plasma Cells: The Skin. J Invest Dermatol 2020; 139:2411-2414. [PMID: 31753124 DOI: 10.1016/j.jid.2019.06.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
Antibodies are key components of the skin immune barrier, and antibodies directed toward skin structures can result in disease. Wilson et al. (2019) show that healthy skin is a niche for antibody secreting plasma cells and plasmablasts, and that inflammation and immunization increase their numbers. This work advances our understanding of skin associated B and plasma cells in health and disease.
Collapse
|
35
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Frew JW, Grand D, Navrazhina K, Krueger JG. Beyond antibodies: B cells in Hidradenitis Suppurativa: Bystanders, contributors or therapeutic targets? Exp Dermatol 2020; 29:509-515. [PMID: 32145106 DOI: 10.1111/exd.14092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
Hidradenitis Suppurativa (HS) is a chronic inflammatory dermatosis in which B cells play a prominent but unclear role. Our understanding of the role of B cells in innate and adaptive immunity (including antibody production, antigen presentation and effector functions) is rapidly evolving; and these novel findings require integration into the pathophysiologic model of HS. B cells are transiently present in normal human skin and have functions in the maintenance of innate cutaneous immunity. Recruitment and trafficking of B cells in significant numbers to skin is mediated via B cell-specific chemokines as well as shared signalling with T-cells. The evidence suggests that the presence of antibody-secreting B cells is not sufficient to induce clinical disease and T-cell interaction is required to induce clinical disease. Such interactions can occur in secondary lymphoid organs adjacent to involved tissue or in tertiary lymphoid organs which develop in response to the HS inflammatory milieu. This milieu directly mediates the types of antibodies produced by B cells, given the role of cytokines in B-cell class switching. Identified antibodies in HS (IgG, IgM, ASCA, ACPA) currently demonstrate no evidence of pathogenicity, but may be novel biomarkers for disease severity. B cells also have anti-inflammatory properties through production of IL-10 and IL-35 which require experimental validation. Overall, B cells in HS are likely to be involved in amplification of a pre-existing inflammatory response; but it remains unclear whether they may be directly pathogenic.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, NY, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
37
|
Hunka J, Riley JT, Debes GF. Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species. BMC Vet Res 2020; 16:83. [PMID: 32143631 PMCID: PMC7060616 DOI: 10.1186/s12917-020-02299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
Background Flow cytometry is a powerful tool for the multiparameter analysis of leukocyte subsets on the single cell level. Recent advances have greatly increased the number of fluorochrome-labeled antibodies in flow cytometry. In particular, an increase in available fluorochromes with distinct excitation and emission spectra combined with novel multicolor flow cytometers with several lasers have enhanced the generation of multidimensional expression data for leukocytes and other cell types. However, these advances have mainly benefited the analysis of human or mouse cell samples given the lack of reagents for most animal species. The flow cytometric analysis of important veterinary, agricultural, wildlife, and other animal species is still hampered by several technical limitations, even though animal species other than the mouse can serve as more accurate models of specific human physiology and diseases. Results Here we present time-tested approaches that our laboratory regularly uses in the multiparameter flow cytometric analysis of ovine leukocytes. The discussed approaches will be applicable to the analysis of cells from most animal species and include direct modification of antibodies by covalent conjugation or Fc-directed labeling (Zenon™ technology), labeled secondary antibodies and other second step reagents, labeled receptor ligands, and antibodies with species cross-reactivity. Conclusions Using refined technical approaches, the number of parameters analyzed by flow cytometry per cell sample can be greatly increased, enabling multidimensional analysis of rare samples and giving critical insight into veterinary and other less commonly analyzed species. By maximizing information from each cell sample, multicolor flow cytometry can reduce the required number of animals used in a study.
