1
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
2
|
Boucau J, Madouasse J, Kourjian G, Carlin CS, Wambua D, Berberich MJ, Le Gall S. The Activation State of CD4 T Cells Alters Cellular Peptidase Activities, HIV Antigen Processing, and MHC Class I Presentation in a Sequence-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2019; 202:2856-2872. [PMID: 30936293 DOI: 10.4049/jimmunol.1700950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CD4 T cell activation is critical to the initiation of adaptive immunity. CD4 T cells are also the main targets of HIV infection, and their activation status contributes to the maintenance and outcome of infection. Although the role of activation in the differentiation and proliferation of CD4 T cells is well studied, its impact on the processing and MHC class I (MHC-I) presentation of epitopes and immune recognition by CD8 T cells are not investigated. In this study, we show that the expression and hydrolytic activities of cellular peptidases are increased upon TCR-dependent and MHC-peptide activation of primary CD4 T cells from healthy or HIV-infected persons. Changes in peptidase activities altered the degradation patterns of HIV Ags analyzed by mass spectrometry, modifying the amount of MHC-I epitopes produced, the antigenicity of the degradation products, and the coverage of Ags by degradation peptides presentable by MHC-I. The computational analysis of 2237 degradation peptides generated during the degradation of various HIV-antigenic fragments in CD4 T cells identified cleavage sites that were predictably enhanced, reduced, or unchanged upon cellular activation. Epitope processing and presentation by CD4 T cells may be modulated by the activation state of cells in a sequence-dependent manner. Accordingly, cellular activation modified endogenous Ag processing and presentation and killing of HIV-infected CD4 T cells by CD8 T cells in a way that mirrored differences in in vitro epitope processing. The clearance of HIV-infected cells may rely on different immune responses according to activation state during HIV infection.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | | | | | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
3
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Improved Immune Responses Against Zika Virus After Sequential Dengue and Zika Virus Infection in Humans. Viruses 2018; 10:v10090480. [PMID: 30205518 PMCID: PMC6164826 DOI: 10.3390/v10090480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The high levels of dengue-virus (DENV) seroprevalence in areas where the Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infections. To determine the role of DENV preimmunity in ZIKV infection, we analyzed the T- and B-cell responses against ZIKV in donors with or without previous DENV infection. Using peripheral blood mononuclear cells (PBMCs) from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the nonstructural (NS) proteins NS1, NS3, and NS5. Analyses of the T- and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors in comparison with DENV-naïve donors. Strikingly, the potential for antibody-mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.
Collapse
|
5
|
Hu X, Valentin A, Cai Y, Dayton F, Rosati M, Ramírez-Salazar EG, Kulkarni V, Broderick KE, Sardesai NY, Wyatt LS, Earl PL, Moss B, Mullins JI, Pavlakis GN, Felber BK. DNA Vaccine-Induced Long-Lasting Cytotoxic T Cells Targeting Conserved Elements of Human Immunodeficiency Virus Gag Are Boosted Upon DNA or Recombinant Modified Vaccinia Ankara Vaccination. Hum Gene Ther 2018; 29:1029-1043. [PMID: 29869530 PMCID: PMC6152849 DOI: 10.1089/hum.2018.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA-based vaccines able to induce efficient cytotoxic T-cell responses targeting conserved elements (CE) of human immunodeficiency virus type 1 (HIV-1) Gag have been developed. These CE were selected by stringent conservation, the ability to induce T-cell responses with broad human leukocyte antigen coverage, and the association between recognition of CE epitopes and viral control in HIV-infected individuals. Based on homology to HIV, a simian immunodeficiency virus p27gag CE DNA vaccine has also been developed. This study reports on the durability of the CE-specific T-cell responses induced by HIV and simian immunodeficiency virus CE DNA-based prime/boost vaccine regimens in rhesus macaques, and shows that the initially primed CE-specific T-cell responses were efficiently boosted by a single CE DNA vaccination after the long rest period (up to 2 years). In another cohort of animals, the study shows that a single inoculation with non-replicating recombinant Modified Vaccinia Ankara (rMVA62B) also potently boosted CE-specific responses after around 1.5 years of rest. Both CE DNA and rMVA62B booster vaccinations increased the magnitude and cytotoxicity of the CE-specific responses while maintaining the breadth of CE recognition. Env produced by rMVA62B did not negatively interfere with the recall of the Gag CE responses. rMVA62B could be beneficial to further boosting the immune response to Gag in humans. Vaccine regimens that employ CE DNA as a priming immunogen hold promise for application in HIV prevention and therapy.
