1
|
Yadav S, Maity P, Kapat K. The Opportunities and Challenges of Mesenchymal Stem Cells-Derived Exosomes in Theranostics and Regenerative Medicine. Cells 2024; 13:1956. [PMID: 39682706 DOI: 10.3390/cells13231956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cell-secreted nanovesicles of endosomal origin, called exosomes, are vital for mediating intracellular communication. As local or distal transporters of intracellular cargo, they reflect the unique characteristics of secretory cells and establish cell-specific interactions via characteristic surface proteins and receptors. With the advent of rapid isolation, purification, and identification techniques, exosomes have become an attractive choice for disease diagnosis (exosomal content as biomarkers), cell-free therapy, and tissue regeneration. Mesenchymal stem cell (MSC)-derived exosomes (MSC-exosomes) display angiogenic, immune-modulatory, and other therapeutic effects crucial for cytoprotection, ischemic wound repair, myocardial regeneration, etc. The primary focus of this review is to highlight the widespread application of MSC-exosomes in therapeutics, theranostics, and tissue regeneration. After a brief introduction of exosome properties, biogenesis, isolation, and functions, recent studies on therapeutic and regenerative applications of MSC-exosomes are described, focusing on bone, cartilage, periodontal, cardiovascular, skin, and nerve regeneration. Finally, the review highlights the theranostic potential of exosomes followed by challenges, summary, and outlook.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- School of Medicine, University of California Riverside, Riverside, CA 92525, USA
| | - Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| |
Collapse
|
2
|
Mannala GK, Rupp M, Walter N, Youf R, Bärtl S, Riool M, Alt V. Repetitive combined doses of bacteriophages and gentamicin protect against Staphylococcus aureus implant-related infections in Galleria mellonella. Bone Joint Res 2024; 13:383-391. [PMID: 39089687 PMCID: PMC11293943 DOI: 10.1302/2046-3758.138.bjr-2023-0340.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aims Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required.
Collapse
Affiliation(s)
- Gopala K. Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
- Department for Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Raphaelle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Bärtl
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Zhu J, Cheng X, Naumovski N, Hu L, Wang K. Epigenetic regulation by quercetin: a comprehensive review focused on its biological mechanisms. Crit Rev Food Sci Nutr 2023; 65:627-646. [PMID: 38062765 DOI: 10.1080/10408398.2023.2278760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Epigenetics regulates gene expression and play significant roles across diverse disease states. Epigenetics mechanisms, including DNA methylation, histone modifications, microRNAs/lncRNA, and N6-methyladenosine (m6A) RNA methylation, elicit heritable but reversible modifications in gene expression without modifying the DNA sequence. Recent research suggests that certain natural phytochemicals with chemopreventive properties have the potential to function as epigenetic regulators. Quercetin, a derivative of natural flavonoid glycosides and a constituent of the human diet, is linked to a variety of health benefits including anti-inflammatory, anticancer activity, antiapoptotic, antihypertensive, and neuroprotective effects. Recent findings suggest that quercetin possesses the ability to modulate canonical biochemical signaling pathways and exert an impact on epigenetic networks. This review aims to synthesize the most recent research findings that elucidate the potential biological effects of quercetin and its influence on in vitro and in vivo models via epigenetic mechanisms. In light of our findings, it is evident that quercetin possesses the potential to function as an exemplary instance of naturally derived phytochemicals, which can be effectively employed as a pivotal constituent in functional foods and dietary supplements aimed at the amelioration of various ailments. More specifically, its mechanism of action involves the alteration of diverse epigenetic targets.
Collapse
Affiliation(s)
- Jinfeng Zhu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, Italy
| | - Xiaju Cheng
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Lin Hu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Frauenlob T, Neuper T, Regl C, Schaepertoens V, Unger MS, Oswald AL, Dang HH, Huber CG, Aberger F, Wessler S, Horejs-Hoeck J. Helicobacter pylori induces a novel form of innate immune memory via accumulation of NF-кB proteins. Front Immunol 2023; 14:1290833. [PMID: 38053995 PMCID: PMC10694194 DOI: 10.3389/fimmu.2023.1290833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Helicobacter pylori is a widespread Gram-negative pathogen involved in a variety of gastrointestinal diseases, including gastritis, ulceration, mucosa-associated lymphoid tissue (MALT) lymphoma and gastric cancer. Immune responses aimed at eradication of H. pylori often prove futile, and paradoxically play a crucial role in the degeneration of epithelial integrity and disease progression. We have previously shown that H. pylori infection of primary human monocytes increases their potential to respond to subsequent bacterial stimuli - a process that may be involved in the generation of exaggerated, yet ineffective immune responses directed against the pathogen. In this study, we show that H. pylori-induced monocyte priming is not a common feature of Gram-negative bacteria, as Acinetobacter lwoffii induces tolerance to subsequent Escherichia coli lipopolysaccharide (LPS) challenge. Although the increased reactivity of H. pylori-infected monocytes seems to be specific to H. pylori, it appears to be independent of its virulence factors Cag pathogenicity island (CagPAI), cytotoxin associated gene A (CagA), vacuolating toxin A (VacA) and γ-glutamyl transferase (γ-GT). Utilizing whole-cell proteomics complemented with biochemical signaling studies, we show that H. pylori infection of monocytes induces a unique proteomic signature compared to other pro-inflammatory priming stimuli, namely LPS and the pathobiont A. lwoffii. Contrary to these tolerance-inducing stimuli, H. pylori priming leads to accumulation of NF-кB proteins, including p65/RelA, and thus to the acquisition of a monocyte phenotype more responsive to subsequent LPS challenge. The plasticity of pro-inflammatory responses based on abundance and availability of intracellular signaling molecules may be a heretofore underappreciated form of regulating innate immune memory as well as a novel facet of the pathobiology induced by H. pylori.
