1
|
Talucci I, Arlt FA, Kreissner KO, Nasouti M, Wiessler AL, Miske R, Mindorf S, Dettmann I, Moniri M, Bayer M, Broegger Christensen P, Ayzenberg I, Kraft A, Endres M, Komorowski L, Villmann C, Doppler K, Prüss H, Maric HM. Molecular dissection of an immunodominant epitope in K v1.2-exclusive autoimmunity. Front Immunol 2024; 15:1329013. [PMID: 38665908 PMCID: PMC11043588 DOI: 10.3389/fimmu.2024.1329013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Subgroups of autoantibodies directed against voltage-gated potassium channel (Kv) complex components have been associated with immunotherapy-responsive clinical syndromes. The high prevalence and the role of autoantibodies directly binding Kv remain, however, controversial. Our objective was to determine Kv autoantibody binding requirements and to clarify their contribution to the observed immune response. Methods Binding epitopes were studied in sera (n = 36) and cerebrospinal fluid (CSF) (n = 12) from a patient cohort positive for Kv1.2 but negative for 32 common neurological autoantigens and controls (sera n = 18 and CSF n = 5) by phospho and deep mutational scans. Autoantibody specificity and contribution to the observed immune response were resolved on recombinant cells, cerebellum slices, and nerve fibers. Results 83% of the patients (30/36) within the studied cohort shared one out of the two major binding epitopes with Kv1.2-3 reactivity. Eleven percent (4/36) of the serum samples showed no binding. Fingerprinting resolved close to identical sequence requirements for both shared epitopes. Kv autoantibody response is directed against juxtaparanodal regions in peripheral nerves and the axon initial segment in central nervous system neurons and exclusively mediated by the shared epitopes. Discussion Systematic mapping revealed two shared autoimmune responses, with one dominant Kv1.2-3 autoantibody epitope being unexpectedly prevalent. The conservation of the molecular binding requirements among these patients indicates a uniform autoantibody repertoire with monospecific reactivity. The enhanced sensitivity of the epitope-based (10/12) compared with that of the cell-based detection (7/12) highlights its use for detection. The determined immunodominant epitope is also the primary immune response visible in tissue, suggesting a diagnostic significance and a specific value for routine screening.
Collapse
Affiliation(s)
- Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Friederike A. Arlt
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kai O. Kreissner
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | - Mahoor Nasouti
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
| | - Anna-Lena Wiessler
- Institute for Clinical Neurobiology, University of Wuerzburg, Würzburg, Germany
| | - Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Swantje Mindorf
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Inga Dettmann
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Mehrnaz Moniri
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | - Markus Bayer
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | | | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Andrea Kraft
- Department of Neurology, Hospital Martha-Maria, Halle, Germany
| | - Matthias Endres
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin, Berlin, Germany
- Center for Stroke Research, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Mental Health (DZPG), Berlin, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Hans M. Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Chen Y, Liu H, Yan Y, Chen H, Ye S, Qiu F, Liang CL, Zhang Q, Zheng F, Han L, Lu C, Dai Z. Methotrexate and electrostimulation cooperate to alleviate the relapse of psoriasiform skin inflammation by suppressing memory T cells. Biochem Pharmacol 2024; 219:115979. [PMID: 38081367 DOI: 10.1016/j.bcp.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Methotrexate (MTX) is an immunosuppressant used to treat autoimmune diseases, including psoriasis. However, like other immunosuppressants, MTX alone does not prevent their recurrence. Electrostimulation (ES) has been utilized to treat some inflammatory disorders without any major side-effect. But it remains unknown if ES alone, or together with MTX, ameliorates autoimmune disease relapse: a sticky medical problem. In particular, the mechanisms underlying ES action remain unclear. The objective of this study was to determine an impact of ES and/or MTX on psoriasis relapse and their potential cooperation. We found that regional ES, but not MTX, ameliorated psoriasiform skin inflammation recurrence. Interestingly, treatment with both MTX and ES further prevented psoriasis recurrence compared to ES alone. Moreover, ES downregulated potassium channel Kv1.3 on T-cells and reduced CD4+/CD8+ effector memory (TEM) and CD8+ skin-resident memory T (TRM) cells, while ES plus MTX further decreased CD8+ TEM/TRM cells compared to ES alone. However, ES failed to further attenuate psoriasis recurrence or suppress T cell memory in Kv1.3-deficient mice, whereas lack of Kv1.3 itself ameliorated psoriasis relapse by shrinking T cell memory pool. Importantly, ES moderately inhibited T-cell proliferation in vitro. ES also reduced human CD8+ TRM cells and attenuated human skin lesions in humanized mice grafted with lesional skin from patients with recurrent psoriasis, with an enhanced efficacy in mice treated with both ES and MTX. Thus, ES and MTX cooperated to prevent psoriasis relapse by reducing T-cell memory via targeting potassium channel Kv1.3. Our studies may be implicated for treating human psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Pryce G, Sisay S, Giovannoni G, Selwood DL, Baker D. Neuroprotection in an Experimental Model of Multiple Sclerosis via Opening of Big Conductance, Calcium-Activated Potassium Channels. Pharmaceuticals (Basel) 2023; 16:972. [PMID: 37513884 PMCID: PMC10383993 DOI: 10.3390/ph16070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Big conductance calcium-activated (BK) channel openers can inhibit pathologically driven neural hyperactivity to control symptoms via hyperpolarizing signals to limit neural excitability. We hypothesized that BK channel openers would be neuroprotective during neuroinflammatory, autoimmune disease. The neurodegenerative disease was induced in a mouse experimental autoimmune encephalomyelitis model with translational value to detect neuroprotection in multiple sclerosis. Following the treatment with the BK channel openers, BMS-204253 and VSN16R, neuroprotection was assessed using subjective and objective clinical outcomes and by quantitating spinal nerve content. Treatment with BMS-204253 and VSN16R did not inhibit the development of relapsing autoimmunity, consistent with minimal channel expression via immune cells, nor did it change leukocyte levels in rodents or humans. However, it inhibited the accumulation of nerve loss and disability as a consequence of autoimmunity. Therefore, in addition to symptom control, BK channel openers have the potential to save nerves from excitotoxic damage and could be useful as either stand-alone neuroprotective agents or as add-ons to current disease-modifying treatments that block relapsing MS but do not have any direct neuroprotective activity.
Collapse
Affiliation(s)
- Gareth Pryce
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Sofia Sisay
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gavin Giovannoni
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - David Baker
- BartsMS, The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
6
|
Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother 2023; 162:114588. [PMID: 36989709 DOI: 10.1016/j.biopha.2023.114588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) maintains its infamous status regarding its detrimental effect on global health, causing the highest mortality by a single infectious agent. The presence of resistance and immune compromising disease favours the disease in maintaining its footing in the health care burden despite various anti-TB drugs used to fight it. Main factors contributing to resistance and difficulty in treating disease include prolonged treatment duration (at least 6 months) and severe toxicity, which further leads to patient non-compliance, and thus a ripple effect leading to therapeutic non-efficacy. The efficacy of new regimens demonstrates that targeting host factors concomitantly with the Mycobacterium tuberculosis (M.tb) strain is urgently required. Due to the huge expenses and time required of up to 20 years for new drug research and development, drug repurposing may be the most economical, circumspective, and conveniently faster journey to embark on. Host-directed therapy (HDT) will dampen the burden of the disease by acting as an immunomodulator, allowing it to defend the body against antibiotic-resistant pathogens whilst minimizing the possibility of developing new resistance to susceptible drugs. Repurposed drugs in TB act as host-directed therapies, acclimatizing the host immune cell to the presence of TB, improving its antimicrobial activity and time taken to get rid of the disease, whilst minimizing inflammation and tissue damage. In this review, we, therefore, explore possible immunomodulatory targets, HDT immunomodulatory agents, and their ability to improve clinical outcomes whilst minimizing the risk of drug resistance, through various pathway targeting and treatment duration reduction.
