1
|
Abdel-Hamid GR, Mostafa DM, Fathy RM, Lotfy DM, Osman S. Cytokine storm modulation using cholecalciferol and low dose gamma radiation in Escherichia coli infected mice. Cell Biochem Funct 2024; 42:e4026. [PMID: 38693631 DOI: 10.1002/cbf.4026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.
Collapse
Affiliation(s)
- Gehan R Abdel-Hamid
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Dalia M Mostafa
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rasha M Fathy
- Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Dina M Lotfy
- Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Soheir Osman
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Zhang K, Zhang M, Su H, Zhao F, Wang D, Zhang Y, Cao G, Zhang Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals (Basel) 2024; 14:1572. [PMID: 38891619 PMCID: PMC11171030 DOI: 10.3390/ani14111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study is to explore the mechanism of IL-17A infection in the development of bacterial mastitis in dairy cows. In this study, RT-qPCR and ELISA were used to measure the promoting effect of IL-17A on the generation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (IL-8). In addition, Western blot (WB) was applied to measure the influences of IL-17A on the inflammation-related ERK and p38 proteins in the MAPK pathways. The results show that under the stimulation of LPS on cow mammary epithelial cells (CMECs), cytokines IL-1β, IL-6, IL-8, TNF-α, and IL-17A will exhibit significantly increased expression levels (p < 0.05). With inhibited endogenous expression of IL-17A, cytokines IL-1β, IL-6, IL-8, and TNF-α will present reduced genetic expression (p < 0.01), with reduced phosphorylation levels of ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). Upon the exogenous addition of the IL-17A cytokine, the genetic expression of cytokines IL-1β, IL-6, IL-8, and TNF-α will increase (p < 0.05), with increased phosphorylation levels of the ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). These results indicate that under the stimulation of CMECs with LPS, IL-17A can be expressed together with relevant inflammatory cytokines. Meanwhile, the inflammatory responses of mammary epithelial cells are directly proportional to the expression levels of IL-17A inhibited alone or exogenously added. In summary, this study shows that IL-17A could be used as an important indicator for assessing the bacterial infections of mammary glands, indicating that IL-17A could be regarded as one potential therapeutic target for mastitis.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
3
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Morrison T, Watts ER, Sadiku P, Walmsley SR. The emerging role for metabolism in fueling neutrophilic inflammation. Immunol Rev 2023; 314:427-441. [PMID: 36326284 PMCID: PMC10953397 DOI: 10.1111/imr.13157] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are a critical element of host defense and are rapidly recruited to inflammatory sites. Such sites are frequently limited in oxygen and/or nutrient availability, presenting a metabolic challenge for infiltrating cells. Long believed to be uniquely dependent on glycolysis, it is now clear that neutrophils possess far greater metabolic plasticity than previously thought, with the capacity to generate energy stores and utilize extracellular proteins to fuel central carbon metabolism and biosynthetic activity. Out-with cellular energetics, metabolic programs have also been implicated in the production of neutrophils and their progenitors in the bone marrow compartment, activation of neutrophil antimicrobial responses, inflammatory and cell survival signaling cascades, and training of the innate immune response. Thus, understanding the mechanisms by which metabolic processes sustain changes in neutrophil effector functions and how these are subverted in disease states provides exciting new avenues for the treatment of dysfunctional neutrophilic inflammation which are lacking in clinical practice to date.
Collapse
Affiliation(s)
- Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| |
Collapse
|
5
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
6
|
Gong Z, Zhang S, Gu B, Cao J, Mao W, Yao Y, Zhao J, Ren P, Zhang K, Liu B. Codonopsis pilosula polysaccharide attenuates Escherichia coli-induced acute lung injury in mice. Food Funct 2022; 13:7999-8011. [DOI: 10.1039/d2fo01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease could be caused by bacterial infection. Lipopolysaccharide (LPS), a prototype pathogen-associated molecular pattern (PAMP) from gram-negative bacteria such as Escherichia coli...
Collapse
|
7
|
Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19. DISEASE MARKERS 2021; 2021:7686374. [PMID: 34956420 PMCID: PMC8702356 DOI: 10.1155/2021/7686374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Objective S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. Methods The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. Results SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = −0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. Conclusions A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.
Collapse
|
8
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Robbins ME, Cho HY, Hansen JM, Luchsinger JR, Locy ML, Velten M, Kleeberger SR, Rogers LK, Tipple TE. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol 2021; 38:101797. [PMID: 33254076 PMCID: PMC7708869 DOI: 10.1016/j.redox.2020.101797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular antioxidants protect against hyperoxic lung injury. The role of the glutathione (GSH) system in lung development and bronchopulmonary dysplasia (BPD) pathogenesis has not been systematically investigated. The current study utilized GSH reductase-deficient (Gsr-KO) neonatal mice to test the hypothesis that early disruption of the GSH system negatively impacts lung development and hyperoxic responses. Lungs from wild-type (Gsr-WT) and Gsr-KO mice were analyzed for histopathology, developmental markers, redox indices, and transcriptome profiling at different developmental stages following exposure to room air or hyperoxia (85% O2) for up to 14 d. Lungs from Gsr-KO mice exhibited alveolar epithelial dysplasia in the embryonic and neonatal periods with relatively normal lung architecture in adulthood. GSH and its oxidized form (GSSG) were 50-70% lower at E19-PND14 in Gsr-KO lungs than in age-matched Gsr-WT. Differential gene expression between Gsr-WT and Gsr-KO lungs was analyzed at discrete developmental stages. Gsr-KO lungs exhibited downregulated cell cycle and DNA damage checkpoint genes at E19, as well as lung lipid metabolism and surfactant genes at PND5. In addition to abnormal baseline lung morphometry, Gsr-KO mice displayed a blunted response to hyperoxia. Hyperoxia caused a more robust upregulation of the lung thioredoxin system in Gsr-KO compared to Gsr-WT. Gsr-dependent, hyperoxia-responsive genes were highly associated with abnormal cytoskeleton, skeletal-muscular function, and tissue morphology at PND5. Overall, our data in Gsr-KO mice implicate the GSH system as a key regulator of lung development, cellular differentiation, and hyperoxic responses in neonatal mice.
Collapse
Affiliation(s)
- Mary E Robbins
- Division of Neonatology, Department of Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jason M Hansen
- Physiology & Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Joseph R Luchsinger
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan L Locy
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich- Wilhelms University, University Medical Center, Bonn, Germany
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Trent E Tipple
- Center for Pregnancy and Newborn Research, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Özdemir BC. Androgen Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:169-183. [PMID: 33123999 DOI: 10.1007/978-3-030-47189-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key function of mesenchymal/stromal androgen receptor (AR) signaling for prostate development has been well documented by tissue recombination experiments. Some studies have addressed the expression and function of AR in stromal cells in prostate cancer, yet our understanding of the role of stromal AR in other tissues beyond prostate is still insufficient.Genomic analysis has revealed that cellular responses to androgens differ between epithelial and stromal cells. AR in stromal cells seems not to act via classical AR transcription factors such as FOXA1 but rather depends on the JUN/AP1 complex. Stromal AR appears to have tumor-promoting and tumor-protective functions depending on tumor stage. Loss of AR signaling in fibroblasts has been detected already in premalignant lesions in the skin and prostate and has been associated with tumor induction in xenografts of skin cancer and aggressive disease features and poor patient prognosis in prostate cancer. Moreover, AR expression is found on virtually all tissue-infiltrating immune cells and plays critical roles in immune cell function. These findings suggest a potential deleterious impact of current androgen deprivation therapies which inhibit both epithelial and stromal AR, highlighting the need to develop tissue-specific AR inhibitors.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
11
|
Verdon R, Gillies SL, Brown DM, Henry T, Tran L, Tyler CR, Rossi AG, Stone V, Johnston HJ. Neutrophil activation by nanomaterials in vitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology 2020; 15:1-20. [PMID: 33272088 DOI: 10.1080/17435390.2020.1834635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - David M Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Theodore Henry
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK
| | - Charles R Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
12
|
Harasgama JC, Kasthuriarachchi TDW, Kwon H, Wan Q, Lee J. Molecular and functional characterization of a mitochondrial glutathione reductase homolog from redlip mullet (Liza haematocheila): Disclosing its antioxidant properties in the fish immune response mechanism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103785. [PMID: 32735957 DOI: 10.1016/j.dci.2020.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Glutathione reductase (GSHR) is a biologically important enzyme involved in the conversion of oxidized glutathione (GSSG) into its reduced form, reduced glutathione (GSH), with the catalytic activity of NADPH. Most animals and aquatic organisms, including fish, possess high levels of this enzyme system to neutralize oxidative stress in cells. The current study was conducted to broaden our knowledge of GSHR in fish by identifying a mitochondrial isoform of this enzyme (LhGSHRm) in redlip mullet, Liza haematocheila, and clarifying its structure and function. The complete open reading frame of LhGSHRm consists of 1527 base pairs, encoding 508 amino acids, with a predicted molecular weight of 55.43 kDa. Multiple sequence alignment revealed the conservation of important amino acids in this fish. Phylogenetic analysis demonstrated the closest evolutionary relationship between LhGSHRm and other fish GSHRm counterparts. In tissue distribution analysis, the highest mRNA expression of LhGSHRm was observed in the gill tissue under normal physiological conditions. Following pathogenic challenges, the LhGSHRm transcription level was upregulated in a time-dependent manner in the gill and liver tissues, which may modulate the immune reaction against pathogens. rLhGSHRm showed considerable glutathione reductase activity in an enzyme assay. Further, the biological activity of rLhGSHRm in balancing cellular oxidative stress was observed in both disk diffusion and DPPH assays. Collectively, these results support that LhGSHRm has profound effects on modulating the immune reaction in fish to sustain precise redox homeostasis.