Collapse
Affiliation(s)
- Julia Hunka
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA.,Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - John T Riley
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
38
|
Foulon M, Pouchin A, Manry J, Khater F, Robbe-Saule M, Durand A, Esnault L, Delneste Y, Jeannin P, Saint-André JP, Croué A, Altare F, Abel L, Alcaïs A, Marion E. Skin-specific antibodies neutralizing mycolactone toxin during the spontaneous healing of Mycobacterium ulcerans infection. SCIENCE ADVANCES 2020; 6:eaax7781. [PMID: 32133396 PMCID: PMC7043917 DOI: 10.1126/sciadv.aax7781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Buruli ulcer, a neglected tropical infectious disease, is caused by Mycobacterium ulcerans. Without treatment, its lesions can progress to chronic skin ulcers, but spontaneous healing is observed in 5% of cases, suggesting the possible establishment of a host strategy counteracting the effects of M. ulcerans. We reveal here a skin-specific local humoral signature of the spontaneous healing process, associated with a rise in antibody-producing cells and specific recognition of mycolactone by the mouse IgG2a immunoglobulin subclass. We demonstrate the production of skin-specific antibodies neutralizing the immunomodulatory activity of the mycolactone toxin, and confirm the role of human host machinery in triggering effective local immune responses by the detection of anti-mycolactone antibodies in patients with Buruli ulcer. Our findings pave the way for substantial advances in both the diagnosis and treatment of Buruli ulcer in accordance with the most recent challenges issued by the World Health Organization.
Collapse
Affiliation(s)
- Mélanie Foulon
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Amélie Pouchin
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Fida Khater
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Marie Robbe-Saule
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Amandine Durand
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Lucille Esnault
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| | - Yves Delneste
- Equipe 07, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
- CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Pascale Jeannin
- Equipe 07, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
- CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | | | - Anne Croué
- Pathology Department, University Hospital of Angers, 49933 Angers, France
| | - Frederic Altare
- Equipe 05, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, Université de Nantes, Nantes, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Estelle Marion
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d’Angers, Angers, France
| |
Collapse
|
39
|
Debes GF, McGettigan SE. Skin-Associated B Cells in Health and Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 202:1659-1666. [PMID: 30833422 DOI: 10.4049/jimmunol.1801211] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Traditionally, the skin was believed to be devoid of B cells, and studies of the skin immune system have largely focused on other types of leukocytes. Exciting recent data show that B cells localize to the healthy skin of humans and other mammalian species with likely homeostatic functions in host defense, regulation of microbial communities, and wound healing. Distinct skin-associated B cell subsets drive or suppress cutaneous inflammatory responses with important clinical implications. Localized functions of skin-associated B cell subsets during inflammation comprise Ab production, interactions with skin T cells, tertiary lymphoid tissue formation, and production of proinflammatory cytokines but also include immunosuppression by providing IL-10. In this review, we delve into the intriguing new roles of skin-associated B cells in homeostasis and inflammation.
Collapse
Affiliation(s)
- Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Shannon E McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
40
|
Wilson RP, McGettigan SE, Dang VD, Kumar A, Cancro MP, Nikbakht N, Stohl W, Debes GF. IgM Plasma Cells Reside in Healthy Skin and Accumulate with Chronic Inflammation. J Invest Dermatol 2019; 139:2477-2487. [PMID: 31152755 PMCID: PMC6874734 DOI: 10.1016/j.jid.2019.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Antibodies are key to cutaneous host defense and inflammation. Despite their importance, the mechanisms by which skin antibodies are sustained are poorly described. Here, we identified that, in addition to antibody production in lymphoid tissues, plasma cells reside in healthy mouse and human skin. In naïve mice, IgM was the predominant isotype produced in skin. Skin plasma cells developed independently of T cells and microbiota. Importantly, chronic skin inflammation promoted the massive accumulation of IgM-secreting cells, and cutaneous immunization directed both T cell-dependent and -independent antigen-specific IgM-secreting cells into skin. Unlike their counterparts in lymphoid tissues, cutaneous IgM-secreting cells were completely dependent on survival factors such as a proliferation-inducing ligand or B cell-activating factor, which were constitutively expressed and upregulated during inflammation in skin. Our data support a model in which skin plasma cells supply natural and adaptive IgM to the cutaneous environment, thereby supporting homeostatic skin barrier functions and providing defense against pathogen intrusion. Our results are also of potential relevance for manipulation of cutaneous plasma cells in inflammatory skin diseases or cutaneous plasma cell malignancies.