Collapse
Affiliation(s)
- Xintao Hu
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Antonio Valentin
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Yanhui Cai
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Frances Dayton
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Margherita Rosati
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | | | - Viraj Kulkarni
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | | | | | - Linda S Wyatt
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - Bernard Moss
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - George N Pavlakis
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Barbara K Felber
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
6
|
Munson P, Liu Y, Bratt D, Fuller JT, Hu X, Pavlakis GN, Felber BK, Mullins JI, Fuller DH. Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Hum Vaccin Immunother 2018; 14:1820-1831. [PMID: 29648490 PMCID: PMC6067903 DOI: 10.1080/21645515.2018.1448328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-specific T-cell responses play a key role in controlling HIV infection, and therapeutic vaccines for HIV that aim to improve viral control will likely need to improve on the T-cell responses induced by infection. However, in the setting of chronic infection, an effective therapeutic vaccine must overcome the enormous viral genetic diversity and the presence of pre-existing T-cell responses that are biased toward immunodominant T-cell epitopes that can readily mutate to evade host immunity and thus potentially provide inferior protection. To address these issues, we investigated a novel, epidermally administered DNA vaccine expressing SIV capsid (p27Gag) homologues of highly conserved elements (CE) of the HIV proteome in macaques experiencing chronic but controlled SHIV infection. We assessed the ability to boost or induce de novo T-cell responses against the conserved but immunologically subdominant CE epitopes. Two groups of animals were immunized with either the CE DNA vaccine or a full-length SIV p57gag DNA vaccine. Prior to vaccination, CE responses were similar in both groups. The full-length p57gag DNA vaccine, which contains the CE, increased overall Gag-specific responses but did not increase CE responses in any animals (0/4). In contrast, the CE DNA vaccine increased CE responses in all (4/4) vaccinated macaques. In SIV infected but unvaccinated macaques, those that developed stronger CE-specific responses during acute infection exhibited lower viral loads. We conclude that CE DNA vaccination can re-direct the immunodominance hierarchy towards CE in the setting of attenuated chronic infection and that induction of these responses by therapeutic vaccination may improve immune control of HIV.
Collapse
Affiliation(s)
- Paul Munson
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| | - Yi Liu
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Debra Bratt
- b Washington National Primate Research Center , Seattle , WA , US
| | - James T Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Xintao Hu
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - George N Pavlakis
- d Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick , MD , US
| | - Barbara K Felber
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - James I Mullins
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,e Department of Medicine , University of Washington , Seattle , WA , US.,f Department of Global Health , University of Washington , Seattle , WA , US.,g Department of Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Deborah Heydenburg Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| |
Collapse
|
7
|
Hu X, Valentin A, Rosati M, Manocheewa S, Alicea C, Chowdhury B, Bear J, Broderick KE, Sardesai NY, Gall SL, Mullins JI, Pavlakis GN, Felber BK. HIV Env conserved element DNA vaccine alters immunodominance in macaques. Hum Vaccin Immunother 2017; 13:2859-2871. [PMID: 28678607 PMCID: PMC5718827 DOI: 10.1080/21645515.2017.1339852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sequence diversity and immunodominance are major obstacles in the design of an effective vaccine against HIV. HIV Env is a highly-glycosylated protein composed of ‘conserved’ and ‘variable’ regions. The latter contains immunodominant epitopes that are frequently targeted by the immune system resulting in the generation of immune escape variants. This work describes 12 regions in HIV Env that are highly conserved throughout the known HIV M Group sequences (Env CE), and are poorly immunogenic in macaques vaccinated with full-length Env expressing DNA vaccines. Two versions of plasmids encoding the 12 Env CE were generated, differing by 0–5 AA per CE to maximize the inclusion of commonly detected variants. In contrast to the full-length env DNA vaccine, vaccination of macaques with a combination of these 2 Env CE DNA induced robust, durable cellular immune responses with a significant fraction of CD8+ T cells with cytotoxic phenotype (Granzyme B+ and CD107a+). Although inefficient in generating primary responses to the CE, boosting of the Env CE DNA primed macaques with the intact env DNA vaccine potently augmented pre-existing immunity, increasing magnitude, breadth and cytotoxicity of the cellular responses. Fine mapping showed that 7 of the 12 CE elicited T cell responses. Env CE DNA also induced humoral responses able to recognize the full-length Env. Env CE plasmids are therefore capable of inducing durable responses to highly conserved regions of Env that are frequently absent after Env vaccination or immunologically subdominant. These modified antigens are candidates for use as prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Xintao Hu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Antonio Valentin