Collapse
|
7
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol Dis 2022; 174:105861. [PMID: 36115552 PMCID: PMC9617777 DOI: 10.1016/j.nbd.2022.105861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a critical pathophysiological hallmark of neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and traumatic brain injury (TBI). Microglia, the first responders of the brain, are the drivers of this neuroinflammation. Microglial activation, leading to induction of pro-inflammatory factors, like Interleukin 1-β (IL-1β), Tumor necrosis factor-α (TNFα), nitrites, and others, have been shown to induce neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD, but the mechanism underlying the microglial activation is still under active research. Recently, microglial ion channels have come to the forefront as potential drug targets in multiple neurodegenerative disorders, including AD and PD. Microglia expresses a variety of ion channels, including potassium channels, calcium channels, chloride channels, sodium channels, and proton channels. The diversity of channels present on microglia is responsible for the dynamic nature of these immune cells of the brain. These ion channels regulate microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation, apoptosis, and cell signaling leading to inflammation, among other critical functions. Understanding the role of these ion channels and the signaling mechanism these channels regulate under pathological conditions is an active area of research. This review will be focusing on the roles of different microglial ion channels, and their potential role in regulating microglial functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Dept. of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Markakis I, Charitakis I, Beeton C, Galani M, Repousi E, Aggeloglou S, Sfikakis PP, Pennington MW, Chandy KG, Poulopoulou C. Kv1.3 Channel Up-Regulation in Peripheral Blood T Lymphocytes of Patients With Multiple Sclerosis. Front Pharmacol 2021; 12:714841. [PMID: 34630091 PMCID: PMC8495199 DOI: 10.3389/fphar.2021.714841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/09/2021] [Indexed: 11/02/2022] Open
Abstract
Voltage-gated Kv1.3 potassium channels are key regulators of T lymphocyte activation, proliferation and cytokine production, by providing the necessary membrane hyper-polarization for calcium influx following immune stimulation. It is noteworthy that an accumulating body of in vivo and in vitro evidence links these channels to multiple sclerosis pathophysiology. Here we studied the electrophysiological properties and the transcriptional and translational expression of T lymphocyte Kv1.3 channels in multiple sclerosis, by combining patch clamp recordings, reverse transcription polymerase chain reaction and flow cytometry on freshly isolated peripheral blood T lymphocytes from two patient cohorts with multiple sclerosis, as well as from healthy and disease controls. Our data demonstrate that T lymphocytes in MS, manifest a significant up-regulation of Kv1.3 mRNA, Kv1.3 membrane protein and Kv1.3 current density and therefore of functional membrane channel protein, compared to control groups (p < 0.001). Interestingly, patient sub-grouping shows that Kv1.3 channel density is significantly higher in secondary progressive, compared to relapsing-remitting multiple sclerosis (p < 0.001). Taking into account the tight connection between Kv1.3 channel activity and calcium-dependent processes, our data predict and could partly explain the reported alterations of T lymphocyte function in multiple sclerosis, while they highlight Kv1.3 channels as potential therapeutic targets and peripheral biomarkers for the disease.
Collapse
Affiliation(s)
- Ioannis Markakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Ioannis Charitakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christine Beeton
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Melpomeni Galani
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elpida Repousi
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Stella Aggeloglou
- Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Petros P Sfikakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - K George Chandy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang Ave, Singapore
| | | |
Collapse
|
10
|
Kim H, Momen-Heravi F, Chen S, Hoffmann P, Kebschull M, Papapanou PN. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. J Clin Periodontol 2021; 48:1152-1164. [PMID: 34101221 DOI: 10.1111/jcpe.13504] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
AIM We investigated differential DNA methylation in gingival tissues in periodontal health, gingivitis, and periodontitis, and its association with differential mRNA expression. MATERIALS AND METHODS Gingival tissues were harvested from individuals and sites with clinically healthy and intact periodontium, gingivitis, and periodontitis. Samples were processed for differential DNA methylation and mRNA expression using the IlluminaEPIC (850 K) and the IlluminaHiSeq2000 platforms, respectively. Across the three phenotypes, we identified differentially methylated CpG sites and regions, differentially expressed genes (DEGs), and genes with concomitant differential methylation at their promoters and expression were identified. The findings were validated using our earlier databases using HG-U133Plus2.0Affymetrix microarrays and Illumina (450 K) methylation arrays. RESULTS We observed 43,631 differentially methylated positions (DMPs) between periodontitis and health, and 536 DMPs between gingivitis and health (FDR < 0.05). On the mRNA level, statistically significant DEGs were observed only between periodontitis and health (n = 126). Twelve DEGs between periodontitis and health (DCC, KCNA3, KCNA2, RIMS2, HOXB7, PNOC, IRX1, JSRP1, TBX1, OPCML, CECR1, SCN4B) were also differentially methylated between the two phenotypes. Spearman correlations between methylation and expression in the EPIC/mRNAseq dataset were largely replicated in the 450 K/Affymetrix datasets. CONCLUSIONS Concomitant study of DNA methylation and gene expression patterns may identify genes whose expression is epigenetically regulated in periodontitis.