Collapse
Affiliation(s)
- J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
13
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Fernandez C, Loor JJ. Maternal body condition influences neonatal calf whole-blood innate immune molecular responses to ex vivo lipopolysaccharide challenge. J Dairy Sci 2020; 104:2266-2279. [PMID: 33246612 DOI: 10.3168/jds.2020-18948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/29/2020] [Indexed: 12/21/2022]
Abstract
Managing body condition in dairy cows during the close-up period could alter the availability of nutrients to the fetus during the final growth stages in utero. We investigated how maternal body condition score (BCS) in late pregnancy affected calf whole-blood mRNA abundance and IL-1β concentrations after ex vivo lipopolysaccharide (LPS) challenge. Thirty-eight multiparous Holstein cows and their calves from a larger cohort were retrospectively grouped by prepartal BCS as normal BCS (≤3.25; n = 22; NormBCS) and high BCS (≥3.75; n = 16; HighBCS). Calf blood samples collected at birth (before receiving colostrum, d 0) and at ages 21 and 42 d (at weaning) were used for ex vivo whole-blood challenge with 3 µg/mL of LPS before mRNA isolation. Target genes evaluated by real-time quantitative PCR were associated with immune response, antioxidant function, and 1-carbon metabolism. Plasma IL-1β concentrations were also measured. Responses in plasma IL-1β and mRNA abundance were compared between LPS-challenged and nonchallenged samples. Statistical analyses were performed at all time points using a MIXED model in SAS 9.4. Neither birth body weight (NormBCS = 43.8 ± 1.01 kg; HighBCS = 43.9 ± 1.2 kg) nor colostrum IgG concentration (NormBCS = 70 ± 5.4 mg/mL; HighBCS = 62 ± 6.5 mg/mL) differed between groups. At birth, whole blood from calves born to HighBCS cows had greater mRNA abundance of IL1B, NFKB1, and GSR and lower GPX1 and CBS abundance after LPS challenge. The longitudinal analysis of d 0, 21, and 42 data revealed a BCS × age effect for SOD2 and NOS2 due to lower mRNA abundance at 42 d in the HighBCS calves. Regardless of maternal BCS, mRNA abundance decreased over time for genes encoding cytokines (IL1B, IL6, IL10, TNF), cytokine receptors (IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (CADM1, ICAM1, ITGAM), and antimicrobial function (MPO). Concentration of IL-1β after LPS challenge was also markedly lower at 21 d regardless of maternal BCS. Overall, results suggested that maternal BCS in late prepartum influences the calf immune system response to an inflammation challenge after birth. Although few genes among those studied were altered due to maternal BCS, the fact that genes related to oxidative stress and 1-carbon metabolism responded to LPS challenge in HighBCS calves underscores the potential role of methyl donors (e.g., methionine, choline, and folic acid) in the early-life innate immune response.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
14
|
NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS. Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 2020; 69:e12676. [PMID: 32597503 DOI: 10.1111/jpi.12676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.
Collapse
Affiliation(s)
| | | | - Swamy Jagadish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | | | | | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| |
Collapse
|
15
|
Lopreiato V, Vailati-Riboni M, Parys C, Fernandez C, Minuti A, Loor JJ. Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. J Dairy Sci 2020; 103:10477-10493. [PMID: 32952025 DOI: 10.3168/jds.2020-18638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang 63457, Germany
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
16
|
Zhao X, Lorent K, Escobar-Zarate D, Rajagopalan R, Loomes KM, Gillespie K, Mesaros C, Estrada MA, Blair I, Winkler JD, Spinner NB, Devoto M, Pack M. Impaired Redox and Protein Homeostasis as Risk Factors and Therapeutic Targets in Toxin-Induced Biliary Atresia. Gastroenterology 2020; 159:1068-1084.e2. [PMID: 32505743 PMCID: PMC7856536 DOI: 10.1053/j.gastro.2020.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.
Collapse
Affiliation(s)
- Xiao Zhao
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Lorent
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Escobar-Zarate
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin Gillespie
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian Blair
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B. Spinner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcella Devoto
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.,Departments of Pediatrics and of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Translational and Precision Medicine, University La Sapienza, Rome, Italy
| | - Michael Pack
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Joshi MB, Ahamed R, Hegde M, Nair AS, Ramachandra L, Satyamoorthy K. Glucose induces metabolic reprogramming in neutrophils during type 2 diabetes to form constitutive extracellular traps and decreased responsiveness to lipopolysaccharides. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165940. [PMID: 32827651 DOI: 10.1016/j.bbadis.2020.165940] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Recurrent infections are one of the common morbidities in Type 2 Diabetes (T2D) subjects. Bidirectional activation of innate immune cells such as neutrophils and glucose metabolism in T2D conditions leads to a pro-inflammatory milieu and reduced neutrophil function, which can be a potential cause for recurrent infections. In pathological conditions of sterile inflammation associated T2D, neutrophils form constitutive extracellular traps (NETs) due to hyperglycemia and respond poorly to infections. The present study was aimed at understanding the cellular and metabolic consequences, and NETs formation in T2D. We show that glucose induces NADPH oxidase derived reactive oxygen species and further citrullinates the histones to form weaker NETs leading to reduced response to lipopolysaccharide (LPS). Untargeted metabolomics analysis in neutrophils cultured under high glucose and from T2D subjects revealed enrichment of polyol pathway intermediates (1-anhydrosorbitol) and reduced glutathione metabolism products (cysteinylglycine). NADPH is an absolute requirement for three independent pathways of formation of 1-anhydrosorbitol via aldose reductase under excess glucose, induction of glutathione synthesis and glucose induced NETs formation. During T2D and in presence of high glucose, there is a competition for NADPH between these processive reactions, which leads to its insufficiency to produce NETs in response to LPS. Interestingly, supplementation of NADPH and pharmacological inhibitor of aldose reductase, ranirestat, restored NETs formation in presence of LPS. Our study provides novel insights on the metabolic reprogramming of neutrophils, which may lead to susceptibility of T2D subjects to infections.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Rayees Ahamed
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
18
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
19
|
Cao M, Zhang D, Wang Y, Lu Y, Zhu X, Li Y, Xue H, Lin Y, Zhang M, Sun Y, Yang Z, Shi J, Wang Y, Zhou C, Dong Y, Liu P, Dudek SM, Xiao Z, Lu H, Peng L. Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.03.04.20030395. [PMID: 32511465 PMCID: PMC7255784 DOI: 10.1101/2020.03.04.20030395] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Since mid-December 2019, a cluster of pneumonia-like diseases caused by a novel coronavirus, now designated COVID-19 by the WHO, emerged in Wuhan city and rapidly spread throughout China. Here we identify the clinical characteristics of COVID-19 in a cohort of patients in Shanghai. METHODS Cases were confirmed by real-time RT-PCR and were analysed for demographic, clinical, laboratory and radiological features. RESULTS Of 198 patients, the median duration from disease onset to hospital admission was 4 days. The mean age of the patients was 50.1 years, and 51.0% patients were male. The most common symptom was fever. Less than half of the patients presented with respiratory systems including cough, sputum production, itchy or sore throat, shortness of breath, and chest congestion. 5.6% patients had diarrhoea. On admission, T lymphocytes were decreased in 45.8% patients. Ground glass opacity was the most common radiological finding on chest computed tomography. 9.6% were admitted to the ICU because of the development of organ dysfunction. Compared with patients not treated in ICU, patients treated in the ICU were older, had longer waiting time to admission, fever over 38.5o C, dyspnoea, reduced T lymphocytes, elevated neutrophils and organ failure. CONCLUSIONS In this single centre cohort of COVID-19 patients, the most common symptom was fever, and the most common laboratory abnormality was decreased blood T cell counts. Older age, male, fever over 38.5oC, symptoms of dyspnoea, and underlying comorbidity, were the risk factors most associated with severity of disease. KEY WORDS 2019 novel coronavirus; acute respiratory infection; risk factors for disease severity.
