1
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
2
|
Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8 + T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021; 26:951-967. [PMID: 33450394 PMCID: PMC8131230 DOI: 10.1016/j.drudis.2021.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Host immunity has an essential role in the clinical management of cancers. Therefore, it is advantageous to choose therapies that can promote tumor cell death and concurrently boost host immunity. The dynamic tumor microenvironment (TME) determines whether an antineoplastic drug will elicit favorable or disparaging immune responses from tumor-infiltrating lymphocytes (TILs). CD8+ T cells are one of the primary tumor-infiltrating immune cells that deliver antitumor responses. Here, we review the influence of various factors in the TME on CD8+ T cell exhaustion and survival, and possible strategies for restoring CD8+ T cell effector function through immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Ciavattone NG, Wu L, O'Neill R, Qiu J, Davila E, Cao X. MyD88 Costimulation in Donor CD8 + T Cells Enhances the Graft-versus-Tumor Effect in Murine Hematopoietic Cell Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:892-903. [PMID: 33408257 PMCID: PMC8691539 DOI: 10.4049/jimmunol.2000479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Donor-derived lymphocytes from allogeneic hematopoietic cell transplantation (allo-HCT) or donor lymphocyte infusion can mediate eradication of host tumor cells in a process labeled the graft-versus-tumor (GVT) effect. Unfortunately, these treatments have produced limited results in various types of leukemia because of an insufficient GVT effect. In this context, molecular engineering of donor lymphocytes to increase the GVT effect may benefit cancer patients. Activating MyD88 signaling in CD8+ T cells via TLR enhances T cell activation and cytotoxicity. However, systemic administration of TLR ligands to stimulate MyD88 could induce hyperinflammation or elicit protumor effects. To circumvent this problem, we devised a synthetic molecule consisting of MyD88 linked to the ectopic domain of CD8a (CD8α:MyD88). We used this construct to test the hypothesis that MyD88 costimulation in donor CD8+ T cells increases tumor control following allo-HCT in mice by increasing T cell activation, function, and direct tumor cytotoxicity. Indeed, an increase in both in vitro and in vivo tumor control was observed with CD8α:MyD88 T cells. This increase in the GVT response was associated with increased T cell expansion, increased functional capacity, and an increase in direct cytotoxic killing of the tumor cells. However, MyD88 costimulation in donor CD8+ T cells was linked to increased yet nonlethal graft-versus-host disease in mice treated with these engineered CD8+ T cells. Given these observations, synthetic CD8α:MyD88 donor T cells may represent a unique and versatile approach to enhance the GVT response that merits further refinement to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Nicholas G Ciavattone
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Rachel O'Neill
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Eduardo Davila
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| |
Collapse
|
4
|
Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccine Potentiated the Anti-PD-1-Mediated Melanoma Suppression. Cells 2020; 9:cells9112432. [PMID: 33171765 PMCID: PMC7694978 DOI: 10.3390/cells9112432] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors become a standard therapy for malignant melanoma. As immune checkpoint inhibitor monotherapies proved to have limited efficacy in significant portion of patients, it is envisaged that combination with other therapeutic modalities may improve clinical outcomes. We investigated the effect of combining photodynamic therapy (PDT) and TLR5 agonist flagellin-adjuvanted tumor-specific peptide vaccination (FlaB-Vax) on the promotion of PD-1 blockade-mediated melanoma suppression using a mouse B16-F10 implantation model. Using a bilateral mouse melanoma cancer model, we evaluated the potentiation of PD-1 blockade by the combination of peritumoral FlaB-Vax delivery and PDT tumor ablation. A photosensitizing agent, pheophorbide A (PhA), was used for laser-triggered photodynamic destruction of the primary tumor. The effect of combination therapy in conjunction with PD-1 blockade was evaluated for tumor growth and survival. The effector cytokines that promote the activation of CD8+ T cells and antigen-presenting cells in tumor tissue and tumor-draining lymph nodes (TDLNs) were also assayed. PDT and FlaB-Vax combination therapy induced efficacious systemic antitumor immune responses for local and abscopal tumor control, with a significant increase in tumor-infiltrating effector memory CD8+ T cells and systemic IFNγ secretion. The combination of PDT and FlaB-Vax also enhanced the infiltration of tumor antigen-reactive CD8+ T cells and the accumulation of migratory CXCL10-secreting CD103+ dendritic cells (DCs) presumably contributing to tumor antigen cross-presentation in the tumor microenvironment (TME). The CD8+ T-cell-dependent therapeutic benefits of PDT combined with FlaB-Vax was significantly enhanced by a PD-1-targeting checkpoint inhibitor therapy. Conclusively, the combination of FlaB-Vax with PDT-mediated tumor ablation would serve a safe and feasible combinatorial therapy for enhancing PD-1 blockade treatment of malignant melanoma.