Collapse
Affiliation(s)
- Hyunjin Kim
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| | - Steven Chen
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Moritz Kebschull
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA.,School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Shi S, Zhao Q, Ke C, Long S, Zhang F, Zhang X, Li Y, Liu X, Hu H, Yin S. Loureirin B Exerts its Immunosuppressive Effects by Inhibiting STIM1/Orai1 and K V1.3 Channels. Front Pharmacol 2021; 12:685092. [PMID: 34248635 PMCID: PMC8268022 DOI: 10.3389/fphar.2021.685092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Loureirin B (LrB) is a constituent extracted from traditional Chinese medicine Resina Draconis. It has broad biological functions and an impressive immunosuppressive effect that has been supported by numerous studies. However, the molecular mechanisms underlying Loureirin B-induced immune suppression are not fully understood. We previously reported that Loureirin B inhibited KV1.3 channel, calcium ion (Ca2+) influx, and interleukin-2 (IL-2) secretion in Jurkat T cells. In this study, we applied CRISPR/Cas9 to edit KV1.3 coding gene KCNA3 and successfully generated a KV1.3 knockout (KO) cell model to determine whether KV1.3 KO was sufficient to block the Loureirin B-induced immunosuppressive effect. Surprisingly, we showed that Loureirin B could still inhibit Ca2+ influx and IL-2 secretion in the Jurkat T cells in the absence of KV1.3 although KO KV1.3 reduced about 50% of Ca2+ influx and 90% IL-2 secretion compared with that in the wild type cells. Further experiments showed that Loureirin B directly inhibited STIM1/Orai1 channel in a dose-dependent manner. Our results suggest that Loureirin B inhibits Ca2+ influx and IL-2 secretion in Jurkat T cells by inhibiting both KV1.3 and STIM1/Orai1 channels. These studies also revealed an additional molecular target for Loureirin B-induced immunosuppressive effect, which makes it a promising leading compound for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shujuan Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Caihua Ke
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Siru Long
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Feng Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinqiao Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hongzhen Hu
- Department of Anesthesiology, the Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
12
|
Liu H, Yang X, Yang J, Yuan Y, Wang Y, Zhang R, Xiong H, Xu Y. IL-17 Inhibits Oligodendrocyte Progenitor Cell Proliferation and Differentiation by Increasing K + Channel Kv1.3. Front Cell Neurosci 2021; 15:679413. [PMID: 34239419 PMCID: PMC8258110 DOI: 10.3389/fncel.2021.679413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. IL-17 level is significantly increased in inflammatory conditions of the CNS, including but not limited to post-stroke and multiple sclerosis. IL-17 has been detected direct toxicity on oligodendrocyte (Ol) lineage cells and inhibition on oligodendrocyte progenitor cell (OPC) differentiation, and thus promotes myelin damage. The cellular mechanism of IL-17 in CNS inflammatory diseases remains obscure. Voltage-gated K+ (Kv) channel 1.3 is the predominant Kv channel in Ol and potentially involved in Ol function and cell cycle regulation. Kv1.3 of T cells involves in immunomodulation of inflammatory progression, but the role of Ol Kv1.3 in inflammation-related pathogenesis has not been fully investigated. We hypothesized that IL-17 induces myelin injury through Kv1.3 activation. To test the hypothesis, we studied the involvement of OPC/Ol Kv1.3 in IL-17-induced Ol/myelin injury in vitro and in vivo. Kv1.3 currents and channel expression gradually decreased during the OPC development. Application of IL-17 to OPC culture increased Kv1.3 expression, leading to a decrease of AKT activation, inhibition of proliferation and myelin basic protein reduction, which were prevented by a specific Kv1.3 blocker 5-(4-phenoxybutoxy) psoralen. IL-17-caused myelin injury was validated in LPC-induced demyelination mouse model, particularly in corpus callosum, which was also mitigated by aforementioned Kv1.3 antagonist. IL-17 altered Kv1.3 expression and resultant inhibitory effects on OPC proliferation and differentiation may by interrupting AKT phosphorylating activation. Taken together, our results suggested that IL-17 impairs remyelination and promotes myelin damage by Kv1.3-mediated Ol/myelin injury. Thus, blockade of Kv1.3 as a potential therapeutic strategy for inflammatory CNS disease may partially attribute to the direct protection on OPC proliferation and differentiation other than immunomodulation.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueke Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, Singh N, Manne S, Neal M, Gabrielle M, Abdalla A, Anantharam P, Rokad D, Panicker N, Singh V, Ay M, Charli A, Harischandra D, Jin LW, Jin H, Rangaraju S, Anantharam V, Wulff H, Kanthasamy AG. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest 2021; 130:4195-4212. [PMID: 32597830 DOI: 10.1172/jci136174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Jie Luo
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Monica Langley
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Sireesha Manne
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Matthew Neal
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Michelle Gabrielle
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdalla
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Medicine Building, ISU, Ames, Iowa, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Muhammet Ay
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Dilshan Harischandra
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Lee-Way Jin
- M.I.N.D. Institute, Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, UCD, Davis, California, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| |
Collapse
|
14
|
Singh Y, Salker MS, Lang F. Green Tea Polyphenol-Sensitive Calcium Signaling in Immune T Cell Function. Front Nutr 2021; 7:616934. [PMID: 33585537 PMCID: PMC7876374 DOI: 10.3389/fnut.2020.616934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Polyphenol compounds found in green tea have a great therapeutic potential to influence multiple human diseases including malignancy and inflammation. In this mini review, we describe effects of green tea and the most important component EGCG in malignancy and inflammation. We focus on cellular mechanisms involved in the modification of T cell function by green tea polyphenol EGCG. The case is made that EGCG downregulates calcium channel activity by influencing miRNAs regulating expression of the channel at the post-transcriptional level.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | | | - Florian Lang
- Institute of Vegetative and Clinical Physiology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
15
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Zhao Y, Qiu W, Liu J, Yuan X, Mao W, Yin J, Peng B, Liu W, Han S, He X. Blockade of Kv1.3 potassium channel inhibits CD8 + T cell-mediated neuroinflammation via PD-1/Blimp-1 signaling. FASEB J 2020; 34:15492-15503. [PMID: 32981181 DOI: 10.1096/fj.202000861rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Kv1.3 potassium channel is considered as a target for the treatment of autoimmune diseases such as multiple sclerosis (MS), since Kv1.3 blockade suppresses memory T cell activation including cytotoxic CD8+ T cells. However, the underlying signaling pathway related to autoimmune CD8+ T cell inhibition by Kv1.3 channel in neuroinflammatory diseases remains unclear. We found that ImK, a selective Kv1.3 blocker, reduced auto-reactive CD8+ T cell infiltration in the spinal cords of experimental autoimmune encephalomyelitis (EAE) rats, an animal model of MS. ImK suppressed transcriptional factor Blimp-1 expression and reduced the cytotoxicity of CD8+ T cells on neuronal cells. Furthermore, ImK upregulated co-inhibitory molecule PD-1 to inhibit B lymphocyte-induced maturation protein (Blimp-1) in an IL-2 independent way. In addition, PD-1 inhibitor impaired the suppression of ImK on CD8+ T cells and accelerated EAE progression. Our study demonstrated a novel regulatory mechanism of Kv1.3 blockade on modulating CD8+ T cell differentiation through PD-1/Blimp-1 signaling. This work expands the understanding of Kv1.3 channel for modulating neuroinflammation.