Collapse
Affiliation(s)
- Tobias Frauenlob
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Veronika Schaepertoens
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Michael S. Unger
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Anna-Lena Oswald
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Li H, Breedijk A, Dietrich N, Nitschke K, Jarczyk J, Nuhn P, Krämer BK, Yard BA, Leipe J, Hauske S. Lipopolysaccharide Tolerance in Human Primary Monocytes and Polarized Macrophages. Int J Mol Sci 2023; 24:12196. [PMID: 37569572 PMCID: PMC10419197 DOI: 10.3390/ijms241512196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Innate immune memory allows macrophages to adequately respond to pathogens to which they have been pre-exposed. To what extent different pattern recognition receptors, cytokines and resolution signals influence innate immune memory needs further elucidation. The present study assessed whether lipopolysaccharide (LPS) tolerance in monocytes and macrophages is affected by these factors. Human CD14+ cells were isolated from peripheral blood, stimulated by LPS and re-stimulated after 3 days of resting. Hereafter, immune-responsive gene 1 (IRG-1), heme oxygenase 1 (HO-1), tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) expression were assessed. Our study revealed the following findings: (1) While pre-stimulation with the Toll-like receptor 4 ligand LPS inhibits the induction of IRG-1, TNF-α and IL-6 expression, pre-stimulation with TLR 1/2 ligands only affects cytokine production but not IRG-1 expression upon subsequent TLR4 engagement. (2) Prior TNF-α stimulation does not affect LPS tolerance but rather increases LPS-mediated cytokine expression. (3) Dimethyl itaconate (DMI) inhibits the expression of IRG-1 in a dose-dependent manner but does not affect TNF-α or IL-6 expression. (4) Docosahexaenoic acid (DHA) partly inhibits IRG-1 expression in monocytes but not in M(IFNγ) and M(IL-4) polarized macrophages. LPS tolerance is not affected in these cells by DHA. The data presented in this study partly corroborate and extend previous findings on innate immune memory and warrant further studies on LPS tolerance to gain a better understanding of innate immune memory at the molecular level.
Collapse
Affiliation(s)
- Hui Li
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
| | - Annette Breedijk
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
| | - Nadine Dietrich
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
| | - Katja Nitschke
- Department of Urology, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (K.N.); (J.J.); (P.N.)
| | - Jonas Jarczyk
- Department of Urology, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (K.N.); (J.J.); (P.N.)
| | - Philipp Nuhn
- Department of Urology, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (K.N.); (J.J.); (P.N.)
| | - Bernhard K. Krämer
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Center for Innate Immunoscience Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Benito A. Yard
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Center for Innate Immunoscience Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jan Leipe
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
- Center for Innate Immunoscience Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sibylle Hauske
- Fifth Medical Department, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.L.); (A.B.); (N.D.); (B.K.K.); (J.L.)
| |
Collapse
|
8
|
Sampath P, Moorthy M, Menon A, Madhav L, Janaki A, Dhanapal M, Natarajan AP, Hissar S, Ranganathan UD, Ramaswamy G, Bethunaickan R. Downregulation of monocyte miRNAs: implications for immune dysfunction and disease severity in drug-resistant tuberculosis. Front Immunol 2023; 14:1197805. [PMID: 37457712 PMCID: PMC10345223 DOI: 10.3389/fimmu.2023.1197805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Monocyte miRNAs govern both protective and pathological responses during tuberculosis (TB) through their differential expression and emerged as potent targets for biomarker discovery and host-directed therapeutics. Thus, this study examined the miRNA profile of sorted monocytes across the TB disease spectrum [drug-resistant TB (DR-TB), drug-sensitive TB (DS-TB), and latent TB] and in healthy individuals (HC) to understand the underlying pathophysiology and their regulatory mechanism. Methods We sorted total monocytes including three subsets (HLA-DR+CD14+, HLA-DR+CD14+CD16+, and HLA-DR+CD16+cells) from peripheral blood mononuclear cells (PBMCs) of healthy and TB-infected individuals through flow cytometry and subjected them to NanoString-based miRNA profiling. Results The outcome was the differential expression of 107 miRNAs particularly the downregulation of miRNAs in the active TB groups (both drug-resistant and drug-sensitive). The miRNA profile revealed differential expression signatures: i) decline of miR-548m in DR-TB alone, ii) decline of miR-486-3p in active TB but significant elevation only in LTB iii) elevation of miR-132-3p only in active TB (DR-TB and DS-TB) and iv) elevation of miR-150-5p in DR-TB alone. The directionality of functions mediated by monocyte miRNAs from Gene Set Enrichment Analysis (GSEA) facilitated two phenomenal findings: i) a bidirectional response between active disease (activation profile in DR-TB and DS-TB compared to LTB and HC) and latent infection (suppression profile in LTB vs HC) and ii) hyper immune activation in the DR-TB group compared to DS-TB. Conclusion Thus, monocyte miRNA signatures provide pathological clues for altered monocyte function, drug resistance, and disease severity. Further studies on monocyte miRNAs may shed light on the immune regulatory mechanism for tuberculosis.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Athul Menon
- TheraCUES Innovations Pvt. Ltd, Bangalore, India
| | | | - Aishwarya Janaki
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Madhavan Dhanapal
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Syed Hissar
- Department of Clinical Research, ICMR-National Institute of Research in Tuberculosis (NIRT), Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Ramalingam Bethunaickan
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| |
Collapse
|
9
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
10
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Downregulation of miR-671-5p promotes IL-10 mRNA increase in porcine moDCs stimulated with the probiotic BB12. Mol Biol Rep 2023; 50:919-925. [PMID: 36334231 DOI: 10.1007/s11033-022-08040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous work showed that the microRNA (miRNA) miR-671-5p was upregulated in monocyte-derived dendritic cells (moDCs) stimulated with Bifidobacterium animalis subsp. lactis BB12 (BB12) with no increase in IL-10 after six hours of stimulation. In this work, we performed an in silico prediction of genes targeted by miR-671-5p and which are the terms and pathways involved with it. Also, miR-671-5p was transiently downregulated to assess its effect on IL-10 regulation. METHODS AND RESULTS First, we performed a Gene Ontology enrichment analysis to predict immune response terms and pathways involved with miR-671-5p. Some of the terms and pathways found were related to the immune response promoted by the probiotic, as the terms "negative regulation of the inflammatory response to an antigenic stimulus" and "cancer" were highlighted. Then, to assess the role of miR-671-5p in IL-10 regulation, moDCs were derived from porcine peripheral blood and later transfected with miR-671-5p antisense oligonucleotide (ASO). Flow cytometry was employed to evaluate the transfection efficiency. Then, the moDCs were stimulated with BB12, and the expression of IL-10 was assessed by RT-qPCR and ELISA. An increase in IL-10 transcript in miR-671-5p-ASO-transfected moDCs stimulated with BB12 was observed compared with moDCs stimulated with BB12 but not transfected. These results suggest the participation of miR-671-5p as a negative regulator of IL-10. CONCLUSION These findings suggest that miR-671-5p participates in the downregulation of IL-10, as previously predicted in silico by our work group. miR-671-5p could play an essential role in the immunomodulation promoted by the probiotic BB12.