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Margherita Rosati
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Siriphan Manocheewa
- c Departments of Microbiology , University of Washington , Seattle , WA , USA
| | - Candido Alicea
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Bhabadeb Chowdhury
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Jenifer Bear
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | | | | | - Sylvie Le Gall
- e Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School , Cambridge , MA , USA
| | - James I Mullins
- c Departments of Microbiology , University of Washington , Seattle , WA , USA.,f Departments of Medicine , University of Washington , Seattle , WA , USA.,g Departments of Global Health , University of Washington , Seattle , WA , USA.,h Departments of Laboratory Medicine , University of Washington , Seattle , WA , USA
| | - George N Pavlakis
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Barbara K Felber
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| |
Collapse
|
8
|
Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses. J Virol 2016; 90:8605-20. [PMID: 27440904 DOI: 10.1128/jvi.00599-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity.
Collapse
|
9
|
Davis ZB, Cogswell A, Scott H, Mertsching A, Boucau J, Wambua D, Le Gall S, Planelles V, Campbell KS, Barker E. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS Pathog 2016; 12:e1005421. [PMID: 26828202 PMCID: PMC4735451 DOI: 10.1371/journal.ppat.1005421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022] Open
Abstract
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94(+) NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94(+) NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL(+) CD56(dim) NK cells, in contrast to the efficient responses by CD56(bright) NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94(+) KIR2DL(-) NK cells may be uniquely beneficial.
Collapse
Affiliation(s)
- Zachary B. Davis
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Andrew Cogswell
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hamish Scott
- Division of Infection and Immunity and Cell Signaling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda Mertsching
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kerry S. Campbell
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, United States of America
| | - Edward Barker
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing. J Virol 2015; 90:33-42. [PMID: 26446603 DOI: 10.1128/jvi.01993-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. IMPORTANCE HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells.
Collapse
|
11
|
Chang CH, Kist NC, Stuart Chester TL, Sreenu VB, Herman M, Luo M, Lunn D, Bell J, Plummer FA, Ball TB, Katzourakis A, Iversen AKN. HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression. Sci Rep 2015; 5:11253. [PMID: 26082240 PMCID: PMC4469978 DOI: 10.1038/srep11253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicolaas C Kist
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Tammy L Stuart Chester
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Herman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Lunn
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Oxford, United Kingdom
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Astrid K N Iversen
- 1] Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom [2] Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Kløverpris HN, McGregor R, McLaren JE, Ladell K, Harndahl M, Stryhn A, Carlson JM, Koofhethile C, Gerritsen B, Keşmir C, Chen F, Riddell L, Luzzi G, Leslie A, Walker BD, Ndung'u T, Buus S, Price DA, Goulder PJ. CD8+ TCR Bias and Immunodominance in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5329-45. [PMID: 25911754 DOI: 10.4049/jimmunol.1400854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available Ag pool derived from a given pathogen. In the case of CD8(+) T cells, these constrained epitope-targeting patterns are linked to HLA class I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8(+) T cell responses restricted by a single HLA class I molecule to evaluate the mechanisms that contribute to epitope-targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide-HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue-identical TRB sequences that occur in multiple individuals. Collectively, these results provide important insights into a potential link between shared TCR recruitment, immunodominance, and antiviral efficacy in a major human infection.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark; KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Reuben McGregor
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mikkel Harndahl
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - Anette Stryhn
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | | | - Catherine Koofhethile
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Bram Gerritsen
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Can Keşmir