Collapse
Affiliation(s)
- R Paul Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon E McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Van Duc Dang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cell Biology, Faculty of Biology, VNU University of Science, Hanoi, Vietnam; Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Anil Kumar
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
41
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Kaufman CL, Cascalho M, Ozyurekoglu T, Jones CM, Ramirez A, Roberts T, Tien HY, Moreno R, Galvis E, Tsai TM, Palazzo M, Farner S, Platt JL. The role of B cell immunity in VCA graft rejection and acceptance. Hum Immunol 2019; 80:385-392. [DOI: 10.1016/j.humimm.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
|
43
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
44
|
Hayes AJ, Rane S, Scales HE, Meehan GR, Benson RA, Maroof A, Schroeder J, Tomura M, Gozzard N, Yates AJ, Garside P, Brewer JM. Spatiotemporal Modeling of the Key Migratory Events During the Initiation of Adaptive Immunity. Front Immunol 2019; 10:598. [PMID: 31024523 PMCID: PMC6460458 DOI: 10.3389/fimmu.2019.00598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Initiation of adaptive immunity involves distinct migratory cell populations coming together in a highly dynamic and spatially organized process. However, we lack a detailed spatiotemporal map of these events due to our inability to track the fate of cells between anatomically distinct locations or functionally identify cell populations as migratory. We used photo-convertible transgenic mice (Kaede) to spatiotemporally track the fate and composition of the cell populations that leave the site of priming and enter the draining lymph node to initiate immunity. We show that following skin priming, the lymph node migratory population is principally composed of cells recruited to the site of priming, with a minor contribution from tissue resident cells. In combination with the YAe/Eα system, we also show that the majority of cells presenting antigen are CD103+CD11b+ dendritic cells that were recruited to the site of priming during the inflammatory response. This population has previously only been described in relation to mucosal tissues. Comprehensive phenotypic profiling of the cells migrating from the skin to the draining lymph node by mass cytometry revealed that in addition to dendritic cells, the migratory population also included CD4+ and CD8+ T cells, B cells, and neutrophils. Taking our complex spatiotemporal data set, we then generated a model of cell migration that quantifies and describes the dynamics of arrival, departure, and residence times of cells at the site of priming and in the draining lymph node throughout the time-course of the initiation of adaptive immunity. In addition, we have identified the mean migration time of migratory dendritic cells as they travel from the site of priming to the draining lymph node. These findings represent an unprecedented, detailed and quantitative map of cell dynamics and phenotypes during immunization, identifying where, when and which cells to target for immunomodulation in autoimmunity and vaccination strategies.
Collapse
Affiliation(s)
- Alan J Hayes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Sanket Rane
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Hannah E Scales
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | | - Juliane Schroeder
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | | | - Andrew J Yates
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
45
|
Bekele Y, Lemma M, Bobosha K, Yibeltal D, Nasi A, Gebre M, Nilsson A, Aseffa A, Howe R, Chiodi F. Homing defects of B cells in HIV-1 infected children impair vaccination responses. Vaccine 2019; 37:2348-2355. [PMID: 30914222 DOI: 10.1016/j.vaccine.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Successful vaccinations rely on antibody responses. Chemokine receptors play an important role in B cell homing to differentiation niches. We assessed CXCR4, CXCR5 and CCR6 expression on B cells during HIV-1 infection and relate it to antibody responses against a HBV vaccine. METHODS Blood was obtained from 54 healthy controls and 38 ART-treated HIV-1 infected children, aviremic (n = 25) or viremic (n = 13). Frequency of naïve and memory B cell subsets was studied by immunostaining. Homing capacity of blood B cells to lymphoid and inflamed tissues was evaluated through CXCR4, CXCR5 and CCR6 expression. Plasma CXCL12 and CXCL13 levels and antibody titers to HBV antigen were determined by ELISA. RESULTS The frequency of naïve and resting memory (RM) B cells in ART treated children was comparable to control subjects. Profound defects in the homing phenotypes of naïve and memory B cells were identified, with lower CXCR4 and CXCR5 expression. Increased CXCL13 levels were observed in infected children, inversely correlating to CXCR5 expressing B cell subpopulations. Antibody titers to HBV vaccine correlated with frequency of resting and switched memory B cells in HIV-1 infected children. CONCLUSIONS Homing defects of B cells to germinal center may underlie impaired vaccine responses during HIV-1 infection.