Collapse
|
12
|
Pattnaik B, Patnaik N, Mittal S, Mohan A, Agrawal A, Guleria R, Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res 2022; 7:16-26. [PMID: 35128217 PMCID: PMC8792429 DOI: 10.1016/j.ncrna.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major infectious disease across the globe. With increasing TB infections and a rise in multi-drug resistance, rapid diagnostic modalities are required to achieve TB control. Radiological investigations and microbiological tests (microscopic examination, cartridge-based nucleic acid amplification tests, and cultures) are most commonly used to diagnose TB. Histopathological/cytopathological examinations are also required for an accurate diagnosis in many patients. The causative agent, Mycobacterium tuberculosis (Mtb), is known to circumvent the host's immune system. Circulating microRNAs (miRNAs) play a crucial role in biological pathways and can be used as a potential biomarker to detect tuberculosis. miRNAs are small non-coding RNAs and negatively regulate gene expression during post-transcriptional regulation. The differential expression of miRNAs in multiple clinical samples in tuberculosis patients may be helpful as potential disease biomarkers. This review summarizes the literature on miRNAs in various clinical samples as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Niharika Patnaik
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
13
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
14
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
15
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
16
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Li Y, Lu B, Yu M, Zhai J, Yao Y, Chai Y. Diagnostic value and significance of serum miR-132 combined with miR-223 for sepsis-induced cardiomyopathy. Exp Ther Med 2021; 22:1396. [PMID: 34650644 PMCID: PMC8506955 DOI: 10.3892/etm.2021.10832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
In previous studies, miR-132 and miR-223 were considered to be involved in cellular and pathological processes of diseases. However, the role of early diagnosis and prognosis evaluation in sepsis-induced cardiomyopathy (SIC) remains unknown. The present study aimed to explore the diagnostic value of combined detection of miR-132 and miR-223 for SIC and their correlation with creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor α (TNF-α), and interleukin-6 (IL)-6. SIC patients (n=80) admitted to Tianjin Medical University General Hospital were assigned to the research group (RG), while 60 healthy participants receiving physical examinations at the same period were assigned to the control group (CG). Serum expression profiles of miR-132 and miR-223 were detected by the RT-qPCR. CK-MB and cTnI were assessed using chemiluminescence assay, and TNF-α and IL-6 by enzyme-linked immunosorbent assay (ELISA). Serum miR-132 and miR-223 levels were significantly lower in the RG than in the CG (P<0.001). The sensitivity and specificity for the diagnosis of SIC were 82.50 and 71.67% for miR-132, 95.00 and 61.67% for miR-223, as well as 86.25 and 86.67% for miR-132 combined with miR-223. Serum miR-132 and miR-223 levels were significantly higher in the survivor group than in the deceased group (P<0.001). The sensitivity and specificity for the prognosis of SIC were 85.96 and 65.22% for miR-132 combined with miR-223. Serum miR-132 and miR-223 were negatively correlated with serum CK-MB, cTnI, TNF-α, and IL-6 (P<0.001). miR-132 combined with miR-223 can be used for early diagnosis and prognostic evaluation of SIC, and the two are correlated with CK-MB, cTnI, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Yanping Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Lu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Muming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
18
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
19
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
20
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Vidal R. Temporal Gene Expression Signature of Plasma Extracellular Vesicles-MicroRNAs from Post-Smolt Coho Salmon Challenged with Piscirickettsia salmonis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:602-614. [PMID: 34390423 DOI: 10.1007/s10126-021-10049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|
22
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
23
|
Săsăran MO, Meliț LE, Dobru ED. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22031406. [PMID: 33573346 PMCID: PMC7866828 DOI: 10.3390/ijms22031406] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) remains the most-researched etiological factor for gastric inflammation and malignancies. Its evolution towards gastric complications is dependent upon host immune response. Toll-like receptors (TLRs) recognize surface and molecular patterns of the bacterium, especially the lipopolysaccharide (LPS), and act upon pathways, which will finally lead to activation of the nuclear factor-kappa B (NF-kB), a transcription factor that stimulates release of inflammatory cytokines. MicroRNAs (MiRNAs) finely modulate TLR signaling, but their expression is also modulated by activation of NF-kB-dependent pathways. This review aims to focus upon several of the most researched miRNAs on this subject, with known implications in host immune responses caused by H. pylori, including let-7 family, miRNA-155, miRNA-146, miRNA-125, miRNA-21, and miRNA-221. TLR-LPS interactions and their afferent pathways are regulated by these miRNAs, which can be considered as a bridge, which connects gastric inflammation to pre-neoplastic and malignant lesions. Therefore, they could serve as potential non-invasive biomarkers, capable of discriminating H. pylori infection, as well as its associated complications. Given that data on this matter is limited in children, as well as for as significant number of miRNAs, future research has yet to clarify the exact involvement of these entities in the progression of H. pylori-associated gastric conditions.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technol-ogy of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-742-984744
| | - Ecaterina Daniela Dobru
- Department of Internal Medicine VII, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
24
|
Son M, Wang AG, Tu HL, Metzig MO, Patel P, Husain K, Lin J, Murugan A, Hoffmann A, Tay S. NF-κB responds to absolute differences in cytokine concentrations. Sci Signal 2021; 14. [PMID: 34211635 DOI: 10.1126/scisignal.aaz4382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Parthiv Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kabir Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Arvind Murugan
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Sci Rep 2021; 11:545. [PMID: 33436962 PMCID: PMC7803961 DOI: 10.1038/s41598-020-80804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.