Collapse
|
20
|
Mello DF, Trevisan R, Danielli NM, Dafre AL. Vulnerability of glutathione-depleted Crassostrea gigas oysters to Vibrio species. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104870. [PMID: 32056707 DOI: 10.1016/j.marenvres.2019.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Glutathione (GSH) is a major cellular antioxidant molecule participating in several biological processes, including immune function. In this study, we investigated the importance of GSH to oysters Crassostrea gigas immune response. Oysters were treated with the GSH-synthesis inhibitor buthionine sulfoximine (BSO), and the function of immune cells and mortality were evaluated after a bacterial challenge with different Vibrio species. BSO caused a moderate decrease (20-40%) in GSH levels in the gills, digestive gland, and hemocytes. As expected, lower GSH decreased survival to peroxide exposure. Hemocyte function was preserved after BSO treatment, however, oysters became more susceptible to challenges with Vibrio anguillarum, V. alginolyticus, or V. harveyi, but not with V. parahaemolyticus and V. vulnificus, indicating a species-specific vulnerability. Our study indicates that in natural habitats or in mariculture farms, disturbances in GSH metabolism may pre-dispose oysters to bacterial infection, decreasing survival.
Collapse
Affiliation(s)
- Danielle Ferraz Mello
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| | - Rafael Trevisan
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Naissa Maria Danielli
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| |
Collapse
|
21
|
Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl Psychiatry 2019; 9:343. [PMID: 31852885 PMCID: PMC6920477 DOI: 10.1038/s41398-019-0671-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large proportion of major mood disorder patients suffering from a depressive episode, but underlying biological factors remain poorly understood. Research suggests that these patients may have altered circadian molecular genetic 'clocks' and that SD functions through 'resetting' dysregulated genes; additional factors may be involved, warranting further investigation. Leveraging advances in microarray technology enabling the transcriptome-wide assessment of gene expression, this study aimed to examine gene expression changes accompanying SD and recovery sleep in patients suffering from an episode of depression. Patients (N = 78) and controls (N = 15) underwent SD, with blood taken at the same time of day before SD, after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was used, with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and longitudinal gene set analyses including the time point after recovery sleep, were conducted. Circadian genes were significantly affected by SD, with patterns suggesting that molecular clocks of responders and non-responders, as well as patients and controls respond differently to chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on pathways involved in immune function and inflammatory response, such as those involved in cytokine and especially in interleukin signalling. Longitudinal gene set analyses showed that in responders these pathways were upregulated after SD; in non-responders, little response was observed. Our findings emphasize the close relationship between circadian, immune and sleep systems and their link to etiology of depression at the transcriptomic level.
Collapse
|
22
|
El-Amier Y, Elhindi K, El-Hendawy S, Al-Rashed S, Abd-ElGawad A. Antioxidant System and Biomolecules Alteration in Pisum sativum under Heavy Metal Stress and Possible Alleviation by 5-Aminolevulinic Acid. Molecules 2019; 24:E4194. [PMID: 31752309 PMCID: PMC6891517 DOI: 10.3390/molecules24224194] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Environmental pollution is the most serious problem that affects crop productivity worldwide. Pisum sativum is a leguminous plant that is cultivated on a large scale in the Nile Delta of Egypt as a winter crop, and many of the cultivated fields irrigated with drainage water that contained many pollutants including heavy metals. The present research aimed to investigate the impact of Cd and Ni on the biochemical and physiological processes in P. sativum and evaluate the potential alleviation of their toxicity by 5-aminolevulinic acid (ALA). Seedlings of P. sativum were grown in Hoagland solution treated with CdCl2 or NiCl2 for 72 h in the growth chamber. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, phenolics, antioxidant enzymes, as well as Cd and Ni concentrations were measured at 0, 12, 24, 36, 48, 72 h. An experiment of alleviation was conducted where ALA was added to the growth solution at a concentration of 200 µM coupled with 100 µM of either CdCl2 or NiCl2. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, and phenolics were induced due to the toxicity of Cd and Ni. The activities of antioxidant enzymes [NADH-oxidase (EC: 1.6.3.1), ascorbate peroxidase (EC: 1.11.1.11), glutathione reductase (EC: 1.6.4.2), superoxide dismutase (EC: 1.15.1.1), and catalase (EC: 1.11.1.6)] were induced under the treatments of both metals. On the other hand, the soluble protein decreased gradually depending upon the time of exposure to the heavy metals. The concentration of Cd and Ni in the leaves treated plants increased in time of exposure dependent manner, while their contents remained within the acceptable limits. The addition of ALA decreased the oxidative stress in treated P. sativum plants. The results revealed the significance of using ALA in the cultivation of P. sativum might improve its tolerance against heavy metal stress.