Collapse
Affiliation(s)
- Yonas Bekele
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia.
| | - Mahlet Lemma
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia; Addis Ababa University, College of Natural Sciences, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Desalegn Yibeltal
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Aikaterini Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Meseret Gebre
- All Africa Leprosy, Tuberculosis and Rehabilitation Training (ALERT) Center Addis Ababa, Ethiopia
| | - Anna Nilsson
- Department of Women's and Children Health, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Kolluru C, Williams M, Yeh JS, Noel RK, Knaack J, Prausnitz MR. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed Microdevices 2019; 21:14. [PMID: 30725230 PMCID: PMC6533066 DOI: 10.1007/s10544-019-0363-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minimally invasive point-of-care diagnostic devices are of great interest for rapid detection of biomarkers in diverse settings. Although blood is the most common source of biomarkers, interstitial fluid (ISF) is an alternate body fluid that does not clot or contain red blood cells that often complicate analysis. However, ISF is difficult to collect. In this study, we assessed the utility of a microneedle patch to sample microliter volumes of ISF in a simple and minimally invasive manner. We demonstrated the use of ISF collected in this way for therapeutic drug monitoring by showing similar vancomycin pharmacokinetic profiles in ISF and serum from rats. We also measured polio-specific neutralizing antibodies and anti-polio IgG in ISF similar to serum in rats immunized with polio vaccine. These studies demonstrate the potential utility of ISF collected by microneedle patch in therapeutic drug monitoring and immunodiagnostic applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jihee Stephanie Yeh
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jennifer Knaack
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
47
|
Nuttall PA. Wonders of tick saliva. Ticks Tick Borne Dis 2018; 10:470-481. [PMID: 30459085 DOI: 10.1016/j.ttbdis.2018.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Saliva of ticks is arguably the most complex saliva of any animal. This is particularly the case for ixodid species that feed for many days firmly attached to the same skin site of their obliging host. Sequencing and spectrometry technologies combined with bioinformatics are enumerating ingredients in the saliva cocktail. The dynamic and expanding saliva recipe is helping decipher the wonderous activities of tick saliva, revealing how ticks stealthily hide from their hosts while satisfying their gluttony and sharing their individual resources. This review takes a tick perspective on the composition and functions of tick saliva, covering water balance, gasket and holdfast, control of host responses, dynamics, individuality, mate guarding, saliva-assisted transmission, and redundancy. It highlights areas sometimes overlooked - feeding aggregation and sharing of sialomes, and the contribution of salivary gland storage granules - and questions whether the huge diversity of tick saliva molecules is 'redundant' or more a reflection on the enormous adaptability wonderous saliva confers on ticks.
Collapse
Affiliation(s)
- Patricia A Nuttall
- Department of Zoology, University of Oxford, UK and Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
| |
Collapse
|
48
|
Lafouresse F, Groom JR. A Task Force Against Local Inflammation and Cancer: Lymphocyte Trafficking to and Within the Skin. Front Immunol 2018; 9:2454. [PMID: 30405637 PMCID: PMC6207597 DOI: 10.3389/fimmu.2018.02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The skin represents a specialized site for immune surveillance consisting of resident, inflammatory and memory populations of lymphocytes. The entry and retention of T cells, B cells, and ILCs is tightly regulated to facilitate detection of pathogens, inflammation and tumors cells. Loss of individual or multiple populations in the skin may break tolerance or increase susceptibility to tumor growth and spread. Studies have significantly advanced our understanding of the role of skin T cells and ILCs at steady state and in inflammatory settings such as viral challenge, atopy, and autoimmune inflammation. The knowledge raised by these studies can benefit to our understanding of immune cell trafficking in primary melanoma, shedding light on the mechanisms of tumor immune surveillance and to improve immunotherapy. This review will focus on the T cells, B cells, and ILCs of the skin at steady state, in inflammatory context and in melanoma. In particular, we will detail the core chemokine and adhesion molecules that regulate cell trafficking to and within the skin, which may provide therapeutic avenues to promote tumor homing for a team of lymphocytes.