Collapse
|
26
|
Bai X, He T, Liu M, Li L, Chen J, Cao M, Liu Y, Yang C, Jia W, Tao K, Han J, Hu D. Integrative Analysis of MicroRNAs and mRNAs in LPS-Induced Macrophage Inflammation Based on Adipose Tissue Stem Cell Therapy. Inflammation 2020; 44:407-420. [PMID: 32955644 DOI: 10.1007/s10753-020-01345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Severe inflammation can lead to multiple organ dysfunction syndrome, which has high mortality. Adipose-derived stem cells have been shown to affect the inflammatory response of macrophages. However, the molecular mechanism of the anti-inflammatory capacity of adipose-derived stem cells (ADSCs) remains to be understood. In the present study, a macrophage inflammation model was established by LPS, and treated with different volumes of ADSC supernatant. Then, we investigated the key genes in the LPS group and treatment group by RT-PCR, RNA sequencing technology, and bioinformatics analysis. A total of 26 miRNAs and 11,882 mRNAs were differentially expressed between them. The expression of 15 of the miRNAs (9 upregulated and 6 downregulated) was confirmed by RT-PCR. GO and KEGG pathway analyses of the targets of the 9 significantly upregulated miRNAs showed that they were related to immune system process, inflammatory response, lipopolysaccharide, and TNF-α, NF-κB, Toll-like receptor, and MAPK signaling pathways. Moreover, a miRNA-mRNA network also revealed 8 important genes (Mapkapk2, Sepp1, Cers6, Snn, ZfP568, Ccdc93, Pofut1, Pik3cd). We finally confirmed the expression of these 8 targeted genes by performing the RT-PCR analysis. This study may provide a new understanding of the molecular mechanism of ADSCs in the inflammatory response related to multiple miRNAs and mRNAs.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Mingchuan Liu
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Lincheng Li
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Mengyuan Cao
- Chinese People's Liberation Army Hospital 961, No. 71 Youzheng Road, Qiqihar, 161000, Heilongjiang, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Li H, Zhou L, Zhi Z, Lv X, Wei Z, Zhang X, Tang W, Tong M. Lipopolysaccharide upregulates miR-132/212 in Hirschsprung-associated enterocolitis, facilitating pyroptosis by activating NLRP3 inflammasome via targeting Sirtuin 1 (SIRT1). Aging (Albany NY) 2020; 12:18588-18602. [PMID: 32950974 PMCID: PMC7585123 DOI: 10.18632/aging.103852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder attributed to the failure of the neural crest derivatives migrating and/or differentiating along the hindgut. The most frequent complication in Hirschsprung disease patients is Hirschsprung-associated enterocolitis (HAEC). However, its pathogenesis has not been fully understood. This study investigated miRNAs influenced by Lipopolysaccharide (LPS) in postoperative HAEC patients, their effect on enterocolitis and the underlying mechanism. MiR-132 and miR-212 were up-regulated in HAEC dilated tissues and LPS-treated mice enteritis samples. LPS-stimulated HT29 cells showed a high expression of miR-132 and miR-212. QRT-PCR analysis, western blotting, luciferase reporter assay, and flow cytometric analysis were carried out in vitro, showing that miR-132 and miR-212 could directly inhibit Sirtuin 1 (SIRT1) expression. Consequently, SIRT1 deficiency in LPS-stimulated HT29 cell line and LPS-treated mice activated NLRP3 inflammasome and Caspase-1-mediated pyroptosis. Furthermore, the above inflammation activation was reversed by miR-132/212 inhibitor or SIRT1 overexpression plasmid transfection.In conclusion, LPS upregulated miR-132 and miR-212 expression in HAEC, suppressing SIRT1 and facilitating NLRP3 inflammasome activation, which induced pyroptosis. Our findings illustrated the role of LPS/miR-132/-212/SIRT1/NLRP3 regulatory network in the occurrence and progression of HAEC and proposed a new molecular pathway for LPS-mediated cell pyroptosis.
Collapse
Affiliation(s)
- Hongxing Li
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Pediatrics, Nanjing Medical University, Nanjing, China,Department of Pediatrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lingling Zhou
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiurui Lv
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhonghong Wei
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Pediatrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Weibing Tang
- Department of Neonatal Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Pediatrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
28
|
Wang F, Yao S, Xia H. SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Biomed Pharmacother 2020; 130:110601. [PMID: 32784049 DOI: 10.1016/j.biopha.2020.110601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved adaptive response that contributes to deal with the misfolded or unfolded protein in the lumen of the ER and restore the ER homeostasis. However, excessive and prolonged ER stress can trigger the cell-death signaling pathway which causes cell death, usually in the form of apoptosis. It is generally accepted that inappropriate cellular apoptosis and a series of the subsequent inflammatory response and oxidative stress can cause disturbance of normal physiological functions and organ damage. A lot of evidence shows that the excessive activation of the ER stress contributes to the pathogenesis of many kinds of diseases and inhibiting the inappropriate stress is of great significance for maintaining the normal physiological function. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ER stress. As a master regulator of ER stress, increasing evidence suggests that SIRT1 plays a positive role in a variety of ER stress-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. Furthermore, a lot of factors have shown effective regulation of SIRT1, which indicates the feasibility of treating SIRT1 as a target for the treatment of ER stress-related diseases. We summarize and reveal the molecular mechanisms underlying the protective effect of SIRT1 in multiple ER stress-mediated organ damage in this review. We also summed up the possible adjustment mechanism of SIRT1, which provides a theoretical basis for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
30
|
Exploring the Role of Non-Coding RNAs in the Pathophysiology of Systemic Lupus Erythematosus. Biomolecules 2020; 10:biom10060937. [PMID: 32580306 PMCID: PMC7356926 DOI: 10.3390/biom10060937] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-related disorder designated by a lack of tolerance to self-antigens and the over-secretion of autoantibodies against several cellular compartments. Although the exact pathophysiology of SLE has not been clarified yet, this disorder has a strong genetic component based on the results of familial aggregation and twin studies. Variation in the expression of non-coding RNAs has been shown to influence both susceptibility to SLE and the clinical course of this disorder. Several long non-coding RNAs (lncRNAs) such as GAS5, MALAT1 and NEAT1 are dysregulated in SLE patients. Moreover, genetic variants within lncRNAs such as SLEAR and linc00513 have been associated with risk of this disorder. The dysregulation of a number of lncRNAs in the peripheral blood of SLE patients has potentiated them as biomarkers for diagnosis, disease activity and therapeutic response. MicroRNAs (miRNAs) have also been shown to affect apoptosis and the function of immune cells. Taken together, there is a compelling rationale for the better understanding of the involvement of these two classes of non-coding RNAs in the pathogenesis of SLE. Clarification of the function of these transcripts has the potential to elucidate the molecular pathophysiology of SLE and provide new opportunities for the development of targeted therapies for this disorder.