Collapse
Affiliation(s)
- Yasser El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Khalid Elhindi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
- Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Salah El-Hendawy
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia;
| | - Ahmed Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
| |
Collapse
|
23
|
Kim VY, Batty A, Li J, Kirk SG, Crowell SA, Jin Y, Tang J, Zhang J, Rogers LK, Deng HX, Nelin LD, Liu Y. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2239-2251. [PMID: 31501257 DOI: 10.4049/jimmunol.1701686] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/07/2019] [Indexed: 01/16/2023]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Collapse
Affiliation(s)
- Victoria Y Kim
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Abel Batty
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Jinhui Li
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara A Crowell
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Yi Jin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| |
Collapse
|
24
|
Vailati-Riboni M, Xu T, Qadir B, Bucktrout R, Parys C, Loor JJ. In vitro methionine supplementation during lipopolysaccharide stimulation modulates immunometabolic gene network expression in isolated polymorphonuclear cells from lactating Holstein cows. J Dairy Sci 2019; 102:8343-8351. [PMID: 31301830 DOI: 10.3168/jds.2018-15737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
Methionine (Met) is one of the 2 most limiting amino acids for milk production in dairy cow diets. The accepted "ideal" ratio of lysine (Lys) to Met (L:M) when formulating diets is 3:1. However, blood from cows fed corn silage-based diets without supplemental rumen-protected Met averages approximately 3.6:1 L:M. Recent in vivo research on cattle immunonutrition has revealed that the immune system could benefit from greater Met supply. To study more closely the effects of different L:M ratios, blood polymorphonuclear cells (PMN) were isolated from 5 Holstein cows in mid-lactation (238 ± 20 d postpartum, 33.8 ± 3.8 kg of milk/d; mean ± SD). The PMN were incubated at 3 different levels of L:M (3.6:1, 2.9:1, or 2.4:1) and stimulated with lipopolysaccharide (LPS) at either 0 or 50 μg/mL for 2 h at 37°C. Target genes were associated with cytokines, pathogen recognition, nuclear receptors, killing mechanisms, and Met and glutathione metabolism. Data were subjected to ANOVA using PROC MIXED in SAS, with L:M, LPS, and their interaction as fixed effects. Stimulation with LPS upregulated genes related to cytokines (IL1B, TNF, IL10 and IL6) and nuclear receptors, including nuclear factor kappa B (NFKB1) and glucocorticoid receptor (NR3C1), and downregulated the mRNA abundance of chemokine receptor 1 (CXCR1), lysozyme (LYZ) and glutathione reductase (GSR). A linear decrease was observed in the mRNA abundance of TNF when L:M was decreased. A similar response was observed for interleukin-1 receptor-associated kinase 1 (IRAK1) and NFKB1 abundance in cells stimulated with LPS (linear effect). A linear increase of LYZ mRNA expression as L:M decreased was detected in unstimulated cells. Furthermore, a decrease in L:M led to a linear decrease of superoxide dismutase 1 (SOD1) mRNA abundance in cells challenged with LPS. Overall, LPS challenge triggered the activation of isolated PMN from mid-lactation cows. However, data suggest the use of a shorter incubation time to capture the peak response and not the resolution of the inflammatory response as in the present study. Our results indicate a possible involvement of Met in modulating PMN inflammatory and oxidative stress status and in helping the resolution of inflammation after initial stimulation.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - T Xu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China 225009
| | - B Qadir
- Veterinary Division, Kurdistan Regional Government, Sulaymaniyah, Iraq 46001
| | - R Bucktrout
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - J J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801.
| |
Collapse
|
25
|
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VDF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854:272-281. [PMID: 30974105 DOI: 10.1016/j.ejphar.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Diverse disturbances in immune-endocrine circuitries are involved in the development and aggravation of several chronic metabolic diseases (CMDs), including obesity, diabetes, and metabolic syndrome. The chronic inflammatory syndrome observed in CMDs culminates in dysregulated immune responses with low microbial killing efficiency, by means low host innate immune response, and loss of ability to eliminate the pathogens, which results in a high prevalence of infectious diseases, including pneumonia, tuberculosis, and sepsis. Herein, we review evidence pointing out PPARγ as a putative player in immune-endocrine disturbances related to increased risk of infections in CMDs. Cumulated evidence indicates that PPARγ activation modulates host cells to control inflammation during CMDs because of PPARγ agonists have anti-inflammatory and pro-resolutive properties, increasing host ability to eliminate pathogen, modulating hormone production, and restoring glucose and lipid homeostasis. As such, we propose PPARγ as a putative therapeutic adjuvant for patients with CMDs to favor a better infection control.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Unirio, Brazil.
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET UNR), 2000, Rosario, Argentina.
| | - Vinicius de Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Lian G, Gnanaprakasam JNR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TWM, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018; 7:e36158. [PMID: 30198844 PMCID: PMC6152796 DOI: 10.7554/elife.36158] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.
Collapse
Affiliation(s)
- Gaojian Lian
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
- Medical Research CenterUniversity of South ChinaHengyang, Hunan ProvinceChina
| | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Yuqing Shen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Mao Yang
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of SurgerySt. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Teresa A Cassel
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Douglas R Green
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Yusen Liu
- Center for Perinatal ResearchThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusOhio, United States
| | - Teresa WM Fan
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| |
Collapse
|
27
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
28
|
Nambooppha B, Photichai K, Wongsawan K, Chuammitri P. Quercetin manipulates the expression of genes involved in the reactive oxygen species (ROS) process in chicken heterophils. J Vet Med Sci 2018; 80:1204-1211. [PMID: 29877311 PMCID: PMC6115250 DOI: 10.1292/jvms.17-0112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chicken heterophils generate reactive oxygen species (ROS) molecules to defend against
invading pathogens. The present study examined effects of quercetin on chicken
heterophils. Heterophils were stimulated with PBS, 50 µM quercetin (QH),
PMA or Escherichia coli (EC) and the resulting intracellular ROS
molecules were determined. Flow cytometry results showed that cells stimulated with QH,
PMA and EC had a higher ROS production. Increases in intracellular ROS molecules were
identified in all treatment groups by fluorescence microscopy. Determination of the
ability of quercetin to manipulate mRNA expression of ROS subunits was assessed using
real-time RT-PCR. Quercetin and other stimulants up-regulated the majority of genes
involved in ROS production: CYBB (NOX2),
NCF1 (p47phox), NCF2
(p67phox), NOX1 and
RAC2. The antioxidant property of QH was explored by measuring mRNA
expression of CAT and SOD1. The data indicate increased
levels of CAT with all treatments; however, only QH attenuated the
expression of the SOD1 gene. To further investigate the effects of
ROS-driven inflammation or cell death, IL6, CASP8 and
MCL1 genes were preferentially tested. The inflammatory gene
(IL6) was profoundly down-regulated in the QH- and PMA-treated groups
while EC induced a strikingly high IL6 expression level. Investigation of
the known apoptotic (CASP8) and anti-apoptotic (MCL1)
genes found down-regulation of CASP8 in the QH- and PMA-treated groups
which were contradicted to the MCL1 gene. In conclusion, quercetin can
enhance ROS production by regulating the expression of genes involved in ROS production as
well as in subsequent processes.
Collapse
Affiliation(s)
- Boondarika Nambooppha
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kornravee Photichai
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kanreuthai Wongsawan
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.,Excellent Center in Veterinary Biosciences (ECVB), Department of Veterinary Biosciences and Public Health, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
29
|
Chicca IJ, Milward MR, Chapple ILC, Griffiths G, Benson R, Dietrich T, Cooper PR. Development and Application of High-Content Biological Screening for Modulators of NET Production. Front Immunol 2018; 9:337. [PMID: 29556228 PMCID: PMC5844942 DOI: 10.3389/fimmu.2018.00337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA-based antimicrobial web-like structures whose release is predominantly mediated by reactive oxygen species (ROS); their purpose is to combat infections. However, unbalanced NET production and clearance is involved in tissue injury, circulation of auto-antibodies and development of several chronic diseases. Currently, there is lack of agreement regarding the high-throughput methods available for NET investigation. This study, therefore, aimed to develop and optimize a high-content analysis (HCA) approach, which can be applied for the assay of NET production and for the screening of compounds involved in the modulation of NET release. A suitable paraformaldehyde fixation protocol was established to enable HCA of neutrophils and NETs. Bespoke and in-built bioinformatics algorithms were validated by comparison with standard low-throughput approaches for application in HCA of NETs. Subsequently, the optimized protocol was applied to high-content screening (HCS) of a pharmaceutically derived compound library to identify modulators of NETosis. Of 56 compounds assessed, 8 were identified from HCS for further characterization of their effects on NET formation as being either inducers, inhibitors or biphasic modulators. The effects of these compounds on naïve neutrophils were evaluated by using specific assays for the induction of ROS and NET production, while their modulatory activity was validated in phorbol 12-myristate 13-acetate-stimulated neutrophils. Results indicated the involvement of glutathione reductase, Src family kinases, molecular-target-of-Rapamycin, and mitogen-activated-protein-kinase pathways in NET release. The compounds and pathways identified may provide targets for novel therapeutic approaches for treating NET-associated pathologies.