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junchen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaolu Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wenqian Mao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - BiWen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - WanHong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - XiaoHua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Singh DK, Dwivedi VP, Singh SP, Kumari A, Sharma SK, Ranganathan A, Kaer LV, Das G. Luteolin-mediated Kv1.3 K+ channel inhibition augments BCG vaccine efficacy against tuberculosis by promoting central memory T cell responses in mice. PLoS Pathog 2020; 16:e1008887. [PMID: 32956412 PMCID: PMC7529197 DOI: 10.1371/journal.ppat.1008887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/01/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the availability of multiple antibiotics, tuberculosis (TB) remains a major health problem worldwide, with one third of the population latently infected and ~2 million deaths annually. The only available vaccine for TB, Bacillus Calmette Guérin (BCG), is ineffective against adult pulmonary TB. Therefore, alternate strategies that enhance vaccine efficacy are urgently needed. Vaccine efficacy and long-term immune memory are critically dependent on central memory T (TCM) cells, whereas effector memory T (TEM) cells are important for clearing acute infections. Recently, it has been shown that inhibition of the Kv1.3 K+ ion channel, which is predominantly expressed on TEM but not TCM cells, profoundly enhances TCM cell differentiation. We exploited this phenomenon to improve TCM:TEM cell ratios and protective immunity against Mycobacterium tuberculosis infection in response to BCG vaccination of mice. We demonstrate that luteolin, a plant-derived Kv1.3 K+ channel inhibitor, profoundly promotes TCM cells by selectively inhibiting TEM cells, and significantly enhances BCG vaccine efficacy. Thus, addition of luteolin to BCG vaccination may provide a sustainable means to improve vaccine efficacy by boosting host immunity via modulation of memory T cell differentiation. Bacillus Calmette Guérin (BCG) is not effective against adult pulmonary tuberculosis (TB). Inhibition of the Kv1.3 K+ ion channel by the antibiotic clofazimine has been shown to enhance BCG-induced immunity. However, clofazimine has limited efficacy and is associated with substantial side effects in treated patients. Therefore, we explored alternatives to clofazimine. Luteolin is a plant-based flavonoid that inhibits Kv1.3. We show that administration of luteolin during BCG vaccination enhances antigen-specific immunity by promoting the T central memory (TCM) cell pool, which is critically important for long term host protection. Consequently, luteolin-mediated immune modulation enhances vaccine efficacy. As luteolin is a biologically safe food supplement, it could be easily applied during vaccination.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ved Prakash Dwivedi
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
| | - Anjna Kumari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gobardhan Das
- Special Centre for Molecular Medicine (SCMM), Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Chelette BM, Thomas AM, Fadool DA. Long-term obesogenic diet and targeted deletion of potassium channel K v 1.3 have differing effects on voluntary exercise in mice. Physiol Rep 2020; 7:e14254. [PMID: 31646751 PMCID: PMC6811687 DOI: 10.14814/phy2.14254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Voluntary exercise is frequently employed as an intervention for obesity. The voltage‐gated potassium channel Kv1.3 is also receiving attention as a therapeutic target for obesity, in addition to potential therapeutic capabilities for neuroinflammatory diseases. To investigate the combinatorial effects of these two therapies, we have compared the metabolic status and voluntary exercise behavior of both wild‐type mice and a transgenic line of mice that are genetic knockouts for Kv1.3 when provided with a running wheel and maintained on diets of differing fat content and caloric density. We tracked the metabolic parameters and wheel running behavior while maintaining the mice on their assigned treatment for 6 months. Wild‐type mice maintained on the fatty diet gain a significant amount of bodyweight and adipose tissue and display significantly impaired glucose tolerance, though all these effects were partially reduced with provision of a running wheel. Similar to previous studies, the Kv1.3‐null mice were resistant to obesity, increased adiposity, and impaired glucose tolerance. Both wild‐type and Kv1.3‐null mice maintained on the fatty diet displayed increased wheel running activity compared to control‐fed mice, which was caused primarily by a significant increase in the amount of time spent running as opposed to an increase in running velocity. Interestingly, the patterns of running behavior differed between wild‐type and Kv1.3‐null mice. Kv1.3‐null mice spent significantly less time running during the light phase and displayed a decrease in running 1–2 h before the onset of the light phase, seemingly in anticipation of the dark‐to‐light phase transition. These studies indicate that voluntary exercise combats metabolic maladies and running behavior is modified by both consumption of an obesogenic diet and deletion of the Kv1.3 channel.
Collapse
Affiliation(s)
- Brandon M Chelette
- Department of Biological Science, The Florida State University, Tallahassee, Florida.,Programs in Neuroscience, The Florida State University, Tallahassee, Florida
| | - Abigail M Thomas
- Department of Biological Science, The Florida State University, Tallahassee, Florida
| | - Debra Ann Fadool
- Department of Biological Science, The Florida State University, Tallahassee, Florida.,Programs in Neuroscience, The Florida State University, Tallahassee, Florida.,Molecular Biophysics, The Florida State University, Tallahassee, Florida
| |
Collapse
|
19
|
Ahmad S, Bhattacharya D, Gupta N, Rawat V, Tousif S, Van Kaer L, Das G. Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells. PLoS Pathog 2020; 16:e1008356. [PMID: 32437421 PMCID: PMC7269335 DOI: 10.1371/journal.ppat.1008356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. The majority of people in TB endemic regions are vaccinated with Bacillus Calmette Guerin (BCG), which is the only usable vaccine available. BCG is efficacious against meningeal and disseminated TB in children, but protective responses are relatively short-lived and fail to protect against adult pulmonary TB. The longevity of vaccine efficacy critically depends on the magnitude of long-lasting central memory T (TCM) cells, a major source of which is stem cell-like memory T (TSM) cells. These TSM cells exhibit enhanced self-renewal capacity as well as to rapidly respond to antigen and generate protective poly-functional T cells producing IFN-γ, TNF-α, IL-2 and IL-17. It is now evident that T helper Th 1 and Th17 cells are essential for host protection against TB. Recent reports have indicated that Th17 cells preserve the molecular signature for TSM cells, which eventually differentiate into IFN-γ-producing effector cells. BCG is ineffective in inducing Th17 cell responses, which might explain its inadequate vaccine efficacy. Here, we show that revaccination with BCG along with clofazimine treatment promotes TSM differentiation, which continuously restores TCM and T effector memory (TEM) cells and drastically increases vaccine efficacy in BCG-primed animals. Analyses of these TSM cells revealed that they are predominantly precursors to host protective Th1 and Th17 cells. Taken together, these findings revealed that clofazimine treatment at the time of BCG revaccination provides superior host protection against TB by increasing long-lasting TSM cells. Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. Bacillus Calmette Guerin (BCG) is the only usable vaccine available and exhibits efficacy against meningeal and disseminated TB in children. Consequently, the vast majority of people in TB endemic regions are vaccinated with BCG. However, host protective immune responses diminish over time due to gradual depletion of T central memory (TCM) cells, which are responsible for long-term host protection. Here, we provide evidence that revaccination with BCG along with the clofazimine, an approved drug for treatment of leprosy and drug-resistant TB, induces stem cell-like memory T (TSM) cells. TSM cells are precursors to TCM cells, and provide long-term host protection to TB by continuous supply of TCM cells. Interestingly, these TSM cells were generated from IL-17-producing T helper (Th)17 cells. These TSM cells differentiated into TCM and T effector memory (TEM) cells and maintained a stable pool of critically important Th1 and Th17 cells to provide optimal host protection against TB.
Collapse
Affiliation(s)
- Shaheer Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Neeta Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varsha Rawat
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sultan Tousif
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Curcumin Nanoparticles Enhance Mycobacterium bovis BCG Vaccine Efficacy by Modulating Host Immune Responses. Infect Immun 2019; 87:IAI.00291-19. [PMID: 31481412 PMCID: PMC6803339 DOI: 10.1128/iai.00291-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is one of the deadliest diseases, causing ∼2 million deaths annually worldwide. Mycobacterium bovis bacillus Calmette-Guérin (BCG), the only TB vaccine in common use, is effective against disseminated and meningeal TB in young children but is not effective against adult pulmonary TB. Tuberculosis (TB) is one of the deadliest diseases, causing ∼2 million deaths annually worldwide. Mycobacterium bovis bacillus Calmette-Guérin (BCG), the only TB vaccine in common use, is effective against disseminated and meningeal TB in young children but is not effective against adult pulmonary TB. T helper 1 (Th1) cells producing interferon gamma (IFN-γ) and Th17 cells producing interleukin-17 (IL-17) play key roles in host protection against TB, whereas Th2 cells producing IL-4 and regulatory T cells (Tregs) facilitate TB disease progression by inhibiting protective Th1 and Th17 responses. Furthermore, the longevity of vaccine efficacy critically depends on the magnitude of long-lasting central memory T (TCM) cell responses. Hence, immunomodulators that promote TCM responses of the Th1 and Th17 cell lineages may improve BCG vaccine efficacy. Here, we show that curcumin nanoparticles enhance various antigen-presenting cell (APC) functions, including autophagy, costimulatory activity, and the production of inflammatory cytokines and other mediators. We further show that curcumin nanoparticles enhance the capacity of BCG to induce TCM cells of the Th1 and Th17 lineages, which augments host protection against TB infection. Thus, curcumin nanoparticles hold promise for enhancing the efficacy of TB vaccines.