Collapse
|
31
|
Chen W, Guo S, Li X, Song N, Wang D, Yu R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J Leukoc Biol 2020; 108:243-252. [PMID: 32337768 DOI: 10.1002/jlb.3ma0320-327rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/23/2023] Open
Abstract
Atherosclerosis (AS) is the principal cause of heart attack, sudden cardiac death, stroke, and necrosis of the extremities, in which significant changes in gene expression associated with inflammation are found. However, the molecular mechanisms of AS are not clearly elucidated. In this study, ApoE-/- mice were fed with a high fat diet for 12 weeks to induce atherosclerosis and half of the mice were treated with tanshinone IIA (TAN). Then sequencing analysis was performed to investigate the expression patterns of ncRNAs in AS plaques obtained from mice treated with TAN and AS Model mice. A total of 22 long noncoding RNAs (lncRNAs), 74 microRNAs (miRNAs), 13 circular RNAs (circRNAs), and 1359 mRNAs in AS plaque were more significantly regulated from TAN mice, compared with model mice. Bioinformatics tools and databases were employed to investigate the potential ncRNA functions and their interaction. Our data showed that the most significantly pathways regulated by TAN were associated with inflammation, and involved in the signaling pathways of Ras, Rap1, MAPK, cAMP, T cell receptor, and so on. In addition, the competitive endogenous RNA (ceRNA) network had been constructed and the core nodes included circ-Tns3/let-7d-5p/Ctsl, circ-Wdr91/miR-378a-5p/Msr1, and circ-Cd84/ miR-30c/ Tlr2. The DERNAs were validated by quantitative RT-PCR and dual luminescence reporter assay in RAW264.7 cells in vitro. This study identified ceRNAs network regulated by TAN and elucidated the ncRNAs profile and signal pathways to attenuate AS comprehensively. This research would contribute to further research on the pathogenesis of AS, and facilitate the development of novel therapeutics targeting ncRNAs.
Collapse
Affiliation(s)
- Wenna Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China.,Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Shengnan Guo
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ximing Li
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Nan Song
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dan Wang
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Rui Yu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Fang Y, Xu XY, Shen Y, Li J. miR-23a-3p and miR-23a-5p target CiGadd45ab to modulate inflammatory response and apoptosis in grass carp. FISH & SHELLFISH IMMUNOLOGY 2020; 98:34-44. [PMID: 31883472 DOI: 10.1016/j.fsi.2019.12.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Ctenopharyngodon idella growth arrest and DNA damage-inducible 45 ab (CiGadd45ab) is a subtype of the Gadd45a gene of the Gadd45 family in grass carp. There is increasing evidence that microRNAs (miRNAs) are involved in the regulation of inflammatory and apoptotic responses. However, little is known about the regulatory effects of miRNAs on CiGadd45ab expression. In the present study, CiGadd45ab was identified as a target gene of miR-23a-3p and miR-23a-5p, based on miRNA expression profiling and a dual-luciferase reporter assay. In addition, miR-23a-3p and miR-23a-5p were both confirmed to be involved in the inflammatory response following infection with Aeromonas hydrophila by targeting CiGadd45ab. Transfection with miR-23a-3p and miR-23a-5p mimics and inhibitor altered proinflammatory gene expression and apoptosis rate, thereby suggesting that miRNAs regulate immune response and anti-apoptosis by targeting CiGadd45ab in grass carp. Our results provide a theoretical basis for exploring the molecular mechanisms by which miR-23a-3p and miR-23a-5p target CiGadd45ab to regulate inflammation and apoptosis against bacterial infection in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
33
|
The Probiotic BB12 Induces MicroRNAs Involved in Antigen Processing and Presentation in Porcine Monocyte-Derived Dendritic Cells. Int J Mol Sci 2020; 21:ijms21030687. [PMID: 31972983 PMCID: PMC7037397 DOI: 10.3390/ijms21030687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) mediate the regulation of gene expression. Several reports indicate that probiotics induce miRNA-mediated immunomodulation at different levels, such as cytokine production and the up-regulation of several markers related to antigen presentation in antigen-presenting cells. The objective of this work was to identify target genes of miRNAs that are involved in the processing and presentation of antigens in monocyte-derived dendritic cells (moDCs) stimulated with the probiotic Bifidobacterium animalis ssp. lactis BB12 (BB12). First, an in silico prediction analysis for a putative miRNA binding site within a given mRNA target was performed using RNAHybrid software with mature sequences of differentially expressed miRNAs retrieved from a Genbank data set that included BB12-stimulated and unstimulated porcine monocytes. From them, 23 genes resulted in targets of 19 miRNAs, highlighting miR-30b-3p, miR-671-5p, and miR-9858-5p, whose targets were costimulatory molecules, and were overexpressed (p < 0.05) in BB12-stimulated moDCs. The analysis of moDCs showed that the percentage of cells expressing SLA-DR+CD80+ decreased significantly (p = 0.0081) in BB12-stimulated moDCs; interleukin (IL)-10 production was unchanged at 6 h but increased after 24 h of culture in the presence of BB12 (p < 0.001). In summary, our results suggest that SLA-DR and CD80 can be down-regulated by miRNAs miR-30b-3p, miR-671-5p, and miR-9858-5p, while miR-671-5p targets IL-10.
Collapse
|
34
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
35
|
The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. J Clin Med 2020; 9:jcm9010161. [PMID: 31936082 PMCID: PMC7020053 DOI: 10.3390/jcm9010161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mixed connective tissue disease (MCTD) is a rare disorder characterized by symptoms that overlap two or more Autoimmune Connective Tissue Diseases (ACTDs). The aim of this study was to determine whether miRNAs participating in the TLRs signaling pathway could serve as biomarkers differentiating MCTD or other ACTD entities from a healthy control group and between groups of patients. Although the selected miRNA expression level was not significantly different between MCTD and control, we observed that miR-126 distinguishes MCTD patients from all other ACTD groups. The expression level of miRNAs was significantly higher in the serum of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to controls. The miR-145 and -181a levels distinguished RA from other ACDT patients. miR-155 was specific for SLE patients. MiR-132, miR-143, and miR-29a distinguished RA and SLE patients from the systemic sclerosis (SSc) group. Additionally, some clinical parameters were significantly related to the miRNA expression profile in the SLE group. SLE and RA are characterized by a specific serum expression profile of the microRNAs associated with the Toll-like receptors (TLRs) signaling pathway. The analysis showed that their level distinguishes these groups from the control and from other ACTD patients. The present study did not reveal a good biomarker for MCTD patients.