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading RG1 5AN, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare National Health Service Trust, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, United Kingdom
| | - Graz Luzzi
- Department of Sexual Health, Wycombe Hospital, High Wycombe HP11 2TT, United Kingdom
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02129; Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Søren Buus
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip J Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
13
|
Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, Bracho-Sanchez E, Chu D, Su H, Zhang SC, Le Gall S. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 2015; 11:e1004725. [PMID: 25781895 PMCID: PMC4364612 DOI: 10.1371/journal.ppat.1004725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. Pathogens such as HIV can enter cells by fusion at the plasma membrane for delivery in the cytosol, or by internalization in endolysosomal vesicles. Pathogens can be degraded in these various compartments into peptides (epitopes) displayed at the cell surface by MHC-I. The presentation of pathogen-derived peptides triggers the activation of T cell immune responses and the clearance of infected cells. How the diversity of compartments in which HIV traffics combined with the diversity of HIV sequences affects the degradation of HIV and the recognition of infected cells by immune cells is not understood. We compared the degradation of HIV proteins in subcellular compartments of dendritic cells and macrophages, two cell types targeted by HIV and the subsequent presentation of epitopes to T cells. We show variable degradation patterns of HIV according to compartments, and the preferential production and superior intracellular stability of immunodominant epitopes corresponding to stronger T cell responses. Frequent mutations in immunodominant epitopes during acute infection resulted in decreased production and intracellular stability of these epitopes. Together these results demonstrate the importance of protein degradation patterns in shaping immunodominant epitopes and the contribution of impaired epitope production in all cellular compartments to immune escape during HIV infection.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicole Y. Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Matthew J. Berberich
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Duong Chu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hang Su
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Mattison CP, Dinter J, Berberich MJ, Chung SY, Reed SS, Le Gall S, Grimm CC. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides. Food Sci Nutr 2015; 3:273-83. [PMID: 26288719 PMCID: PMC4534154 DOI: 10.1002/fsn3.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022] Open
Abstract
Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues.
Collapse
Affiliation(s)
- Christopher P Mattison
- United States Department of Agriculture - Agricultural Research Service - Southern Regional Research Center 1100 Robert E. Lee Blvd., New Orleans, Louisiana, 70124
| | - Jens Dinter
- Ragon Institute of MGH, MIT and Harvard 400 Technology Square, Cambridge, Massachusetts, 02139 ; Harvard Medical School Boston, Massachusetts
| | - Matthew J Berberich
- Ragon Institute of MGH, MIT and Harvard 400 Technology Square, Cambridge, Massachusetts, 02139
| | - Si-Yin Chung
- United States Department of Agriculture - Agricultural Research Service - Southern Regional Research Center 1100 Robert E. Lee Blvd., New Orleans, Louisiana, 70124
| | - Shawndrika S Reed
- United States Department of Agriculture - Agricultural Research Service - Southern Regional Research Center 1100 Robert E. Lee Blvd., New Orleans, Louisiana, 70124
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard 400 Technology Square, Cambridge, Massachusetts, 02139 ; Harvard Medical School Boston, Massachusetts
| | - Casey C Grimm
- United States Department of Agriculture - Agricultural Research Service - Southern Regional Research Center 1100 Robert E. Lee Blvd., New Orleans, Louisiana, 70124
| |
Collapse
|
15
|
Mothe B, Hu X, Llano A, Rosati M, Olvera A, Kulkarni V, Valentin A, Alicea C, Pilkington GR, Sardesai NY, Rocafort M, Crespo M, Carrillo J, Marco A, Mullins JI, Dorrell L, Hanke T, Clotet B, Pavlakis GN, Felber BK, Brander C. A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. J Transl Med 2015; 13:60. [PMID: 25879820 PMCID: PMC4336696 DOI: 10.1186/s12967-015-0392-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/13/2015] [Indexed: 12/03/2022] Open
Abstract
Background None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. Methods To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. Results Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+). Conclusions These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0392-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,'Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Margherita Rosati
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Alex Olvera
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Antonio Valentin
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | | | - Muntsa Rocafort
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | - Manel Crespo
- HIV Unit, Hospital de la Vall d'Hebrón, Barcelona, Spain.