Collapse
|
21
|
Serrano-Albarrás A, Cirera-Rocosa S, Sastre D, Estadella I, Felipe A. Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochem Pharmacol 2019; 165:214-220. [DOI: 10.1016/j.bcp.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
22
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Dong X, Wei L, Guo X, Yang Z, Wu C, Li P, Lu L, Qi H, Shi Y, Hu X, Wu L, Chen L, Liu W. Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K + Channel Integrity. THE JOURNAL OF IMMUNOLOGY 2019; 202:3187-3197. [PMID: 31028120 DOI: 10.4049/jimmunol.1900089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) play key roles in Ab responses by presenting Ags to lymphocytes and by producing proinflammatory cytokines. In this study, we reported that DC-specific knockout of discs large homologue 1 (Dlg1) resulted in a significantly reduced capacity to mediate Ab responses to both thymus-independent and thymus-dependent Ags in Dlg1 fl/flCd11c-Cre-GFP mice. Mechanistically, Dlg1-deficient DCs showed severely impaired endocytosis and phagocytosis capacities upon Ag exposure. In parallel, loss of Dlg1 significantly jeopardized the proinflammatory cytokine production by DCs upon TLR stimulation. Thus, Dlg1-deficient DCs lost their functions to support innate and adaptive immunities. At a cellular level, Dlg1 exhibited an indispensable function to maintain membrane potential changes by securing potassium ion (K+) efflux and subsequent calcium ion (Ca2+) influx events in DCs upon stimulation, both of which are known to be required for proper function of DCs. At a molecular level, Dlg1 did so by retaining the integrity of voltage-gated K+ channels (including Kv1.3) in DCs. The loss of Dlg1 led to a decreased expression of K+ channels, resulting in impaired membrane potential changes and, as a consequence, reduced proinflammatory cytokine production, compromised Ag endocytosis, and phagocytosis. In conclusion, this study provided, to our knowledge, a novel insight into Dlg1 and the voltage-gated K+ channels axis in DC functions.
Collapse
Affiliation(s)
- Xuejiao Dong
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueheng Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China.,National Education Examinations Authority, Beijing 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20851
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen 518052, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Hai Qi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Wu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China;
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
24
|
Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U, Pucca MB. Scorpion toxins targeting Kv1.3 channels: insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148118. [PMID: 31131004 PMCID: PMC6483409 DOI: 10.1590/1678-9199-jvatitd-1481-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Scorpion venoms are natural sources of molecules that have, in addition to their
toxic function, potential therapeutic applications. In this source the
neurotoxins can be found especially those that act on potassium channels.
Potassium channels are responsible for maintaining the membrane potential in the
excitable cells, especially the voltage-dependent potassium channels (Kv),
including Kv1.3 channels. These channels (Kv1.3) are expressed by various types
of tissues and cells, being part of several physiological processes. However,
the major studies of Kv1.3 are performed on T cells due its importance on
autoimmune diseases. Scorpion toxins capable of acting on potassium channels
(KTx), mainly on Kv1.3 channels, have gained a prominent role for their possible
ability to control inflammatory autoimmune diseases. Some of these toxins have
already left bench trials and are being evaluated in clinical trials, presenting
great therapeutic potential. Thus, scorpion toxins are important natural
molecules that should not be overlooked in the treatment of autoimmune and other
diseases.
Collapse
Affiliation(s)
- Isadora S Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Felipe A Cerni
- Ribeirão Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline M Cremonez
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Umberto Zottich
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| |
Collapse
|
25
|
Affiliation(s)
- Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L. Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
26
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
27
|
Fan C, Long R, You Y, Wang J, Yang X, Huang S, Sheng Y, Peng X, Liu H, Wang Z, Liu K. A novel PADRE-Kv1.3 vaccine effectively induces therapeutic antibodies and ameliorates experimental autoimmune encephalomyelitis in rats. Clin Immunol 2018; 193:98-109. [DOI: 10.1016/j.clim.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/24/2023]
|
28
|
Di Lucente J, Nguyen HM, Wulff H, Jin LW, Maezawa I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia 2018; 66:1881-1895. [PMID: 30043400 DOI: 10.1002/glia.23457] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022]
Abstract
Microglia show a rich repertoire of activation patterns regulated by a complex ensemble of surface ion channels, receptors, and transporters. We and others have investigated whether microglia vary their K+ channel expression as a means to achieve functional diversity. However, most of the prior studies were conducted using in vitro models such as BV2 cells, primary microglia, or brain slices in culture, which may not accurately reflect microglia physiology in adult individuals. Here we employed an in vivo mouse model of selective innate immune activation by intracerebroventricular injection of lipopolysaccharides (ICV-LPS) to determine the role of the voltage-gated Kv1.3 channel in LPS-induced M1-like microglial activation. Using microglia acutely isolated from adult brains, we detected Kv1.3 and Kir2.1 currents, and found that ICV-LPS increased the current density and RNA expression of Kv1.3 but did not affect those of Kir2.1. Genetic knockout of Kv1.3 abolished LPS-induced microglial activation exemplified by Iba-1 immunoreactivity and expression of pro-inflammatory mediators such as IL-1β, TNF-α, IL-6, and iNOS. Moreover, Kv1.3 knockout mitigated the LPS-induced impairment of hippocampal long-term potentiation (hLTP), suggesting that Kv1.3 activity regulates pro-inflammatory microglial neurotoxicity. Pharmacological intervention using PAP-1, a small molecule that selectively blocks homotetrameric Kv1.3 channels, achieved anti-inflammatory and hLTP-recovery effects similar to Kv1.3 knockout. We conclude that Kv1.3 is required for microglial M1-like pro-inflammatory activation in vivo. A significant implication of our in vivo data is that Kv1.3 blockers could be therapeutic candidates for neurological diseases where microglia-mediated neurotoxicity is implicated in the pathogenesis.
Collapse
Affiliation(s)
- Jacopo Di Lucente
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California
| | - Lee-Way Jin
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| | - Izumi Maezawa
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
29
|
Bozic I, Tesovic K, Laketa D, Adzic M, Jakovljevic M, Bjelobaba I, Savic D, Nedeljkovic N, Pekovic S, Lavrnja I. Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis. Neurochem Res 2018; 43:1020-1034. [PMID: 29574670 DOI: 10.1007/s11064-018-2509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.
Collapse
Affiliation(s)
- Iva Bozic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia.
| | - Katarina Tesovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Laketa
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
30
|
Gurusamy D, Clever D, Eil R, Restifo NP. Novel "Elements" of Immune Suppression within the Tumor Microenvironment. Cancer Immunol Res 2018; 5:426-433. [PMID: 28576921 DOI: 10.1158/2326-6066.cir-17-0117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR.