Collapse
|
5
|
Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2020; 26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Psychopharmacology: neuroimmune signaling in psychiatric disease-developing vaccines against abused drugs using toll-like receptor agonists. Psychopharmacology (Berl) 2019; 236:2899-2907. [PMID: 30726515 DOI: 10.1007/s00213-019-5176-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
RATIONALE Since substance use disorders have few or no effective pharmacotherapies, researchers have developed vaccines as immune-therapies against nicotine, cocaine, methamphetamine, and opioids including fentanyl. OBJECTIVES We focus on enhancing antibody (AB) production through stimulation of toll-like receptor-5 (TLR5) during active vaccination. The stimulating adjuvant is Entolimod, a novel protein derivative of flagellin. We review the molecular and cellular mechanisms underlying Entolimod's actions on TLR5. RESULTS Entolimod shows excellent efficacy for increasing AB levels to levels well beyond those produced by anti-addiction vaccines alone in animal models and humans. These ABs also significantly block the behavioral effects of the targeted drug of abuse. The TLR5 stimulation involves a wide range of immune cell types such as dendritic, antigen presenting, T and B cells. Entolimod binding to TLR5 initiates an intracellular signaling cascade that stimulates cytokine production of tumor necrosis factor and two interleukins (IL-6 and IL-12). While cytokine release can be catastrophic in cytokine storm, Entolimod produces a modulated release with few side effects even at doses 30 times greater than doses needed in these vaccine studies. Entolimod has markedly increased AB responses to all of our anti-addiction vaccines in rodent models, and in normal humans. CONCLUSIONS Entolimod and TLR5 stimulation has broad application to vaccines and potentially to other psychiatric disorders like depression, which has critical inflammatory contributions that Entolimod could reduce.
Collapse
|
7
|
Du W, Cao X. Cytotoxic Pathways in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2018; 9:2979. [PMID: 30631325 PMCID: PMC6315278 DOI: 10.3389/fimmu.2018.02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic malignancies, and other hematologic and immunologic diseases. Donor-derived immune cells identify and attack cancer cells in the patient producing a unique graft-vs.-tumor (GVT) effect. This beneficial response renders allo-HCT one of the most effective forms of tumor immunotherapy. However, alloreactive donor T cells can damage normal host cells thereby causing graft-vs.-host disease (GVHD), which results in substantial morbidity and mortality. To date, GVHD remains as the major obstacle for more successful application of allo-HCT. Of special significance in this context are a number of cytotoxic pathways that are involved in GVHD and GVT response as well as donor cell engraftment. In this review, we summarize progress in the investigation of these cytotoxic pathways, including Fas/Fas ligand (FasL), perforin/granzyme, and cytokine pathways. Many studies have delineated their distinct operating mechanisms and how they are involved in the complex cellular interactions amongst donor, host, tumor, and infectious pathogens. Driven by progressing elucidation of their contributions in immune reconstitution and regulation, various interventional strategies targeting these pathways have entered translational stages with aims to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