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain.
| | | | | | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, UK.
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,'Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - George N Pavlakis
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Christian Brander
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Crta Canyet s/n., 08916, Badalona, Barcelona, Spain. .,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
16
|
Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J Virol 2014; 88:12937-48. [PMID: 25165115 PMCID: PMC4249072 DOI: 10.1128/jvi.01004-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8(+) T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control--that is, some epitopes are protective rather than merely associated with control--and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCE Some individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8(+) T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
Collapse
Affiliation(s)
- Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Carl Kadie
- Microsoft Research, Redmond, Washington, USA
| | | | - Daniel Karel
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Oliver B Davis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Tienho Lin
- Microsoft Research, Los Angeles, California, USA
| | - Jian Peng
- Microsoft Research, Los Angeles, California, USA
| | - Alicja Piechocka
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Dinter J, Gourdain P, Lai NY, Duong E, Bracho-Sanchez E, Rucevic M, Liebesny PH, Xu Y, Shimada M, Ghebremichael M, Kavanagh DG, Le Gall S. Different antigen-processing activities in dendritic cells, macrophages, and monocytes lead to uneven production of HIV epitopes and affect CTL recognition. THE JOURNAL OF IMMUNOLOGY 2014; 193:4322-4334. [PMID: 25230751 DOI: 10.4049/jimmunol.1400491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs), macrophages (MPs), and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous Ags preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum translocation, trimming, and MHC-I presentation. In this study, we compared the capacity of DCs, MPs, and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848, and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs, and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs, and monocytes. Differences in Ag-processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Pauline Gourdain
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Nicole Y Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Marijana Rucevic
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Paul H Liebesny
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yang Xu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mariko Shimada
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Musie Ghebremichael
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Daniel G Kavanagh
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
18
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
19
|
Tenzer S, Crawford H, Pymm P, Gifford R, Sreenu VB, Weimershaus M, de Oliveira T, Burgevin A, Gerstoft J, Akkad N, Lunn D, Fugger L, Bell J, Schild H, van Endert P, Iversen AKN. HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification. Cell Rep 2014; 7:448-463. [PMID: 24726370 PMCID: PMC4005910 DOI: 10.1016/j.celrep.2014.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/04/2013] [Accepted: 03/11/2014] [Indexed: 02/01/2023] Open
Abstract
The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8(+) T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Hayley Crawford
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Phillip Pymm
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Robert Gifford
- Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Tulio de Oliveira
- Africa Centre for Health and Population Studies, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, KwaZulu-Natal 3935, South Africa; Research Department of Infection, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Kbh Ø Copenhagen, Denmark
| | - Nadja Akkad
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Daniel Lunn
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Lars Fugger
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, Roosevelt Drive 1, Oxford OX3 7LF, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Astrid K N Iversen
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
20
|
Kourjian G, Xu Y, Mondesire-Crump I, Shimada M, Gourdain P, Le Gall S. Sequence-specific alterations of epitope production by HIV protease inhibitors. THE JOURNAL OF IMMUNOLOGY 2014; 192:3496-506. [PMID: 24616479 DOI: 10.4049/jimmunol.1302805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ag processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First-generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first- or second-generation PIs on other cellular peptidases, the underlying mechanism, and impact on Ag processing and epitope presentation to CTL are still unknown. In this article, we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMCs. Using an in vitro degradation assay involving PBMC cytosolic extracts, we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others. PIs affected the sensitivity of peptides to intracellular degradation, and altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly, the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC class I presentation to CTL, alter the patterns of CTL responses, and provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer, or other immune disease.