Collapse
Affiliation(s)
- Devikala Gurusamy
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland.,Center for Cell-Based Therapy, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - David Clever
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio
| | - Robert Eil
- Department of Surgery, Oregon Health and Sciences University, Portland, Oregon
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland. .,Center for Cell-Based Therapy, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
31
|
Lowinus T, Bose T, Busse S, Busse M, Reinhold D, Schraven B, Bommhardt UHH. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness. Oncotarget 2018; 7:53797-53807. [PMID: 27462773 PMCID: PMC5288222 DOI: 10.18632/oncotarget.10777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tanima Bose
- Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Current address: Lee Kong Chian School of Medicine, Singapore
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Pediatric Pulmonology & Allergology, Medical University of Hannover, Hannover, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula H H Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
32
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
33
|
Jukkola P, Gu Y, Lovett-Racke AE, Gu C. Suppression of Inflammatory Demyelinaton and Axon Degeneration through Inhibiting Kv3 Channels. Front Mol Neurosci 2017; 10:344. [PMID: 29123469 PMCID: PMC5662905 DOI: 10.3389/fnmol.2017.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 01/19/2023] Open
Abstract
The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1—the channel with the highest 4-AP sensitivity—reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Chen Gu
- Biomedical Sciences Graduate Program, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Biological Chemistry and Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
34
|
Tarcha EJ, Olsen CM, Probst P, Peckham D, Muñoz-Elías EJ, Kruger JG, Iadonato SP. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS One 2017; 12:e0180762. [PMID: 28723914 PMCID: PMC5516987 DOI: 10.1371/journal.pone.0180762] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dalazatide is a specific inhibitor of the Kv1.3 potassium channel. The expression and function of Kv1.3 channels are required for the function of chronically activated memory T cells, which have been shown to be key mediators of autoimmune diseases, including psoriasis. OBJECTIVE The primary objective was to evaluate the safety of repeat doses of dalazatide in adult patients with mild-to-moderate plaque psoriasis. Secondary objectives were to evaluate clinical proof of concept and the effects of dalazatide on mediators of inflammation in the blood and on chronically activated memory T cell populations. METHODS Patients (n = 24) were randomized 5:5:2 to receive dalazatide at 30 mcg/dose, 60 mcg/dose, or placebo twice weekly by subcutaneous injection (9 doses total). Safety was assessed on the basis of physical and neurological examination and laboratory testing. Clinical assessments included body-surface area affected, Psoriasis Area and Severity Index (PASI), and investigator and patient questionnaires. RESULTS The most common adverse events were temporary mild (Grade 1) hypoesthesia (n = 20; 75% placebo, 85% dalazatide) and paresthesia (n = 15; 25% placebo, 70% dalazatide) involving the hands, feet, or perioral area. Nine of 10 patients in the 60 mcg/dose group had a reduction in their PASI score between baseline and Day 32, and the mean reduction in PASI score was significant in this group (P < 0.01). Dalazatide treatment reduced the plasma levels of multiple inflammation markers and reduced the expression of T cell activation markers on peripheral blood memory T cells. LIMITATIONS The study was small and drug treatment was for a short duration (4 weeks). CONCLUSION This study indicates that dalazatide is generally well tolerated and can improve psoriatic skin lesions by modulating T cell surface and activation marker expression and inhibiting mediators of inflammation in the blood. Larger studies of longer duration are warranted.
Collapse
Affiliation(s)
| | | | - Peter Probst
- Kineta Inc., Seattle, WA, United States of America
| | | | | | - James G Kruger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States of America
| | | |
Collapse
|
35
|
Chandy KG, Norton RS. Peptide blockers of K v 1.3 channels in T cells as therapeutics for autoimmune disease. Curr Opin Chem Biol 2017; 38:97-107. [DOI: 10.1016/j.cbpa.2017.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/24/2022]
|
36
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
37
|
Nguyen HM, Grössinger EM, Horiuchi M, Davis KW, Jin LW, Maezawa I, Wulff H. Differential Kv1.3, KCa3.1, and Kir2.1 expression in "classically" and "alternatively" activated microglia. Glia 2016; 65:106-121. [PMID: 27696527 PMCID: PMC5113690 DOI: 10.1002/glia.23078] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/15/2016] [Indexed: 11/10/2022]
Abstract
Microglia are highly plastic cells that can assume different phenotypes in response to microenvironmental signals. Lipopolysaccharide (LPS) and interferon-γ (IFN-γ) promote differentiation into classically activated M1-like microglia, which produce high levels of pro-inflammatory cytokines and nitric oxide and are thought to contribute to neurological damage in ischemic stroke and Alzheimer's disease. IL-4 in contrast induces a phenotype associated with anti-inflammatory effects and tissue repair. We here investigated whether these microglia subsets vary in their K+ channel expression by differentiating neonatal mouse microglia into M(LPS) and M(IL-4) microglia and studying their K+ channel expression by whole-cell patch-clamp, quantitative PCR and immunohistochemistry. We identified three major types of K+ channels based on their biophysical and pharmacological fingerprints: a use-dependent, outwardly rectifying current sensitive to the KV 1.3 blockers PAP-1 and ShK-186, an inwardly rectifying Ba2+ -sensitive Kir 2.1 current, and a Ca2+ -activated, TRAM-34-sensitive KCa 3.1 current. Both KV 1.3 and KCa 3.1 blockers inhibited pro-inflammatory cytokine production and iNOS and COX2 expression demonstrating that KV 1.3 and KCa 3.1 play important roles in microglia activation. Following differentiation with LPS or a combination of LPS and IFN-γ microglia exhibited high KV 1.3 current densities (∼50 pA/pF at 40 mV) and virtually no KCa 3.1 and Kir currents, while microglia differentiated with IL-4 exhibited large Kir 2.1 currents (∼ 10 pA/pF at -120 mV). KCa 3.1 currents were generally low but moderately increased following stimulation with IFN-γ or ATP (∼10 pS/pF). This differential K+ channel expression pattern suggests that KV 1.3 and KCa 3.1 inhibitors could be used to inhibit detrimental neuroinflammatory microglia functions. GLIA 2016;65:106-121.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California
| | - Eva M Grössinger
- Department of Pharmacology, University of California, Davis, California
| | - Makoto Horiuchi
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California.,M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, California
| | - Kyle W Davis
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California.,M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, California
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California.,M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, California
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California
| |
Collapse
|
38
|
Abstract
Potassium ion (K(+)) channels play an important role in the modulation of calcium ion (Ca(2+)) signaling via control of the membrane potential. In T-lymphocytes, the voltage-gated K(+) channel, KV1.3, and the intermediate-conductance Ca(2+)-activated K(+) channel, KCa3.1, predominantly contribute to K(+) conductance, and are responsible for cell proliferation, differentiation, apoptosis and infiltration. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, afflicts more than 0.1% of the population worldwide. In the chemically-induced IBD model mouse, an increase in KCa3.1 activity was observed in mesenteric lymph node CD4(+) T-lymphocytes, concomitant with an upregulation of KCa3.1 and a positive KCa3.1 regulator, NDPK-B. Pharmacological blockade of the KCa3.1 K(+) channel by TRAM-34 and/or ICA17043 elicited 1) a significant decrease in IBD severity, as assessed by diarrhea, visible fecal blood, inflammation and crypt damage of the colon; and 2) restoration of the expression levels of KCa3.1 and Th1 cytokines in CD4(+) T-lymphocytes in the IBD model. Recent studies have indicated the impact of K2P5.1 upregulation in T lymphocytes on the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The K2P5.1 K(+) channel is therefore highlighted as a potent therapeutic target in managing the pathogenesis of autoimmune diseases. Alternatively, pre-mRNA splicing of ion channels is associated with the development and progression of various diseases, including autoimmune diseases. Therefore, mRNA-splicing mechanisms underlying the transcriptional regulation of K2P5.1 K(+) channels may be a new strategic therapeutic target for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Kyoto Pharmaceutical University
| |
Collapse
|
39
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
40
|
Petho Z, Balajthy A, Bartok A, Bene K, Somodi S, Szilagyi O, Rajnavolgyi E, Panyi G, Varga Z. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunol Lett 2016; 171:60-9. [PMID: 26861999 DOI: 10.1016/j.imlet.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/15/2022]
Abstract
Ion channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. Previous studies on the effects of channel blockers on T cell proliferation reported variable effectiveness due to differing experimental systems. Therefore our aim was to investigate how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. Human peripheral blood lymphocytes were activated via monoclonal antibodies targeting the TCR-CD3 complex and the co-stimulator CD28. We applied the blockers of Kv1.3 (Anuroctoxin), KCa3.1 (TRAM-34) and CRAC (2-Apb) channels of T cells either alone or in combination with rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR). Five days after the stimulation ELISA and flow cytometric measurements were performed to determine IL-10 and IFN-γ secretion, cellular viability and proliferation. Our results showed that ion channel blockers and rapamycin inhibit IL-10 and IFN-γ secretion and cell division in a dose-dependent manner. Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways. Upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished. This phenomenon may be important in understanding the fine-tuning of T cell activation.