Collapse
Affiliation(s)
- Fanny Lafouresse
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Li C, To KKW, Zhang AJX, Lee ACY, Zhu H, Mak WWN, Hung IFN, Yuen KY. Co-stimulation With TLR7 Agonist Imiquimod and Inactivated Influenza Virus Particles Promotes Mouse B Cell Activation, Differentiation, and Accelerated Antigen Specific Antibody Production. Front Immunol 2018; 9:2370. [PMID: 30369932 PMCID: PMC6194170 DOI: 10.3389/fimmu.2018.02370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Current influenza vaccines have relatively low effectiveness, especially against antigenically drifted strains, the effectiveness is even lower in the elderly and immunosuppressed individuals. We have previously shown in a randomized clinical trial that the topical application of a toll-like receptor 7 agonist, imiquimod, just before intradermal influenza vaccine could expedite and augment antibody response, including to antigenically-drifted strains. However, the mechanism of this vaccine and imiquimod combination approach is poorly understood. Here, we demonstrated that imiquimod alone directly activated purified mouse peritoneal B cells. When combined with inactivated H1N1/415742Md influenza virus particle (VP) as vaccine, co-stimulation of mouse peritoneal B cells in vitro induced stronger activation, proliferation, and production of virus-antigen specific IgM and IgG. Intraperitoneal injection of a combination of VP and imiquimod (VCI) was associated with an increased number of activated B cells with enhanced expression of CD86 in the mesenteric draining lymph nodes (mesLN) and the spleen at 18 h after injection. Three days after immunization with VCI, mouse spleen showed significantly more IgM and IgG secreting cells upon in vitro re-stimulation with inactivated virus, mouse sera were detected with viral neutralizing antibody. Transfer of these spleen B cells to naïve mice improved survival after lethal dose of H1N1/415742Md challenge. More importantly, the functional response of VCI-induced B cell activation was demonstrated by early challenge with a lethal dose of H1N1/415742Md influenza virus at 3 days after immunization. The spleen and mediastinal lymph nodes (mdLN) in mice immunized with VCI had germinal center formation, and significantly higher number of plasmablasts, plasma cells, and virus-antigen specific IgM and IgG secreting cells at only 3–4 days post virus challenge, compared with those of mice that have received imiquimod, inactivated virus alone or PBS. Serum virus-specific IgG2a, IgG2b, and IgG1 and bronchoalveolar lavage fluid (BALF) virus-specific IgA at 3 or 4 days post challenge were significantly higher in mice immunized with VCI, which had significantly reduced lung viral load and 100% survival. These findings suggested that imiquimod accelerates the vaccine-induced antibody production via inducing rapid differentiation of naïve B cells into antigen-specific antibody producing cells.
Collapse
Affiliation(s)
- Can Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| | - Anna J X Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew C Y Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| | - Houshun Zhu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Winger W N Mak
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| | - Ivan F N Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, University of Hong Kong, Pokfulam, Hong Kong.,Research Centre of Infection and Immunology, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
50
|
Sarkar A, Shukla SK, Alqatawni A, Kumar A, Addya S, Tsygankov AY, Rafiq K. The Role of Allograft Inflammatory Factor-1 in the Effects of Experimental Diabetes on B Cell Functions in the Heart. Front Cardiovasc Med 2018; 5:126. [PMID: 30258845 PMCID: PMC6145033 DOI: 10.3389/fcvm.2018.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus (DM) often causes chronic inflammation, hypertrophy, apoptosis and fibrosis in the heart and subsequently leads to myocardial remodeling, deteriorated cardiac function and heart failure. However, the etiology of the cardiac disease is unknown. Therefore, we assessed the gene expression in the left ventricle of diabetic and non-diabetic mice using Affymetrix microarray analysis. Allograft inflammatory factor-1 (AIF-1), one of the top downregulated B cell inflammatory genes, is associated with B cell functions in inflammatory responses. Real-time reverse transcriptase-polymerase chain reaction confirmed the Affymetrix data. The expression of CD19 and AIF-1 were downregulated in diabetic hearts as compared to control hearts. Using in vitro migration assay, we showed for the first time that AIF-1 is responsible for B cell migration as B cells migrated to GFP-AIF-1-transfected H9C2 cells compared to empty vector-transfected cells. Interestingly, overexpression of AIF-1 in diabetic mice prevented streptozotocin-induced cardiac dysfunction, inflammation and promoted B cell homing into the heart. Our results suggest that AIF-1 downregulation inhibited B cell homing into diabetic hearts, thus promoting inflammation that leads to the development of diabetic cardiomyopathy, and that overexpression of AIF-1 could be a novel treatment for this condition.
Collapse
Affiliation(s)
- Amrita Sarkar
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sanket K Shukla
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aseel Alqatawni
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anil Kumar
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Y Tsygankov
- Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Khadija Rafiq
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|