Collapse
Affiliation(s)
- Ilaria J Chicca
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom.,Imagen Therapeutics Ltd., Manchester, United Kingdom
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Iain Leslie C Chapple
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Rod Benson
- Imagen Therapeutics Ltd., Manchester, United Kingdom
| | - Thomas Dietrich
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Cooper
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Hoffmann JHO, Schaekel K, Hartl D, Enk AH, Hadaschik EN. Dimethyl fumarate modulates neutrophil extracellular trap formation in a glutathione- and superoxide-dependent manner. Br J Dermatol 2017; 178:207-214. [PMID: 28733990 DOI: 10.1111/bjd.15839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neutrophil (polymorphonuclear) granulocytes (PMN) have been shown to contribute to the pathogenesis of psoriasis by releasing interleukin-17 and LL37-DNA complexes via neutrophil extracellular traps (NETs), webs of chromatin strands decorated with antimicrobial peptides, in psoriatic skin. Fumaderm® , a fumaric acid ester (FAE) formulation consisting of different FAE salts, has been successfully used to treat psoriasis for decades. Most recently, FAE treatment was reported to inhibit NET formation in murine epidermolysis bullosa acquisita. OBJECTIVES To elucidate the effect of FAE treatment on human psoriasis and healthy donor NET formation. RESULTS Among the compounds present in the FAE formulation, dimethyl fumarate (DMF) pretreatment of human psoriasis and healthy donor PMN resulted in a consistent inhibitory effect on NET formation in response to phorbol 12-myristate 13-acetate but not to platelet activating factor and ionomycin. This effect was l-glutathione (GSH) dependent and involved a decrease in reactive oxygen species (ROS) production, a key event in NET formation. In contrast, G-protein-coupled signalling and protein synthesis were not involved. Monomethyl fumarate (MMF) was found to slightly reduce ROS production without affecting NET formation. CONCLUSIONS We report DMF as a potent, stimulus-specific, GSH- and ROS-dependent modulator of NET formation. Our results support the notion that modulation of NET formation contributes to the beneficial effects of FAEs in a variety of inflammatory conditions.
Collapse
Affiliation(s)
- J H O Hoffmann
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - K Schaekel
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - D Hartl
- University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany.,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Basel, Switzerland
| | - A H Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - E N Hadaschik
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany.,Department of Dermatology, University of Essen, Essen, Germany
| |
Collapse
|
31
|
Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation. Sci Rep 2017; 7:16026. [PMID: 29167447 PMCID: PMC5700140 DOI: 10.1038/s41598-017-15668-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Because neutrophil extracellular trap (NET) formation is involved in the pathology of a wide variety of diseases, NET-regulating compounds are expected to be useful for the therapies of these diseases. In this study, we identified sulfasalazine (SSZ) as a potent enhancer of NET formation both in vitro and in vivo. Although SSZ did not increase the amount of ROS generated, it accelerated the generation of ether-linked oxidized phospholipids, such as PE (18;1e/15-HETE) and PC (16;0e/13-HODE). Trolox, but not 2-ME, effectively suppressed lipid oxidation and NET formation that were induced by SSZ. SSZ is known as a potent inducer of ferroptosis in cancer cells by inhibiting xCT, a component of the cystine transporter. However, we found that SSZ accelerated NET formation in an xCT-independent manner. Structure-activity relationship studies revealed that the sulfapyridine moiety of SSZ plays a central role in enhancing NET formation. Furthermore, we found that two additional sulfonamide and sulfone derivatives possess NET-inducing activity by accelerating lipid oxidation. These results indicate that the hyperoxidation of ether-linked phospholipids is a key mechanism for accelerating NET formation.
Collapse
|
32
|
Batistel F, Arroyo JM, Garces CIM, Trevisi E, Parys C, Ballou MA, Cardoso FC, Loor JJ. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J Dairy Sci 2017; 101:480-490. [PMID: 29103714 DOI: 10.3168/jds.2017-13185] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
The periparturient period is the most critical phase in the productive cycle of dairy cows and is characterized by impairment of the immune system. Our objective was to evaluate the effect of feeding ethyl-cellulose rumen-protected methionine (RPM) starting at d -28 from expected parturition through 60 d in milk on biomarkers of inflammation, oxidative stress, and liver function as well as leukocyte function. Sixty multiparous Holstein cows were used in a block design and assigned to either a control or the control plus ethyl-cellulose RPM (Mepron, Evonik Nutrition & Care GmbH). Mepron was supplied from -28 to 60 d in milk at a rate of 0.09% and 0.10% dry matter during the prepartum and postpartum period. That rate ensured that the ratio of Lys to Met in the metabolizable protein was close to 2.8:1. Blood samples from 15 clinically healthy cows per treatment were collected at d -30, -14, 1, 7, 21, 30, and 60 and analyzed for biomarkers of liver function, inflammation, and oxidative stress. Neutrophil and monocyte function in whole blood was measured in vitro at -14, 1, 7, 21, and 30 d in milk. The statistical model included the random effect of block and fixed effect of treatment, time, and its interaction. Compared with control, ethyl-cellulose RPM increased plasma cholesterol and paraoxonase after parturition. Among the inflammation biomarkers measured, ethyl-cellulose RPM led to greater albumin (negative acute-phase protein) and lower haptoglobin than control cows. Although concentration of IL-1β was not affected by treatments, greater IL-6 concentration was detected in response to ethyl-cellulose RPM. Cows supplemented with ethyl-cellulose RPM had greater plasma concentration of ferric-reducing antioxidant power, β-carotene, tocopherol, and total and reduced glutathione, whereas reactive oxygen metabolites were lower compared with control cows. Compared with control, ethyl-cellulose RPM enhanced neutrophil phagocytosis and oxidative burst. Overall, the results indicate that ethyl-cellulose RPM supply to obtain a Lys-to-Met ratio of 2.8:1 in the metabolizable protein during the periparturient period and early lactation is an effective approach to help mitigate oxidative stress and inflammation as well as enhance liver and neutrophil function in dairy cows.
Collapse
Affiliation(s)
- F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - J M Arroyo
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Departamento de Nutrición Animal, Instituto de Producción Animal, Facultad de Veterinaria, Universidad de la Republica, Ruta 1 km 42.5, 80100, San José, Uruguay
| | - C I M Garces
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - C Parys
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - M A Ballou
- Department of Animal Sciences, Texas Tech University, Lubbock 79409
| | - F C Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
33
|
Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, van Wamel WJB, van Beusekom HMM, van Neck JW, de Maat MPM. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS One 2017; 12:e0176472. [PMID: 28486563 PMCID: PMC5423591 DOI: 10.1371/journal.pone.0176472] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple inducers of in vitro Neutrophil Extracellular Trap (NET) formation (NETosis) have been described. Since there is much variation in study design and results, our aim was to create a systematic review of NETosis inducers and perform a standardized in vitro study of NETosis inducers important in (cardiac) wound healing. METHODS In vitro NETosis was studied by incubating neutrophils with PMA, living and dead bacteria (S. aureus and E. coli), LPS, (activated) platelets (supernatant), glucose and calcium ionophore Ionomycin using 3-hour periods of time-lapse confocal imaging. RESULTS PMA is a consistent and potent inducer of NETosis. Ionomycin also consistently resulted in extrusion of DNA, albeit with a process that differs from the NETosis process induced by PMA. In our standardized experiments, living bacteria were also potent inducers of NETosis, but dead bacteria, LPS, (activated) platelets (supernatant) and glucose did not induce NETosis. CONCLUSION Our systematic review confirms that there is much variation in study design and results of NETosis induction. Our experimental results confirm that under standardized conditions, PMA, living bacteria and Ionomycin all strongly induce NETosis, but real-time confocal imaging reveal different courses of events.