Collapse
Affiliation(s)
- Zoltan Petho
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Balajthy
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Bartok
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztian Bene
- Department of Immunology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Sandor Somodi
- 1st Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Szilagyi
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary.
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Egyetem tér 1, H-4032, Hungary
| |
Collapse
|
41
|
Grishkan IV, Tosi DM, Bowman MD, Harary M, Calabresi PA, Gocke AR. Antigenic Stimulation of Kv1.3-Deficient Th Cells Gives Rise to a Population of Foxp3-Independent T Cells with Suppressive Properties. THE JOURNAL OF IMMUNOLOGY 2015; 195:1399-1407. [PMID: 26150529 DOI: 10.4049/jimmunol.1403024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS that has been linked with defects in regulatory T cell function. Therefore, strategies to selectively target pathogenic cells via enhanced regulatory T cell activity may provide therapeutic benefit. Kv1.3 is a voltage-gated potassium channel expressed on myelin-reactive T cells from MS patients. Kv1.3-knockout (KO) mice are protected from experimental autoimmune encephalomyelitis, an animal model of MS, and Kv1.3-KO Th cells display suppressive capacity associated with increased IL-10. In this article, we demonstrate that myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells exhibit a unique regulatory phenotype characterized by high CD25, CTLA4, pSTAT5, FoxO1, and GATA1 expression without a corresponding increase in Foxp3. These phenotypic changes result from increased signaling through IL-2R. Moreover, myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells can ameliorate experimental autoimmune encephalomyelitis following transfer to wild-type recipients in a manner that is partially dependent on IL-2R and STAT5 signaling. The present study identifies a population of Foxp3(-) T cells with suppressive properties that arises in the absence of Kv1.3 and enhances the understanding of the molecular mechanism by which these cells are generated. This increased understanding could contribute to the development of novel therapies for MS patients that promote heightened immune regulation.
Collapse
Affiliation(s)
- Inna V Grishkan
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Dominique M Tosi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Melissa D Bowman
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Maya Harary
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Anne R Gocke
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
42
|
Ohya S, Nakamura E, Horiba S, Kito H, Matsui M, Yamamura H, Imaizumi Y. Role of the K(Ca)3.1 K+ channel in auricular lymph node CD4+ T-lymphocyte function of the delayed-type hypersensitivity model. Br J Pharmacol 2015; 169:1011-23. [PMID: 23594188 DOI: 10.1111/bph.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) modulates the Ca(2+) response through the control of the membrane potential in the immune system. We investigated the role of K(Ca)3.1 on the pathogenesis of delayed-type hypersensitivity (DTH) in auricular lymph node (ALN) CD4(+) T-lymphocytes of oxazolone (Ox)-induced DTH model mice. EXPERIMENTAL APPROACH The expression patterns of K(Ca)3.1 and its possible transcriptional regulators were compared among ALN T-lymphocytes of three groups [non-sensitized (Ox-/-), Ox-sensitized, but non-challenged (Ox+/-) and Ox-sensitized and -challenged (Ox+/+)] using real-time polymerase chain reaction, Western blotting and flow cytometry. KCa 3.1 activity was measured by whole-cell patch clamp and the voltage-sensitive dye imaging. The effects of K(Ca)3.1 blockade were examined by the administration of selective K(Ca)3.1 blockers. KEY RESULTS Significant up-regulation of K(Ca)3.1a was observed in CD4(+) T-lymphocytes of Ox+/- and Ox+/+, without any evident changes in the expression of the dominant-negative form, K(Ca)3.1b. Negatively correlated with this, the repressor element-1 silencing transcription factor (REST) was significantly down-regulated. Pharmacological blockade of K(Ca)3.1 resulted in an accumulation of the CD4(+) T-lymphocytes of Ox+/+ at the G0/G1 phase of the cell cycle, and also significantly recovered not only the pathogenesis of DTH, but also the changes in the K(Ca)3.1 expression and activity in the CD4(+) T-lymphocytes of Ox+/- and Ox+/+. CONCLUSIONS AND IMPLICATIONS The up-regulation of K(Ca)3.1a in conjunction with the down-regulation of REST may be involved in CD4(+) T-lymphocyte proliferation in the ALNs of DTH model mice; and K(Ca)3.1 may be an important target for therapeutic intervention in allergy diseases such as DTH.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Russi AE, Brown MA. The meninges: new therapeutic targets for multiple sclerosis. Transl Res 2015; 165:255-69. [PMID: 25241937 PMCID: PMC4424790 DOI: 10.1016/j.trsl.2014.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
44
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
45
|
Moogk D, da Silva IP, Ma MW, Friedman EB, de Miera EVS, Darvishian F, Scanlon P, Perez-Garcia A, Pavlick AC, Bhardwaj N, Christos PJ, Osman I, Krogsgaard M. Melanoma expression of matrix metalloproteinase-23 is associated with blunted tumor immunity and poor responses to immunotherapy. J Transl Med 2014; 12:342. [PMID: 25491880 PMCID: PMC4272770 DOI: 10.1186/s12967-014-0342-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase-23 (MMP-23) can block the voltage-gated potassium channel Kv1.3, whose function is important for sustained Ca(2+) signaling during T cell activation. MMP-23 may also alter T cell activity and phenotype through cleavage of proteins affecting cytokine and chemokine signaling. We therefore tested the hypothesis that MMP-23 can negatively regulate the anti-tumor T cell response in human melanoma. METHODS We characterized MMP-23 expression in primary melanoma patients who received adjuvant immunotherapy. We examined the association of MMP-23 with the anti-tumor immune response - as assessed by the prevalence of tumor-infiltrating lymphocytes and Foxp3(+) regulatory T cells. Further, we examined the association between MMP-23 expression and response to immunotherapy. Considering also an in trans mechanism, we examined the association of melanoma MMP-23 and melanoma Kv1.3 expression. RESULTS Our data revealed an inverse association between primary melanoma MMP-23 expression and the anti-tumor T cell response, as demonstrated by decreased tumor-infiltrating lymphocytes (TIL) (P = 0.05), in particular brisk TILs (P = 0.04), and a trend towards an increased proportion of immunosuppressive Foxp3(+) regulatory T cells (P = 0.07). High melanoma MMP-23 expression is also associated with recurrence in patients treated with immune biologics (P = 0.037) but not in those treated with vaccines (P = 0.64). Further, high melanoma MMP-23 expression is associated with shorter periods of progression-free survival for patients receiving immune biologics (P = 0.025). On the other hand, there is no relationship between melanoma MMP-23 and melanoma Kv1.3 expression (P = 0.27). CONCLUSIONS Our data support a role for MMP-23 as a potential immunosuppressive target in melanoma, as well as a possible biomarker for informing melanoma immunotherapies.