Collapse
|
36
|
Effect of Free Fatty Acids on Inflammatory Gene Expression and Hydrogen Peroxide Production by Ex Vivo Blood Mononuclear Cells. Nutrients 2020; 12:nu12010146. [PMID: 31947975 PMCID: PMC7019607 DOI: 10.3390/nu12010146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to assess free fatty acids’ (FAs) ex vivo anti-/proinflammatory capabilities and their influence on inflammatory gene expression and H2O2 production by human peripheral blood mononuclear cells (PBMCs). Anthropometric and clinical measurements were performed in 26 participants with metabolic syndrome. Isolated PBMCs were incubated ex vivo for 2 h with several free fatty acids—palmitic, oleic, α-linolenic, γ-linolenic, arachidonic and docosahexaenoic at 50 μM, and lipopolysaccharide (LPS) alone or in combination. H2O2 production and IL6, NFκB, TLR2, TNFα, and COX-2 gene expressions were determined. Palmitic, γ-linolenic, and arachidonic acids showed minor effects on inflammatory gene expression, whereas oleic, α-linolenic, and docosahexaenoic acids reduced proinflammatory gene expression in LPS-stimulated PBMCs. Arachidonic and α-linolenic acids treatment enhanced LPS-stimulated H2O2 production by PBMCs, while palmitic, oleic, γ-linolenic, and docosahexaenoic acids did not exert significant effects. Oleic, α-linolenic, and docosahexaenoic acids induced anti-inflammatory responses in PBMCs. Arachidonic and α-linolenic acids enhanced the oxidative status of LPS-stimulated PBMCs. In conclusion, PBMC ex vivo assays are useful to assess the anti-/proinflammatory and redox-modulatory effects of fatty acids or other food bioactive compounds.
Collapse
|
37
|
Identification of key genes, MicroRNAs and potentially regulated pathways in alcoholic hepatitis by integrative analysis. Gene 2019; 720:144035. [DOI: 10.1016/j.gene.2019.144035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
|
38
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Galleggiante V, De Santis S, Liso M, Verna G, Sommella E, Mastronardi M, Campiglia P, Chieppa M, Serino G. Quercetin-Induced miR-369-3p Suppresses Chronic Inflammatory Response Targeting C/EBP-β. Mol Nutr Food Res 2019; 63:e1801390. [PMID: 31338984 DOI: 10.1002/mnfr.201801390] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/11/2019] [Indexed: 12/24/2022]
Abstract
SCOPE Dendritic cells (DCs) are the most potent antigen-presenting cells that play an important role in the crosstalk between the innate and the adaptive immune response. Quercetin exposure is identified as an effective strategy to suppress the inflammatory response induced by LPS. METHODS AND RESULTS In this study, using a next-generation sequencing analysis, the effect of quercetin on microRNAs (miRNAs) expression in DCs is examined. A signature of 113 miRNAs that are differentially regulated in LPS-stimulated DCs after quercetin exposure is defined. It is demonstrated that the loss of function of miR-369-3p in LPS-stimulated DCs during quercetin exposure led to an increase of CCAAT/enhancer binding protein β (C/EBP-β) mRNA and protein and its downstream targets tumor necrosis factor-α (TNF-α) and interleukin 6 (IL6). Conversely, it is shown that the ectopic induction of miR-369-3p without quercetin suppresses the inflammatory response of LPS reducing C/EBP-β, TNF-α, and IL6 production. In vivo, oral administration of quercetin in dextran-sulfate-sodium-induced colitis induces miR-369-3p expression. CONCLUSIONS These findings indicate that quercetin-induced miR-369-3p regulates the inflammatory cascade in chronic inflammatory response and present promising therapeutic implications.
Collapse
Affiliation(s)
- Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| | - Stefania De Santis
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| | - Giulio Verna
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Mauro Mastronardi
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, 70013, Bari, Italy
| |
Collapse
|
40
|
Fan B, Chen F, Li Y, Wang Z, Wang Z, Lu Y, Wu Z, Jian J, Wang B. A comprehensive profile of the tilapia (Oreochromis niloticus) circular RNA and circRNA-miRNA network in the pathogenesis of meningoencephalitis of teleosts. Mol Omics 2019; 15:233-246. [PMID: 31098608 DOI: 10.1039/c9mo00025a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathogenesis of tilapia meningoencephalitis is still unclear, where the involvement of circRNA is considered for its active role as a "miRNA sponge". Therefore, we aimed to investigate the profile of circRNA in tilapia meningoencephalitis further by constructing the circRNA-miRNA network for in-depth mechanism exploration. Briefly, a nile tilapia model of meningitis was established by injecting Streptococcus agalactiae (1.0 × 107 cfu per mL) and we evaluated the infected tilapia brain for the expression profile of circRNAs, their potential functions and their correlation with genes involved in inflammatory pathways. A total of 11 263 circRNAs were identified from RNA sequencing (RNA-seq) data in nile tilapia (Oreochromis niloticus), a commercially important fish in China and East Asia. GO and KEGG analyses revealed that the biological functions of genes hosting the circRNAs were enriched in the progression of metabolism and binding. Notably, we found that 99% circRNAs in tilapia had abundant miRNA-binding sites and a total of 2136 of the identified circRNAs had two to six miRNA-binding sites. Six circRNAs were validated by qRT-PCR and the final circRNA-miRNA network was constructed. This is the first report of comprehensive identification of O. niloticus circRNAs being differentially regulated in the brain in normal conditions relating to S. agalactiae infection. This work will shed novel light on gene expression mechanisms under disease conditions and may identify circRNAs as new biomarkers for meningoencephalitis and neurodegenerative disorders.