Collapse
Affiliation(s)
- Tamara Hoppenbrouwers
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Anouchska S. A. Autar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Andi R. Sultan
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tsion E. Abraham
- Optical Imaging Center, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Willem J. B. van Wamel
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
34
|
Luehong N, Khaowmek J, Wongsawan K, Chuammitri P. Preferential pattern of mouse neutrophil cell death in response to various stimulants. In Vitro Cell Dev Biol Anim 2017; 53:513-524. [DOI: 10.1007/s11626-016-0129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
|
35
|
Herath HMLPB, Wickramasinghe PDSU, Bathige SDNK, Jayasooriya RGPT, Kim GY, Park MA, Kim C, Lee J. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense. FISH & SHELLFISH IMMUNOLOGY 2017; 60:355-367. [PMID: 27919756 DOI: 10.1016/j.fsi.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Glutathione reductase (GSR) is an enzyme that catalyzes the biochemical conversion of oxidized glutathione (GSSG) into the reduced form (GSH). Since the ratio between the two forms of glutathione (GSH/GSSG) is important for the optimal function of GSH to act as an antioxidant against H2O2, the contribution of GSR as an enzymatic regulatory agent to maintain the proper ratio is essential. Abalones are marine mollusks that frequently encounter environmental factors that can trigger the overproduction of reactive oxygen species (ROS) such as H2O2. Therefore, we conducted the current study to reveal the molecular and functional properties of a GSR homolog in the disk abalone, Haliotis discus discus. The identified cDNA sequence (2325 bp) has a 1356 bp long open reading frame (ORF), coding for a 909 bp long amino acid sequence, which harbors a pyridine nucleotide-disulfide oxidoreductase domain (171-246 aa), a pyridine nucleotide-disulfide oxidoreductase dimerization domain, and a NAD(P)(+)-binding Rossmann fold superfamily signature domain. Four functional residues: the FAD binding site, glutathione binding site, NADPH binding motif, and assembly domain were identified to be conserved among the other species. The recombinant abalone GSR (rAbGSR) exhibited detectable activity in a standard glutathione reductase activity assay. The optimum pH and optimal temperature for the reaction were found to be 7.0 and 50 °C, respectively, while the ionic strength of the medium had no effect. The enzymatic reaction was vastly inhibited by Cu+2 and Cd+2 ions. A considerable effect of cellular protection was detected with a disk diffusion assay conducted with rAbGSR. Moreover, an MTT assay and flow cytometry confirmed the significance of the protective role of rAbGSR in cell function. Furthermore, AbGSR was found to be ubiquitously distributed in different types of abalone tissues. AbGSR mRNA expression was significantly upregulated in response to three immune challenges: Vibrio parahaemolyticus, Listeria monocytogenes, and lipopolysaccharide (LPS), thus indicating its possible involvement in host defense mechanisms during pathogenic infections. Taken together, the results of the current study suggest that AbGSR plays an important role in antioxidant-mediated host defense mechanisms and also provide insights into the immunological contribution of AbGSR.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - P D S U Wickramasinghe
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung Ae Park
- Southeast Sea Fisheries Research Institute, National Institutie of Fisheries Science, Tongyeong-si, Gyoengsangnam-do, 53085, Republic of Korea
| | - Chul Kim
- Informatics Development & Management Group, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
36
|
Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination. Front Immunol 2016; 7:461. [PMID: 27867381 PMCID: PMC5095114 DOI: 10.3389/fimmu.2016.00461] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
NETosis, an antimicrobial form of neutrophil cell death, is considered a primary source of citrullinated autoantigens in rheumatoid arthritis (RA) and immunogenic DNA in systemic lupus erythematosus (SLE). Activation of the citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is believed to be essential for neutrophil extracellular trap (NET) formation and NETosis. PAD4 is therefore viewed as a promising therapeutic target to inhibit the formation of NETs in both diseases. In this review, we examine the evidence for PAD4 activation during NETosis and provide experimental data to suggest that protein citrullination is not a universal feature of NETs. We delineate two distinct biological processes, leukotoxic hypercitrullination (LTH) and defective mitophagy, which have been erroneously classified as “NETosis.” While these NETosis mimics share morphological similarities with NETosis (i.e., extracellular DNA release), they are biologically distinct. As such, these processes can be readily classified by their stimuli, activation of distinct biochemical pathways, the presence of hypercitrullination, and antimicrobial effector function. NETosis is an antimicrobial form of cell death that is NADPH oxidase-dependent and not associated with hypercitrullination. In contrast, LTH is NADPH oxidase-independent and not bactericidal. Rather, LTH represents a bacterial strategy to achieve immune evasion. It is triggered by pore-forming pathways and equivalent signals that cumulate in calcium-dependent hyperactivation of PADs, protein hypercitrullination, and neutrophil death. The generation of citrullinated autoantigens in RA is likely driven by LTH, but not NETosis. Mitochondrial DNA (mtDNA) expulsion, the result of a constitutive defect in mitophagy, represents a second NETosis mimic. In the presence of interferon-α and immune complexes, this process can generate highly interferogenic oxidized mtDNA, which has previously been mistaken for NETosis in SLE. Distinguishing NETosis from LTH and defective mitophagy is paramount to understanding the role of neutrophil damage in immunity and the pathogenesis of human diseases. This provides a framework to design specific inhibitors of these distinct biological processes in human disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
37
|
Glucose tolerance female-specific QTL mapped in collaborative cross mice. Mamm Genome 2016; 28:20-30. [PMID: 27807798 DOI: 10.1007/s00335-016-9667-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Type-2 diabetes (T2D) is a complex metabolic disease characterized by impaired glucose tolerance. Despite environmental high risk factors, host genetic background is a strong component of T2D development. Herein, novel highly genetically diverse strains of collaborative cross (CC) lines from mice were assessed to map quantitative trait loci (QTL) associated with variations of glucose-tolerance response. In total, 501 mice of 58 CC lines were maintained on high-fat (42 % fat) diet for 12 weeks. Thereafter, an intraperitoneal glucose tolerance test (IPGTT) was performed for 180 min. Subsequently, the values of Area under curve for the glucose at zero and 180 min (AUC0-180), were measured, and used for QTL mapping. Heritability and coefficient of variations in glucose tolerance (CVg) were calculated. One-way analysis of variation was significant (P < 0.001) for AUC0-180 between the CC lines as well between both sexes. Despite Significant variations for both sexes, QTL analysis was significant, only for females, reporting a significant female-sex-dependent QTL (~2.5 Mbp) associated with IPGTT AUC0-180 trait, located on Chromosome 8 (32-34.5 Mbp, containing 51 genes). Gene browse revealed QTL for body weight/size, genes involved in immune system, and two main protein-coding genes involved in the Glucose homeostasis, Mboat4 and Leprotl1. Heritability and coefficient of genetic variance (CVg) were 0.49 and 0.31 for females, while for males, these values 0.34 and 0.22, respectively. Our findings demonstrate the roles of genetic factors controlling glucose tolerance, which significantly differ between sexes requiring independent studies for females and males toward T2D prevention and therapy.
Collapse
|
38
|
Zhou Z, Bulgari O, Vailati-Riboni M, Trevisi E, Ballou MA, Cardoso FC, Luchini DN, Loor JJ. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J Dairy Sci 2016; 99:8956-8969. [PMID: 27592438 DOI: 10.3168/jds.2016-10986] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
Abstract
The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NEL)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NEL/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NEL/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows.