8
|
Dong B, Wang L, Nie S, Li X, Xiao Y, Yang L, Meng X, Zhao P, Cui C, Tu L, Lu W, Sun W, Yu Y. Anti-glioma effect of intracranial vaccination with tumor cell lysate plus flagellin in mice. Vaccine 2018; 36:8148-8157. [PMID: 30449633 DOI: 10.1016/j.vaccine.2018.04.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/19/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
The adjuvant effects of flagellin on regulation of immune response have been proved; whether flagellin could assist tumor cell lysate (TCL) to enhance anti-glioma immunity remains to be investigated. This study tests a hypothesis that therapeuticly intracranial administration with flagellin plus TCL enhances the effects of specific immunotherapy on glioma in mice. In this study, GL261 cells were transferred into C57BL/6 mice and the GL261-bearing mice were subcutaneously or intracranially inoculated with flagellin plus TCL, flagellin, TCL or saline. Our results showed that prophylacticly subcutaneous administration with TCL and flagellin could induce potent cytotoxic T lymphocyte (CTL) and prolong the survival of GL261-bearing mice significantly, but therapeuticly subcutaneous administration failed to. However, therapeuticly intracranial administration of TCL plus flagellin could prolong the survival. Moreover, intracranial administration of flagellin could recruit CD4+ T cells and CD8+ T cells to brain tissues, induce proliferation of natural killer (NK) cells, CD4+ T cells and CD8+ T cells in peripheral blood mononuclear cells and induce to splenomegaly. The results suggested that flagellin could be acted as an efficient adjuvant for TCL based vaccine.
Collapse
Affiliation(s)
- Boqi Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shu Nie
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yue Xiao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiuping Meng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Ye B, Shen W, Shi M, Zhang Y, Xu C, Zhao Z. Intein-mediated backbone cyclization of entolimod confers enhanced radioprotective activity in mouse models. PeerJ 2018; 6:e5043. [PMID: 29938138 PMCID: PMC6011820 DOI: 10.7717/peerj.5043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/03/2022] Open
Abstract
Background Entolimod is a Salmonella enterica flagellin derivate. Previous work has demonstrated that entolimod effectively protects mice and non-human primates from ionizing radiation. However, it caused a “flu-like” syndrome after radioprotective and anticancer clinical application, indicating some type of immunogenicity and toxicity. Cyclization is commonly used to improve the in vivo stability and activity of peptides and proteins. Methods We designed and constructed cyclic entolimod using split Nostoc punctiforme DnaE intein with almost 100% cyclization efficiency. We adopted different strategies to purify the linear and circular entolimod due to their different topologies. Both of linear and circular entolimod were first purified by Ni-chelating affinity chromatography, and then the linear and circular entolimod were purified by size-exclusion and ion-exchange chromatography, respectively. Results The circular entolimod showed significantly increased both the in vitro NF-κB signaling and in vivo radioprotective activity in mice. Conclusion Our data indicates that circular entolimod might be a good candidate for further clinical investigation.