Collapse
Affiliation(s)
- Bolin Fan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Funuan Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China. and Shenzhen Institute of Guangdong Ocean University, Shenzhen, GD, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China. and Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, GD, China. and Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Lie S, Rochet E, Segerdell E, Ma Y, Ashander LM, Shadforth AMA, Blenkinsop TA, Michael MZ, Appukuttan B, Wilmot B, Smith JR. Immunological Molecular Responses of Human Retinal Pigment Epithelial Cells to Infection With Toxoplasma gondii. Front Immunol 2019; 10:708. [PMID: 31118929 PMCID: PMC6506780 DOI: 10.3389/fimmu.2019.00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome-with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)-but very limited changes in the small RNA transcriptome-totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Shervi Lie
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Elise Rochet
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Erik Segerdell
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Yuefang Ma
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Liam M. Ashander
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Audra M. A. Shadforth
- Queensland Eye Institute, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Timothy A. Blenkinsop
- Departments of Cell, Developmental and Regenerative Biology, and Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Z. Michael
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Beth Wilmot
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Justine R. Smith
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| |
Collapse
|
42
|
Adibzadeh Sereshgi MM, Abdollahpour-Alitappeh M, Mahdavi M, Ranjbar R, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunologic balance of regulatory T cell/T helper 17 responses in gastrointestinal infectious diseases: Role of miRNAs. Microb Pathog 2019; 131:135-143. [PMID: 30914387 DOI: 10.1016/j.micpath.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Gastrointestinal Infectious diseases (GIDs) are the second cause of death worldwide. T helper17 cells (Th17) play an important role in GIDs through production of IL-17A, IL-17F, and IL-22 cytokines. Because of their increased activities in GID, Th17 and its inflammatory cytokines can inhibit the progression and eliminate the infection. Actually, although Th17 have the best performance in the acute phase, regulatory T cells (Treg cells) are enhanced in the chronic phase and infection progress through its suppressive function. In addition, Treg cells prevent undesirable inflammatory damages developed by immune system components. On the other hand, miRNAs have important roles in the regulation of immune responses to eliminate bacterial infections and protect host organisms from harmful effects. Actually, miRNAs can reinforce innate and adaptive immunity to remove infections. Of note, miRNAs can develop a regulatory network with the immune system. Additionally, miRNAs can also serve in favor of bacteria to reduce immune responses. Therefore, balance of immune responses in Treg and Th17 cells can influence outcome of many infectious diseases. In conclusion, there is an imbalance in the Treg/Th17 ratio in GIDs; importantly, sets of miRNAs, particularly miR155 and miR146, were determined to be involved clearly in GIDs.
Collapse
Affiliation(s)
| | | | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Hewitson JP, Shah KM, Brown N, Grevitt P, Hain S, Newling K, Sharp TV, Kaye PM, Lagos D. miR-132 suppresses transcription of ribosomal proteins to promote protective Th1 immunity. EMBO Rep 2019; 20:embr.201846620. [PMID: 30833344 DOI: 10.15252/embr.201846620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
Determining the mechanisms that distinguish protective immunity from pathological chronic inflammation remains a fundamental challenge. miR-132 has been shown to play largely immunoregulatory roles in immunity; however, its role in CD4+ T cell function is poorly understood. Here, we show that CD4+ T cells express high levels of miR-132 and that T cell activation leads to miR-132 up-regulation. The transcriptomic hallmark of splenic CD4+ T cells lacking the miR-132/212 cluster during chronic infection is an increase in mRNA levels of ribosomal protein (RP) genes. BTAF1, a co-factor of B-TFIID and novel miR-132/212-3p target, and p300 contribute towards miR-132/212-mediated regulation of RP transcription. Following infection with Leishmania donovani, miR-132 -/- CD4+ T cells display enhanced expression of IL-10 and decreased IFNγ. This is associated with reduced hepatosplenomegaly and enhanced pathogen load. The enhanced IL-10 expression in miR-132 -/- Th1 cells is recapitulated in vitro following treatment with phenylephrine, a drug reported to promote ribosome synthesis. Our results uncover that miR-132/212-mediated regulation of RP expression is critical for optimal CD4+ T cell activation and protective immunity against pathogens.
Collapse
Affiliation(s)
- James P Hewitson
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Kunal M Shah
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Paul Grevitt
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Sofia Hain
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Katherine Newling
- Genomics and Bioinformatics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | - Tyson V Sharp
- Centre of Molecular Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London, UK
| | - Paul M Kaye
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection and York Biomedical Research Institute, Hull York Medical School and Department of Biology, University of York, York, UK
| |
Collapse
|
44
|
MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin Rheumatol 2018; 38:877-884. [PMID: 30511295 DOI: 10.1007/s10067-018-4380-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) patients have high expression levels of hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p in peripheral blood. We studied if baseline blood levels of these microRNAs (miRNAs) could predict response to methotrexate (MTX). METHODS RA patients (the American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria) with active disease (disease-modifying anti-rheumatic drug (DMARD)-naïve and Disease Activity Score 28 (DAS28) > 3.2) were enrolled. They were treated with MTX by gradually increasing dose up to 25 mg/week. After 4 months, the DAS28 score was calculated and EULAR response was assessed. The hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p levels were measured by real-time qPCR in whole-blood RNA at baseline and 4 months after therapy, using hsa-let-7a-5p as housekeeping gene. Results are expressed as median (interquartile range). RESULTS The 94 enrolled patients (81 females) had a median age of 40 (17) years, disease duration of (24) months, and DAS28 4.61 (1.11). After 4 months of therapy, 73 were classified as responders and 21 as non-responders. Baseline levels of all three miRNAs were lower in responders than non-responders, hsa-miR-132-3p (- 8.03 (0.70) versus - 7.47 (0.85), P < 0.05), hsa-miR-146a-5p (- 5.11 (0.88) versus - 4.62 (0.90), P < 0.05), and hsa-miR-155-5p (- 7.59 (1.07) versus - 7 (0.72), P = 0.002). Receiver operating characteristic curve analysis showed that all three miRNAs were also good predictors of MTX response, showing the following values: hsa-miR-132-3p (area under curve (AUC) 0.756, P < 0.05), hsa-miR-146a-5p (AUC 0.760, P < 0.05), and hsa-miR-155-5p (AUC 0.728, P = 0.002). CONCLUSION hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p are potential biomarkers of responsiveness to MTX therapy.