Collapse
Affiliation(s)
- Z Zhou
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - O Bulgari
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, 25121 Brescia, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Trevisi
- Istituto di Zootecnica Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - M A Ballou
- Department of Animal Sciences, Texas Tech University, Lubbock 79409
| | - F C Cardoso
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
39
|
van der Spek AH, Bloise FF, Tigchelaar W, Dentice M, Salvatore D, van der Wel NN, Fliers E, Boelen A. The Thyroid Hormone Inactivating Enzyme Type 3 Deiodinase is Present in Bactericidal Granules and the Cytoplasm of Human Neutrophils. Endocrinology 2016; 157:3293-305. [PMID: 27355490 DOI: 10.1210/en.2016-1103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neutrophils are important effector cells of the innate immune system. Thyroid hormone (TH) is thought to play an important role in their function. Intracellular TH levels are regulated by the deiodinating enzymes. The TH-inactivating type 3 deiodinase (D3) is expressed in infiltrating murine neutrophils, and D3 knockout mice show impaired bacterial killing upon infection. This suggests that D3 plays an important role in the bacterial killing capacity of neutrophils. The mechanism behind this effect is unknown. We aimed to assess the presence of D3 in human neutrophils, and determine its subcellular localization using confocal and electron microscopy, because this could give important clues about its function in these cells. D3 appeared to be present in the cytoplasm and in myeloperoxidase containing azurophilic granules and as well as lactoferrin containing specific granules within human neutrophils. This subcellular localization did not change upon activation of the cells. D3 is observed intracellularly during neutrophil extracellular trap formation, followed by a reduction of D3 staining after release of the neutrophil extracellular traps into the extracellular space. At the transcriptional level, human neutrophils expressed additional essential elements of TH metabolism, including TH transporters and TH receptors. Here, we demonstrate the presence and subcellular location of D3 in human neutrophils for the first time and propose a model, in which D3 plays a role in the bacterial killing capacity of neutrophils either through generation of iodide for the myeloperoxidase system or through modulation of intracellular TH bioavailability.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Flavia F Bloise
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Wikky Tigchelaar
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Nicole N van der Wel
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Eric Fliers
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Anita Boelen
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
A novel real time imaging platform to quantify macrophage phagocytosis. Biochem Pharmacol 2016; 116:107-19. [PMID: 27475716 PMCID: PMC5012892 DOI: 10.1016/j.bcp.2016.07.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro.
Collapse
|
41
|
Chacko BK, Wall SB, Kramer PA, Ravi S, Mitchell T, Johnson MS, Wilson L, Barnes S, Landar A, Darley-Usmar VM. Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils. Redox Biol 2016; 9:57-66. [PMID: 27393890 PMCID: PMC4939321 DOI: 10.1016/j.redox.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023] Open
Abstract
Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neutrophil NADPH oxidases consume large quantities of oxygen to rapidly generate ROS, a process that is referred to as the oxidative burst. These ROS are required for the efficient removal of phagocytized cellular debris and pathogens. In chronic inflammatory diseases, neutrophils are exposed to increased levels of oxidants and pro-inflammatory cytokines that can further prime oxidative burst responses and generate lipid oxidation products such as 4-hydroxynonenal (4-HNE). In this study we hypothesized that since 4-HNE can target glycolysis then this could modify the oxidative burst. To address this the oxidative burst was determined in freshly isolated healthy subject neutrophils using 13-phorbol myristate acetate (PMA) and the extracellular flux analyzer. Neutrophils pretreated with 4-HNE exhibited a significant decrease in the oxidative burst response and phagocytosis. Mass spectrometric analysis of alkyne-HNE treated neutrophils followed by click chemistry detected modification of a number of cytoskeletal, metabolic, redox and signaling proteins that are critical for the NADPH oxidase mediated oxidative burst. These modifications were confirmed using a candidate immunoblot approach for critical proteins of the active NADPH oxidase enzyme complex (Nox2 gp91phox subunit and Rac1 of the NADPH oxidase) and glyceraldehyde phosphate dehydrogenase, a critical enzyme in the metabolic regulation of oxidative burst. Taken together, these data suggest that 4-HNE-induces a pleiotropic mechanism to inhibit neutrophil function. These mechanisms may contribute to the immune dysregulation associated with chronic pathological conditions where 4-HNE is generated. Phagocytosis and glycolysis are inhibited in neutrophils by 4-hydroxynonenal. Click chemistry with alkyne-HNE identifies over 100 potential protein targets. Rac1, NOX2 and GAPDH are modified by 4-HNE. The 4-HNE-dependent inhibition of neutrophil function is mediated by a pleiotropic mechanism.
Collapse
Affiliation(s)
- Balu K Chacko
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Stephanie B Wall
- Department of Pathology, University of Alabama at Birmingham, United States
| | - Philip A Kramer
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Saranya Ravi
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, United States
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Landon Wilson
- Department of Pharmacology and Toxicology, The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, United States
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, United States
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States.
| |
Collapse
|
42
|
Kusunoki Y, Nakazawa D, Shida H, Hattanda F, Miyoshi A, Masuda S, Nishio S, Tomaru U, Atsumi T, Ishizu A. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production. Front Immunol 2016; 7:227. [PMID: 27375623 PMCID: PMC4896908 DOI: 10.3389/fimmu.2016.00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/26/2016] [Indexed: 01/13/2023] Open
Abstract
Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared between the two groups. Results demonstrated that citrullination in the peritoneum was significantly reduced in the Cl-amidine-treated mice compared with the vehicle-injected control mice (38% reduction). Additionally, the serum MPO-ANCA titer of the Cl-amidine-treated mice (32.3 ± 31.0 ng/ml) was significantly lower than that in the vehicle-injected mice (132.1 ± 41.6 ng/ml). The collective findings indicate that excessive formation of NETs may be implicated in MPO-ANCA production in vivo.
Collapse
Affiliation(s)
- Yoshihiro Kusunoki
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Daigo Nakazawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Haruki Shida
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Fumihiko Hattanda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Arina Miyoshi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Saori Nishio
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University , Sapporo , Japan
| |
Collapse
|
43
|
Sun D, Crowell SA, Harding CM, De Silva PM, Harrison A, Fernando DM, Mason KM, Santana E, Loewen PC, Kumar A, Liu Y. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sci 2016; 148:31-40. [PMID: 26860891 DOI: 10.1016/j.lfs.2016.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
Abstract
AIMS Catalase catalyzes the degradation of H2O2. Acinetobacter species have four predicted catalase genes, katA, katE, katG, and katX. The aims of the present study seek to determine which catalase(s) plays a predominant role in determining the resistance to H2O2, and to assess the role of catalase in Acinetobacter virulence. MAIN METHODS Mutants of Acinetobacter baumannii and Acinetobacter nosocomialis with deficiencies in katA, katE, katG, and katX were tested for sensitivity to H2O2, either by halo assays or by liquid culture assays. Respiratory burst of neutrophils, in response to A. nosocomialis, was assessed by chemiluminescence to examine the effects of catalase on the production of reactive oxygen species (ROS) in neutrophils. Bacterial virulence was assessed using a Galleria mellonella larva infection model. KEY FINDINGS The capacities of A. baumannii and A. nosocomialis to degrade H2O2 are largely dependent on katE. The resistance of both A. baumannii and A. nosocomialis to H2O2 is primarily determined by the katG gene, although katE also plays a minor role in H2O2 resistance. Bacteria lacking both the katG and katE genes exhibit the highest sensitivity to H2O2. While A. nosocomialis bacteria with katE and/or katG were able to decrease ROS production by neutrophils, these cells also induced a more robust respiratory burst in neutrophils than did cells deficient in both katE and katG. We also found that A. nosocomialis deficient in both katE and katG was more virulent than the wildtype A. nosocomialis strain. SIGNIFICANCE Our findings suggest that inhibition of Acinetobacter catalase may help to overcome the resistance of Acinetobacter species to microbicidal H2O2 and facilitate bacterial disinfection.
Collapse
Affiliation(s)
- Daqing Sun
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Sara A Crowell
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian M Harding
- Center of Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - P Malaka De Silva
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alistair Harrison
- Center of Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dinesh M Fernando
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin M Mason
- Center of Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Estevan Santana
- Center of Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter C Loewen
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
44
|
Shen F, Tang X, Cheng W, Wang Y, Wang C, Shi X, An Y, Zhang Q, Liu M, Liu B, Yu L. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci Rep 2016; 6:19262. [PMID: 26778774 PMCID: PMC4726045 DOI: 10.1038/srep19262] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.