Collapse
Affiliation(s)
- Bingyu Ye
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China.,Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Minglei Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
10
|
Mohammadpour H, O'Neil R, Qiu J, McCarthy PL, Repasky EA, Cao X. Blockade of Host β2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Modulating APCs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2479-2488. [PMID: 29445008 DOI: 10.4049/jimmunol.1701752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation is a potential curative therapy for hematologic malignancies. Host APCs are pivotal to the desired graft-versus-tumor (GVT) effect. Recent studies have shown that β2-adrenergic receptor (β2AR) signaling can have an important impact on immune cell function, including dendritic cells (DCs). In this article, we demonstrate that pretreatment of host mice with a β2AR blocker significantly increases the GVT effect of donor CD8+ T cells by decreasing tumor burden without increasing graft-versus-host disease. β2AR-deficient host mice have significantly increased effector memory and central memory CD8+ T cells and improved reconstitution of T cells, including CD4+Foxp3+ regulatory T cells. Notably, β2AR deficiency induces increased CD11c+ DC development. Also, β2AR-deficient bone marrow-derived DCs induce higher CD8+ T cell proliferation and improved tumor killing in vitro. Metabolic profiling shows that β2AR deficiency renders DCs more immunogenic through upregulation of mTOR activity and reduction of STAT3 phosphorylation. Altogether, these findings demonstrate an important role for host β2AR signaling in suppressing T cell reconstitution and GVT activity.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Rachel O'Neil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263; .,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
11
|
O'Neill RE, Du W, Mohammadpour H, Alqassim E, Qiu J, Chen G, McCarthy PL, Lee KP, Cao X. T Cell-Derived CD70 Delivers an Immune Checkpoint Function in Inflammatory T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2017; 199:3700-3710. [PMID: 29046346 DOI: 10.4049/jimmunol.1700380] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
The CD27-CD70 pathway is known to provide a costimulatory signal, with CD70 expressed on APCs and CD27 functions on T cells. Although CD70 is also expressed on activated T cells, it remains unclear how T cell-derived CD70 affects T cell function. Therefore, we have assessed the role of T cell-derived CD70 using adoptive-transfer models, including autoimmune inflammatory bowel disease and allogeneic graft-versus-host disease. Surprisingly, compared with wild-type T cells, CD70-/- T cells caused more severe inflammatory bowel disease and graft-versus-host disease and produced higher levels of inflammatory cytokines. Mechanistic analyses reveal that IFN-γ induces CD70 expression in T cells, and CD70 limits T cell expansion via a regulatory T cell-independent mechanism that involves caspase-dependent T cell apoptosis and upregulation of inhibitory immune checkpoint molecules. Notably, T cell-intrinsic CD70 signaling contributes, as least in part, to the inhibitory checkpoint function. Overall, our findings demonstrate for the first time, to our knowledge, that T cell-derived CD70 plays a novel immune checkpoint role in inhibiting inflammatory T cell responses. This study suggests that T cell-derived CD70 performs a critical negative feedback function to downregulate inflammatory T cell responses.
Collapse
Affiliation(s)
- Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Emad Alqassim
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - George Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
12
|
Leigh ND, O'Neill RE, Du W, Chen C, Qiu J, Ashwell JD, McCarthy PL, Chen GL, Cao X. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:336-347. [PMID: 28550198 DOI: 10.4049/jimmunol.1502181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
13
|
Sensing danger: toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2016; 52:499-505. [PMID: 27941769 DOI: 10.1038/bmt.2016.263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) play key roles in initiating innate and adaptive immune responses. Based mainly on animal studies there is growing evidence to suggest that TLRs are involved in the development of chemotherapy-induced mucositis and in the propagation of graft versus host reactions as well as graft versus tumor effects in allogeneic hematopoietic stem cell transplantation (HSCT). In this review we discuss these findings along with the emerging, although still preliminary, clinical evidence, that points to a role of PRRs in determining the outcome of HSCT and new therapeutic perspectives that may be related to this development.
Collapse
|
14
|
Toubai T, Mathewson ND, Magenau J, Reddy P. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Front Immunol 2016; 7:539. [PMID: 27965667 PMCID: PMC5126092 DOI: 10.3389/fimmu.2016.00539] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Graft-versus-host response after allogeneic hematopoietic stem cell transplantation (allo-HCT) represents one of the most intense inflammatory responses observed in humans. Host conditioning facilitates engraftment of donor cells, but the tissue injury caused from it primes the critical first steps in the development of acute graft-versus-host disease (GVHD). Tissue injuries release pro-inflammatory cytokines (such as TNF-α, IL-1β, and IL-6) through widespread stimulation of pattern recognition receptors (PRRs) by the release of danger stimuli, such as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs function as potent stimulators for host and donor-derived antigen presenting cells (APCs) that in turn activate and amplify the responses of alloreactive donor T cells. Emerging data also point towards a role for suppression of DAMP induced inflammation by the APCs and donor T cells in mitigating GVHD severity. In this review, we summarize the current understanding on the role of danger stimuli, such as the DAMPs and PAMPs, in GVHD.