Collapse
|
45
|
Vergadi E, Vaporidi K, Tsatsanis C. Regulation of Endotoxin Tolerance and Compensatory Anti-inflammatory Response Syndrome by Non-coding RNAs. Front Immunol 2018; 9:2705. [PMID: 30515175 PMCID: PMC6255943 DOI: 10.3389/fimmu.2018.02705] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The onset and the termination of innate immune response must be tightly regulated to maintain homeostasis and prevent excessive inflammation, which can be detrimental to the organism, particularly in the context of sepsis. Endotoxin tolerance and compensatory anti-inflammatory response syndrome (CARS) describe a state of hypo-responsiveness characterized by reduced capacity of myeloid cells to respond to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide (LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed as “innate immune training”, is required that leads to both modifications of the intracellular components of TLR signaling and also to alterations in extracellular soluble mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579, miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2, THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid cell tolerance is not only regulated by intracellular mediators but is also affected by other TLR-independent soluble signals that often achieve their effect via modulation of intracellular ncRNAs. In this article, we review recent evidence on the role of different ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate their impact on immune system homeostasis.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Heraklion, Greece.,Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
46
|
Shinde P, Bharat V, Rodriguez-Oquendo A, Zhou B, Vella AT. Understanding how combinatorial targeting of TLRs and TNFR family costimulatory members promote enhanced T cell responses. Expert Opin Biol Ther 2018; 18:1073-1083. [PMID: 30169979 DOI: 10.1080/14712598.2018.1518422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Due to the ability of pathogen-associated molecular patters and tumor necrosis factor receptor (TNFR) family costimulatory agonists to boost T cell responses, studies have combined Toll-like receptor (TLR) ligands with TNFR family costimulatory receptor agonists to induce impressive and long-lasting T cell responses. Although some studies have determined how these combinatorial vaccines promote enhanced T cell responses, much remains unknown about the mechanism used by these combinations to promote synergistic T cell responses - especially in settings of infectious diseases or cancer. AREAS COVERED In this review, we look in detail at the signaling pathways induced by combinatorial targeting of TLR and TNFR family costimulatory members that help them promote synergistic T cell responses. Understanding this can greatly aid the development of novel vaccine regimens that promote cellular immune responses, which is essential for treating certain infectious diseases and cancer. EXPERT OPINION Vaccines against some infectious diseases as well as therapeutic cancer vaccines require cellular immunity. Therefore, we evaluate here how signaling pathways induced by TLR ligand and costimulatory agonist combinations promote enhanced T cell responses during immunization with model antigens, viral pathogens, or tumor antigens. Once pathways that drive these combinatorial vaccines to boost T cell activation are identified, they can be incorporated in vaccines designed to target pathogens or cancer.
Collapse
Affiliation(s)
- Paurvi Shinde
- a Bloodworks Northwest Research Institute , Seattle , WA , USA
| | - Vinita Bharat
- b Department of Neurosurgery , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Beiyan Zhou
- d Department of Immunology, UConn School of Medicine , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- d Department of Immunology, UConn School of Medicine , UConn Health , Farmington , CT , USA
| |
Collapse
|
47
|
Liu D, Cao S, Zhou Y, Xiong Y. Recent advances in endotoxin tolerance. J Cell Biochem 2018; 120:56-70. [PMID: 30246452 DOI: 10.1002/jcb.27547] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Curtale G, Renzi TA, Mirolo M, Drufuca L, Albanese M, De Luca M, Rossato M, Bazzoni F, Locati M. Multi-Step Regulation of the TLR4 Pathway by the miR-125a~99b~let-7e Cluster. Front Immunol 2018; 9:2037. [PMID: 30245693 PMCID: PMC6137199 DOI: 10.3389/fimmu.2018.02037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop. We demonstrated that microRNAs generated by this cluster perform a pervasive regulation of the TLR signaling pathway by direct targeting receptors (TLR4, CD14), signaling molecules (IRAK1), and effector cytokines (TNFα, IL-6, CCL3, CCL7, CXCL8). Modulation of miR-125a~99b~let-7e cluster influenced the production of proinflammatory cytokines in response to LPS and the IL-10-mediated tolerance to LPS, thus identifying this gene as a previously unrecognized major regulatory element of the inflammatory response and endotoxin tolerance.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Tiziana A Renzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Massimiliano Mirolo
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Lorenzo Drufuca
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Manuel Albanese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Mariacristina De Luca
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marzia Rossato
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Flavia Bazzoni
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
49
|
microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway. Exp Cell Res 2018; 370:531-541. [DOI: 10.1016/j.yexcr.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
|
50
|
Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, Khan SR. Calcium Oxalate Differentiates Human Monocytes Into Inflammatory M1 Macrophages. Front Immunol 2018; 9:1863. [PMID: 30186283 PMCID: PMC6113402 DOI: 10.3389/fimmu.2018.01863] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose A number of hyperoxaluric states have been associated with calcium oxalate (CaOx) deposits in the kidneys. In animal models of stone disease, these crystals interact with circulating monocytes that have migrated into the kidney as part of innate immunity. Similarly, macrophages surround CaOx crystals in kidneys of patients excreting high levels of oxalate. We investigate the effect of this exposure and subsequent human immunological response in vitro. Materials and methods Primary human monocytes were collected from healthy donors and exposed to CaOx, potassium oxalate, and zinc oxalate (ZnOx). Cytokine production was measured with a multiplex ELISA. Quantitative reverse transcription-polymerase chain reaction was done to validate the mRNA profile expression. M1 macrophage phenotype was confirmed with immunofluorescence microscopy. Results Both primary monocytes and THP-1 cells, a human monocytic cell line, respond strongly to CaOx crystals in a dose-dependent manner producing TNF-α, IL-1β, IL-8, and IL-10 transcripts. Exposure to CaOx followed by 1 h with LPS had an additive effect for cytokine production compared to LPS alone, however, LPS followed by CaOx led to significant decrease in cytokine production. Supernatants taken from monocytes were previously exposed to CaOx crystals enhance M2 macrophage crystal phagocytosis. CaOx, but not potassium or ZnOx, promotes monocyte differentiation into inflammatory M1-like macrophages. Conclusion In our in vitro experiment, human monocytes were activated by CaOx and produced inflammatory cytokines. Monocytes recognized CaOx crystals through a specific mechanism that can enhance or decrease the innate immune response to LPS. CaOx promoted M1 macrophage development. These results suggest that monocytes have an important role promoting CaOx-induced inflammation.
Collapse
Affiliation(s)
| | - Sergei Kusmartsev
- Department of Urology, University of Florida, Gainesville, FL, United States
| | - Benjamin K Canales
- Department of Urology, University of Florida, Gainesville, FL, United States
| | - Saeed R Khan
- Department of Urology, University of Florida, Gainesville, FL, United States.,Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|