Collapse
Affiliation(s)
- Fengge Shen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Wei Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Xiaochen Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Yanan An
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Qiaoli Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bo Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
45
|
Paraskevakis N. Effects of dietary dried Greek Oregano (Origanum vulgare ssp. hirtum) supplementation on blood and milk enzymatic antioxidant indices, on milk total antioxidant capacity and on productivity in goats. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Dubey M, Singh AK, Awasthi D, Nagarkoti S, Kumar S, Ali W, Chandra T, Kumar V, Barthwal MK, Jagavelu K, Sánchez-Gómez FJ, Lamas S, Dikshit M. L-Plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions. Free Radic Biol Med 2015; 86:1-15. [PMID: 25881549 DOI: 10.1016/j.freeradbiomed.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023]
Abstract
Posttranslational modifications (PTMs) of cytoskeleton proteins due to oxidative stress associated with several pathological conditions often lead to alterations in cell function. The current study evaluates the effect of nitric oxide (DETA-NO)-induced oxidative stress-related S-glutathionylation of cytoskeleton proteins in human PMNs. By using in vitro and genetic approaches, we showed that S-glutathionylation of L-plastin (LPL) and β-actin promotes reduced chemotaxis, polarization, bactericidal activity, and phagocytosis. We identified Cys-206, Cys-283, and Cys-460as S-thiolated residues in the β-actin-binding domain of LPL, where cys-460 had the maximum score. Site-directed mutagenesis of LPL Cys-460 further confirmed the role in the redox regulation of LPL. S-Thiolation diminished binding as well as the bundling activity of LPL. The presence of S-thiolated LPL was detected in neutrophils from both diabetic patients and db/db mice with impaired PMN functions. Thus, enhanced nitroxidative stress may results in LPL S-glutathionylation leading to impaired chemotaxis, polarization, and bactericidal activity of human PMNs, providing a mechanistic basis for their impaired functions in diabetes mellitus.
Collapse
Affiliation(s)
- Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhishek K Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children׳s Research Foundation, Cincinnati, OH 45229, USA
| | - Wahid Ali
- King George׳s Medical University, Lucknow, India
| | | | - Vikas Kumar
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences (NCBS-TIFR), Bangalore, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Francisco J Sánchez-Gómez
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus Universidad Autónoma, Nicolás, Cabrera 1, E-28049, Madrid, Spain
| | - Santiago Lamas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus Universidad Autónoma, Nicolás, Cabrera 1, E-28049, Madrid, Spain
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
47
|
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144:171-85. [PMID: 25262977 DOI: 10.1111/imm.12394] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022] Open
Abstract
Diabetes has been recognized as an important risk factor for a variety of intracellular bacterial infections, but research into the dysregulated immune mechanisms contributing to the impaired host-pathogen interactions is in its infancy. Diabetes is characterized by a chronic state of low-grade inflammation due to activation of pro-inflammatory mediators and increased formation of advanced glycation end products. Increased oxidative stress also exacerbates the chronic inflammatory processes observed in diabetes. The reduced phagocytic and antibacterial activity of neutrophils and macrophages provides an intracellular niche for the pathogen to replicate. Phagocytic and antibacterial dysfunction may be mediated directly through altered glucose metabolism and oxidative stress. Furthermore, impaired activation of natural killer cells contributes to decreased levels of interferon-γ, required for promoting macrophage antibacterial mechanisms. Together with impaired dendritic cell function, this impedes timely activation of adaptive immune responses. Increased intracellular oxidation of antigen-presenting cells in individuals with diabetes alters the cytokine profile generated and the subsequent balance of T-cell immunity. The establishment of acute intracellular bacterial infections in the diabetic host is associated with impaired T-cell-mediated immune responses. Concomitant to the greater intracellular bacterial burden and potential cumulative effect of chronic inflammatory processes, late hyper-inflammatory cytokine responses are often observed in individuals with diabetes, contributing to systemic pathology. The convergence of intracellular bacterial infections and diabetes poses new challenges for immunologists, providing the impetus for multidisciplinary research.
Collapse
Affiliation(s)
- Kelly Hodgson
- Infectious Diseases and Immunopathogenesis Research Group, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Boe DM, Curtis BJ, Chen MM, Ippolito JA, Kovacs EJ. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol 2015; 97:1023-35. [PMID: 25877927 DOI: 10.1189/jlb.4ri1014-521r] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
MΦ are multipurpose phagocytes with a large repertoire of well-characterized abilities and functions, including regulation of inflammation, wound healing, maintenance of tissue homeostasis, as well as serving as an integral component of the innate-immune defense against microbial pathogens. Working along with neutrophils and dendritic cells, the other myeloid-derived professional phagocytes, MΦ are one of the key effector cells initiating and directing the host reaction to pathogenic organisms and resolving subsequent responses once the threat has been cleared. ETs are a relatively novel strategy of host defense involving expulsion of nuclear material and embedded proteins from immune cells to immobilize and kill bacteria, fungi, and viruses. As research on ETs expands, it has begun to encompass many immune cell types in unexpected ways, including various types of MΦ, which are not only capable of generating METs in response to various stimuli, but recent preclinical data suggest that they are an important agent in clearing ETs and limiting ET-mediated inflammation and tissue damage. This review aims to summarize historical and recent findings of biologic research regarding ET formation and function and discuss the role of MΦ in ET physiology and associated pathologies.
Collapse
Affiliation(s)
- Devin M Boe
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Brenda J Curtis
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Michael M Chen
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Jill A Ippolito
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| |
Collapse
|
49
|
Yan J, Ralston MM, Meng X, Bongiovanni KD, Jones AL, Benndorf R, Nelin LD, Joshua Frazier W, Rogers LK, Smith CV, Liu Y. Glutathione reductase is essential for host defense against bacterial infection. Free Radic Biol Med 2013; 61:320-32. [PMID: 23623936 PMCID: PMC3749296 DOI: 10.1016/j.freeradbiomed.2013.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/12/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, a major cellular antioxidant. We have recently shown that Gsr is essential for host defense against the gram-negative bacteria Escherichia coli in a mouse model of sepsis. Although we have demonstrated that Gsr is required for sustaining the oxidative burst and the development of neutrophil extracellular traps, the role of Gsr in other phagocytic functions remains unclear. It is also unclear whether Gsr-deficient mice exhibit host defense defects against gram-positive bacteria. In this study, we characterized the effects of Gsr deficiency on the innate immune responses to a gram-positive bacterium, group B Streptococcus, and to the gram-negative bacterial cell wall component lipopolysaccharide (LPS). We found that, like E. coli, group B Streptococcus resulted in a substantially more robust cytokine response and a markedly higher morbidity and mortality in Gsr-deficient mice than in wild-type mice. The increased morbidity and mortality were associated with greater bacterial burden in the Gsr-deficient mice. Interestingly, Gsr-deficient mice did not exhibit a greater sensitivity to LPS than did wild-type mice. Analysis of the neutrophils of Gsr-deficient mice revealed impaired phagocytosis. In response to thioglycollate stimulation, Gsr-deficient mice mobilized far fewer phagocytes, including neutrophils, macrophages, and eosinophils, into their peritoneal cavities than did wild-type mice. The defective phagocyte mobilization is associated with profound oxidation and aggregation of ascitic proteins, particularly albumin. Our results indicate that the oxidative defense mechanism mediated by Gsr is required for an effective innate immune response against bacteria, probably by preventing phagocyte dysfunction due to oxidative damage.
Collapse
Affiliation(s)
- Jing Yan
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Melissa M Ralston
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kathleen D Bongiovanni
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Amanda L Jones
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Rainer Benndorf
- Center for Translational Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - W Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Charles V Smith
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
50
|
Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol 2013; 35:513-30. [PMID: 23732507 PMCID: PMC3685711 DOI: 10.1007/s00281-013-0384-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
Neutrophils are the foot soldiers of the immune system. They home in to the site of infection and kill pathogens by phagocytosis, degranulation, and the release of web-like structures called neutrophil extracellular traps (NETs) that trap and kill a variety of microbes. NETs have been shown to play a multitude of additional roles in immunity but have also been implicated in inflammatory and autoimmune disease. Here, we discuss the role of NETs in these various contexts with a particular emphasis on the molecular mechanisms that regulate NET release and clearance. We highlight the comprehensive concepts and explore the important open questions in the field.
Collapse
Affiliation(s)
- Nora Branzk
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, Mill Hill, London, UK
| | - Venizelos Papayannopoulos
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, Mill Hill, London, UK
| |
Collapse
|