Collapse
Affiliation(s)
- Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139
| | | | | | | | | | | |
Collapse
|
21
|
Gourdain P, Boucau J, Kourjian G, Lai NY, Duong E, Le Gall S. A real-time killing assay to follow viral epitope presentation to CD8 T cells. J Immunol Methods 2013; 398-399:60-7. [PMID: 24060536 DOI: 10.1016/j.jim.2013.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/13/2013] [Indexed: 12/29/2022]
Abstract
The ability of cytotoxic T lymphocytes (CTL) to clear virus-infected cells requires the presentation of viral peptides intracellularly processed and displayed by major histocompatibility complex class I. Assays to measure CTL-mediated killing often use peptides exogenously added onto target cells--which does not account for epitope processing--or follow killing of infected cells at a single time point. In this study we established a real-time fluorogenic cytotoxic assay that measures the release of the Glucose-6-phosphate-dehydrogenase by dying target cells every 5 min after addition of CTL. It has comparable sensitivity to (51)chromium-based killing assay with the additional advantage of incorporating the kinetics of epitope presentation. We showed that HIV infection of immortalized or primary CD4 T cells leads to asynchronous killing by two CTL clones specific for epitopes located in different proteins. Real-time monitoring of killing of virus-infected cells will enable identification of immune responses efficiently preventing virus dissemination.
Collapse
Affiliation(s)
- Pauline Gourdain
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Vaithilingam A, Lai NY, Duong E, Boucau J, Xu Y, Shimada M, Gandhi M, Le Gall S. A simple methodology to assess endolysosomal protease activity involved in antigen processing in human primary cells. BMC Cell Biol 2013; 14:35. [PMID: 23937268 PMCID: PMC3751085 DOI: 10.1186/1471-2121-14-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysosomes play a key role in maintaining the homeostasis of the cell. They are made of a complex set of proteins that degrade lipids, proteins and sugars. Studies involving endolysosome contribution to cellular functions such as MHC class I and II epitope production have used recombinant endolysosomal proteins, knockout mice that lack one of the enzymes or purified organelles from human tissue. Each of these approaches has some caveats in analyzing endolysosomal enzyme functions. RESULTS In this study, we have developed a simple methodology to assess endolysosomal protease activity. By varying the pH in crude lysate from human peripheral blood mononuclear cells (PBMCs), we documented increased endolysosomal cathepsin activity in acidic conditions. Using this new method, we showed that the degradation of HIV peptides in low pH extracts analyzed by mass spectrometry followed similar kinetics and degradation patterns as those performed with purified endolysosomes. CONCLUSION By using crude lysate in the place of purified organelles this method will be a quick and useful tool to assess endolysosomal protease activities in primary cells of limited availability. This quick method will especially be useful to screen peptide susceptibility to degradation in endolysosomal compartments for antigen processing studies, following which detailed analysis using purified organelles may be used to study specific peptides.
Collapse
Affiliation(s)
- Archana Vaithilingam
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Alvarez-Navarro C, López de Castro JA. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol 2013; 57:12-21. [PMID: 23916068 DOI: 10.1016/j.molimm.2013.06.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in the final processing of Major Histocompatibility Complex class I (MHC-I) ligands and with a significant influence in the stability and immunological properties of MHC-I proteins. ERAP1 polymorphism is associated with ankylosing spondylitis among HLA-B27-positive individuals and the altered enzymatic activity of natural variants has significant effects on the HLA-B27 peptidome, suggesting a critical pathogenetic role of peptides in this disease. Likewise, the association of ERAP1 with other MHC-I associated disorders and its epistasis with their susceptibility MHC alleles point out to a general role of the MHC-I peptidome in these diseases. The functional interaction between ERAP1 and HLA-B27 or other MHC-I molecules may be related to the processing of specific epitopes, or to a more general peptide-dependent influence on other biological features of the MHC-I proteins. In addition, from a consideration of the reported functions of ERAP1, including its involvement in angiogenesis and macrophage activation, a more complex and multi-level influence in the inflammatory and immune pathways operating in these diseases cannot be ruled out.
Collapse
Affiliation(s)
- Carlos Alvarez-Navarro
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | | |
Collapse
|
24
|
Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res 2013; 1:11-5. [PMID: 24777245 PMCID: PMC4033902 DOI: 10.1158/2326-6066.cir-13-0022] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite years of preclinical efforts and hundreds of clinical studies, therapeutic cancer vaccines with the routine ability to limit or eliminate tumor growth in humans have been elusive. With advances in genome sequencing, it is now possible to identify a new class of tumor-specific antigens derived from mutated proteins that are present only in the tumor. These "neoantigens" should provide highly specific targets for antitumor immunity. Although many challenges remain in producing and testing neoantigen-based vaccines customized for each patient, a neoantigen vaccine offers a promising new approach to induce highly focused antitumor T cells aimed at eradicating cancer cells.