Collapse
Affiliation(s)
- Duane Moogk
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Department of Pathology, New York University School of Medicine, New York, NY, USA.
| | - Ines Pires da Silva
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA. .,Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal. .,Programme for Advanced Medical Education, Lisbon, Portugal.
| | - Michelle W Ma
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| | - Erica B Friedman
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA. .,Department of Surgery, New York University School of Medicine, New York, NY, USA.
| | - Eleazar Vega-Saenz de Miera
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| | - Patrick Scanlon
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| | - Arianne Perez-Garcia
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Department of Pathology, New York University School of Medicine, New York, NY, USA.
| | - Anna C Pavlick
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA. .,Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Nina Bhardwaj
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA. .,Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Paul J Christos
- Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY, USA.
| | - Iman Osman
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| | - Michelle Krogsgaard
- Perlmutter Cancer Center at NYU Langone, New York, NY, USA. .,Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Simma N, Bose T, Kahlfuss S, Mankiewicz J, Lowinus T, Lühder F, Schüler T, Schraven B, Heine M, Bommhardt U. NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 2014; 12:75. [PMID: 25477292 PMCID: PMC4269920 DOI: 10.1186/s12964-014-0075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.
Collapse
Affiliation(s)
- Narasimhulu Simma
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Tanima Bose
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Judith Mankiewicz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, Waldweg 33, 37073, Göttingen, Germany.
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | - Martin Heine
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
47
|
Sanders JSF, Abdulahad WH, Stegeman CA, Kallenberg CGM. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated vasculitis and potential targets for biologic treatment. Nephron Clin Pract 2014; 128:216-23. [PMID: 25401277 DOI: 10.1159/000368570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV) are autoimmune diseases in which the small vessels are inflamed. Clinical observations suggest a pathogenic role for ANCA. Such a role is supported by in vitro experimental data and animal models, particularly for myeloperoxidase-ANCA. An in vivo pathogenic role of ANCA directed to proteinase 3 has, however, not been fully substantiated. Additionally, the pathogenic role of B cells, T cells, and the alternative pathway of complement in AAV have been elucidated. Insight into these pathogenic pathways involved in AAV has opened and will further open new ways for targeted biologic treatment. In this review the pathogenesis of AAV and potential targets for biologic treatment are discussed.
Collapse
Affiliation(s)
- J S F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Expression of T-cell KV1.3 potassium channel correlates with pro-inflammatory cytokines and disease activity in ulcerative colitis. J Crohns Colitis 2014; 8:1378-91. [PMID: 24793818 PMCID: PMC4216648 DOI: 10.1016/j.crohns.2014.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Potassium channels, KV1.3 and KCa3.1, have been suggested to control T-cell activation, proliferation, and cytokine production and may thus constitute targets for anti-inflammatory therapy. Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by excessive T-cell infiltration and cytokine production. It is unknown if KV1.3 and KCa3.1 in the inflamed mucosa are markers of active UC. We hypothesized that KV1.3 and KCa3.1 correlate with disease activity and cytokine production in patients with UC. METHODS Mucosal biopsies were collected from patients with active UC (n=33) and controls (n=15). Protein and mRNA expression of KV1.3 and KCa3.1, immune cell markers, and pro-inflammatory cytokines were determined by quantitative-real-time-polymerase-chain-reaction (qPCR) and immunofluorescence, and correlated with clinical parameters of inflammation. In-vitro cytokine production was measured in human CD3(+) T-cells after pharmacological blockade of KV1.3 and KCa3.1. RESULTS Active UC KV1.3 mRNA expression was increased 5-fold compared to controls. Immunofluorescence analyses revealed that KV1.3 protein was present in inflamed mucosa in 57% of CD4(+) and 23% of CD8(+) T-cells. KV1.3 was virtually absent on infiltrating macrophages. KV1.3 mRNA expression correlated significantly with mRNA expression of pro-inflammatory cytokines TNF-α (R(2)=0.61) and IL-17A (R(2)=0.51), the mayo endoscopic subscore (R(2)=0.13), and histological inflammation (R(2)=0.23). In-vitro blockade of T-cell KV1.3 and KCa3.1 decreased production of IFN-γ, TNF-α, and IL-17A. CONCLUSIONS High levels of KV1.3 in CD4 and CD8 positive T-cells infiltrates are associated with production of pro-inflammatory IL-17A and TNF-α in active UC. KV1.3 may serve as a marker of disease activity and pharmacological blockade might constitute a novel immunosuppressive strategy.
Collapse
|
49
|
Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH. T cells in vascular inflammatory diseases. Front Immunol 2014; 5:504. [PMID: 25352848 PMCID: PMC4196542 DOI: 10.3389/fimmu.2014.00504] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T (TEM) cells. This expanded population of TEM cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of TEM cells is uniquely dependent on the voltage-gated potassium Kv1.3 channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic TEM cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.
Collapse
Affiliation(s)
- Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
50
|
Virgili N, Mancera P, Chanvillard C, Wegner A, Wappenhans B, Rodríguez MJ, Infante-Duarte C, Espinosa-Parrilla JF, Pugliese M. Diazoxide attenuates autoimmune encephalomyelitis and modulates lymphocyte proliferation and dendritic cell functionality. J Neuroimmune Pharmacol 2014; 9:558-68. [PMID: 24939091 DOI: 10.1007/s11481-014-9551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
Activation of mitochondrial ATP-sensitive potassium (KATP) channels is postulated as an effective mechanism to confer cardio and neuroprotection, especially in situations associated to oxidative stress. Pharmacological activation of these channels inhibits glia-mediated neuroinflammation. In this way, diazoxide, an old-known mitochondrial KATP channel opener, has been proposed as an effective and safe treatment for different neurodegenerative diseases, demonstrating efficacy in different animal models, including the experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple Sclerosis. Although neuroprotection and modulation of glial reactivity could alone explain the positive effects of diazoxide administration in EAE mice, little is known of its effects on the immune system and the autoimmune reaction that triggers the EAE pathology. The aim of the present work was to study the effects of diazoxide in autoimmune key processes related with EAE, such as antigen presentation and lymphocyte activation and proliferation. Results show that, although diazoxide treatment inhibited in vitro and ex-vivo lymphocyte proliferation from whole splenocytes it had no effect in isolated CD4(+) T cells. In any case, treatment had no impact in lymphocyte activation. Diazoxide can also slightly decrease CD83, CD80, CD86 and major histocompatibility complex class II expression in cultured dendritic cells, demonstrating a possible role in modulating antigen presentation. Taken together, our results indicate that diazoxide treatment attenuates autoimmune encephalomyelitis pathology without immunosuppressive effect.
Collapse
Affiliation(s)
- N Virgili
- Neurotec Pharma S.L., Bioincubadora PCB-Santander, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|