Collapse
Affiliation(s)
- Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA , USA
| | - John Magenau
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| |
Collapse
|
15
|
Li W, Ge C, Yang L, Wang R, Lu Y, Gao Y, Li Z, Wu Y, Zheng X, Wang Z, Zhang C. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro. Int J Biol Macromol 2016; 82:97-103. [DOI: 10.1016/j.ijbiomac.2015.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
|
16
|
Leigh ND, Kokolus KM, O'Neill RE, Du W, Eng JWL, Qiu J, Chen GL, McCarthy PL, Farrar JD, Cao X, Repasky EA. Housing Temperature-Induced Stress Is Suppressing Murine Graft-versus-Host Disease through β2-Adrenergic Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:5045-54. [PMID: 26459348 DOI: 10.4049/jimmunol.1500700] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/16/2015] [Indexed: 01/18/2023]
Abstract
Graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic cell transplantation, a potentially curative therapy for hematologic diseases. It has long been thought that murine bone marrow-derived T cells do not mediate severe GVHD because of their quantity and/or phenotype. During the course of experiments testing the impact of housing temperatures on GVHD, we discovered that this apparent resistance is a function of the relatively cool ambient housing temperature. Murine bone marrow-derived T cells have the ability to mediate severe GVHD in mice housed at a thermoneutral temperature. Specifically, mice housed at Institutional Animal Care and Use Committee-mandated, cool standard temperatures (∼ 22°C) are more resistant to developing GVHD than are mice housed at thermoneutral temperatures (∼ 30°C). We learned that the mechanism underlying this housing-dependent immunosuppression is associated with increased norepinephrine production and excessive signaling through β-adrenergic receptor signaling, which is increased when mice are cold stressed. Treatment of mice housed at 22°C with a β2-adrenergic antagonist reverses the norepinephrine-driven suppression of GVHD and yields similar disease to mice housed at 30°C. Conversely, administering a β2-adrenergic agonist decreases GVHD in mice housed at 30°C. In further mechanistic studies using β2-adrenergic receptor-deficient (β2-AR(-/-)) mice, we found that it is host cell β2-AR signaling that is essential for decreasing GVHD. These data reveal how baseline levels of β-adrenergic receptor signaling can influence murine GVHD and point to the feasibility of manipulation of β2-AR signaling to ameliorate GVHD in the clinical setting.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Kathleen M Kokolus
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - J David Farrar
- Department of Immunology and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| | | |
Collapse
|
17
|
Du W, Leigh ND, Bian G, O'Neill RE, Mei L, Qiu J, Chen GL, Hahn T, Liu H, McCarthy PL, Cao X. Granzyme B-Mediated Activation-Induced Death of CD4+ T Cells Inhibits Murine Acute Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:4514-23. [PMID: 26392464 DOI: 10.4049/jimmunol.1500668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/18/2015] [Indexed: 01/12/2023]
Abstract
Granzyme B (GzmB) has previously been shown to be critical for CD8(+) T cell-mediated graft-versus-host disease (GVHD) but dispensable for GVHD mediated by CD4(+) T cells. However, previous studies used high doses of CD4(+) T cells in MHC-mismatched models that caused rapid and lethal GVHD. Because of the hyperacute lethality, it is possible that the role of GzmB was concealed by the system. Therefore, in this study, we have titrated down the T cell dose to precisely determine the contribution of GzmB in GVHD mediated by CD4(+)CD25(-) T cells. Surprisingly, we have found that GzmB(-/-)CD4(+)CD25(-) T cells cause more severe GVHD compared with wild-type CD4(+)CD25(-) T cells in both MHC-matched and mismatched models. Mechanistic analyses reveal that although GzmB does not affect donor T cell engraftment, proliferation or tissue-specific migration, GzmB(-/-) CD4(+)CD25(-) T cells exhibit significantly enhanced expansion because of GzmB-mediated activation-induced cell death of wild-type CD4(+)CD25(-) T cells. As a result of enhanced expansion, GzmB(-/-) T cells produced higher amounts of proinflammatory cytokines (e.g., TNF-α and IFN-γ) that may contribute to the exacerbated GVHD. These results reveal that GzmB diminishes the ability of CD4(+) T cells to cause acute GVHD, which contradicts its established role in CD8(+) T cells. The differential roles suggest that targeting GzmB in selected T cell subsets may provide a strategy to control GVHD.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Guanglin Bian