Collapse
Affiliation(s)
- Nir Hacohen
- Broad Institute of Harvard and MIT, Cambridge
- The Division of Allergy, Immunology & Rheumatology, Department of Medicine, Massachusetts General Hospital
| | - Edward F. Fritsch
- Broad Institute of Harvard and MIT, Cambridge
- Department of Medical Oncology, Cancer Vaccine Center, Dana-Farber Cancer Institute
| | | | | | - Catherine J. Wu
- Department of Medical Oncology, Cancer Vaccine Center, Dana-Farber Cancer Institute
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
HIV-1 gag cytotoxic T lymphocyte epitopes vary in presentation kinetics relative to HLA class I downregulation. J Virol 2013; 87:8726-34. [PMID: 23740989 DOI: 10.1128/jvi.01040-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although CD8(+) cytotoxic T lymphocytes (CTLs) are protective in HIV-1 infection, the factors determining their antiviral efficiency are poorly defined. It is proposed that Gag targeting is superior because of very early Gag epitope presentation, allowing early killing of infected cells before Nef-mediated downregulation of human leukocyte antigen class I (HLA-I). To study Gag epitope presentation kinetics, three epitopes (SL977-85, KF11162-172, and TW10240-249) were genetically translocated from their endogenous location in the Rev-dependent (late) gag gene into the Rev-independent (early) nef gene with concomitant mutation of the corresponding endogenous epitopes to nonrecognized sequences. These viruses were compared to the index virus for CTL-mediated suppression of replication and the susceptibility of this antiviral activity to Nef-mediated HLA-I downregulation. SL9-specific CTLs gained activity after SL9 translocation to Nef, going from Nef sensitive to Nef insensitive, indicating that translocation accelerated infected cell recognition from after to before HLA-I downregulation. KF11-specific CTL antiviral activity was unchanged and insensitive to HLA-I downregulation before and after KF11 translocation, suggesting that already rapid recognition of infected cells was not accelerated. However, TW10-specific CTLs that were insensitive to Nef at the baseline became sensitive with reduced antiviral activity after translocation, indicating that translocation retarded epitope expression. Cytosolic peptide processing assays suggested that TW10 was inefficiently generated after translocation to Nef, compared to SL9 and KF11. As a whole, these data demonstrate that epitope presentation kinetics play an important role in CTL antiviral efficiency, that Gag epitopes are not uniformly presented early, and that the epitope context can play a major role in presentation kinetics.
Collapse
|
26
|
Kulkarni V, Rosati M, Valentin A, Ganneru B, Singh AK, Yan J, Rolland M, Alicea C, Beach RK, Zhang GM, Le Gall S, Broderick KE, Sardesai NY, Heckerman D, Mothe B, Brander C, Weiner DB, Mullins JI, Pavlakis GN, Felber BK. HIV-1 p24(gag) derived conserved element DNA vaccine increases the breadth of immune response in mice. PLoS One 2013; 8:e60245. [PMID: 23555935 PMCID: PMC3610668 DOI: 10.1371/journal.pone.0060245] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24gag region according to two principles: the immunogen must (i) include strictly conserved elements of the virus that cannot mutate readily, and (ii) exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24gag DNA immunogens that express 7 highly Conserved Elements (CE) of 12–24 amino acids in length and differ by only 1 amino acid in each CE (‘toggle site’), together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55gag DNA induced poor, CD4+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4+ and CD8+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55gag, which recognize the virus encoded p24gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4+ and CD8+ T cells to additional regions of Gag compared to vaccination with p55gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brunda Ganneru
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ashish K. Singh
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jian Yan
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Morgane Rolland
- Departments of Microbiology Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rachel Kelly Beach
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania, United States of America
| | | | - David Heckerman
- Microsoft Research, Redmond, Washington, United States of America
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - David B. Weiner
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James I. Mullins
- Departments of Microbiology Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BKF); (GNP)
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BKF); (GNP)
| |
Collapse
|