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Lin Mei
- Department of Internal Medicine, University at Buffalo, Buffalo, NY 14215l
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Theresa Hahn
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Hong Liu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
18
|
Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Špíšek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology 2015; 5:e1088631. [PMID: 27141345 DOI: 10.1080/2162402x.2015.1088631] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Kristina Iribarren
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Radek Špíšek
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Hossain MS, Ramachandiran S, Gewirtz AT, Waller EK. Recombinant TLR5 agonist CBLB502 promotes NK cell-mediated anti-CMV immunity in mice. PLoS One 2014; 9:e96165. [PMID: 24879439 PMCID: PMC4039429 DOI: 10.1371/journal.pone.0096165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/04/2014] [Indexed: 12/02/2022] Open
Abstract
Prior work using allogeneic bone marrow transplantation (allo-BMT) models showed that peritransplant administration of flagellin, a toll-like receptor 5 (TLR5) agonist protected murine allo-BMT recipients from CMV infection while limiting graft-vs-host disease (GvHD). However, the mechanism by which flagellin-TLR5 interaction promotes anti-CMV immunity was not defined. Here, we investigated the anti-CMV immunity of NK cells in C57BL/6 (B6) mice treated with a highly purified cGMP grade recombinant flagellin variant CBLB502 (rflagellin) followed by murine CMV (mCMV) infection. A single dose of rflagellin administered to mice between 48 to 72 hours prior to MCMV infection resulted in optimal protection from mCMV lethality. Anti-mCMV immunity in rflagellin-treated mice correlated with a significantly reduced liver viral load and increased numbers of Ly49H+ and Ly49D+ activated cytotoxic NK cells. Additionally, the increased anti-mCMV immunity of NK cells was directly correlated with increased numbers of IFN-γ, granzyme B- and CD107a producing NK cells following mCMV infection. rFlagellin-induced anti-mCMV immunity was TLR5-dependent as rflagellin-treated TLR5 KO mice had ∼10-fold increased liver viral load compared with rflagellin-treated WT B6 mice. However, the increased anti-mCMV immunity of NK cells in rflagellin-treated mice is regulated indirectly as mouse NK cells do not express TLR5. Collectively, these data suggest that rflagellin treatment indirectly leads to activation of NK cells, which may be an important adjunct benefit of administering rflagellin in allo-BMT recipients.
Collapse
Affiliation(s)
- Mohammad S. Hossain
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew T. Gewirtz
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Leigh ND, Bian G, Ding X, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity. PLoS One 2014; 9:e85587. [PMID: 24454895 PMCID: PMC3891810 DOI: 10.1371/journal.pone.0085587] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/29/2013] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor (TLR) mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK) cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+) T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+) and CD11c(+) cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Nicholas D. Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Guanglin Bian
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xilai Ding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Hong Liu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Semra Aygun-Sunar
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238. [PMID: 24083080 PMCID: PMC3782517 DOI: 10.4161/onci.25238] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology, we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U848; Villejuif, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
22
|
Bian G, Ding X, Leigh ND, Tang Y, Capitano ML, Qiu J, McCarthy PL, Liu H, Cao X. Granzyme B–Mediated Damage of CD8+T Cells Impairs Graft-versus-Tumor Effect. THE JOURNAL OF IMMUNOLOGY 2012; 190:1341-50. [DOI: 10.4049/jimmunol.1201554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|