1
|
Huang QF, Wang GF, Zhang YM, Zhang C, Ran YQ, He JZ, Wang G, Xu XE, Wang SH, Wu JY, Li EM, Xu LY. Lympho-myeloid aggregate-infiltrating CD20 + B cells display a double-negative phenotype and correlate with poor prognosis in esophageal squamous cell carcinoma. Transl Res 2025; 275:48-61. [PMID: 39536938 DOI: 10.1016/j.trsl.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
According to morphological features, tumor-infiltrating B cells (TIL-Bs) can be classified as lympho-myeloid aggregates (LMAs) and tertiary lymphoid structures (TLSs). As a disease with high incidence and mortality, research on esophageal squamous cell carcinoma (ESCC) TIL-Bs is still unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TIL-Bs in ESCC. Based on CD20 immunohistochemical staining of 147 ESCC samples, the TIL-Bs at different anatomic subregions (intra-tumor (T), invasive margin (IM) and peri-tumor (P)) were quantified and correlated with survival by Kaplan-Meier analyses. We found that LMAs were widely distributed throughout the whole section and were associated with poor prognosis, especially those located in the T subregion, which was contrary to the positive clinical significance of TLSs. Based on the number of LMAs and TLSs, a four-level immune type was constructed as an independent predictor for survival. Using multiplexed immunofluorescence (mIF) staining, we found that the main phenotype of infiltrating B cells in LMAs was CD20+IgD-CD27- double-negative (DN) B cells. DN B cells were abundant in ESCC tumor tissue, and their high expression was related to shortened overall survival time. Subsequently, we demonstrate a close relationship between DN B cells and regulatory T cells (Tregs) using single cell RNA-seq data, bulk RNA-seq data and flow cytometry, and verified the spatial proximity of DN B cells and Tregs by mIF staining. Trajectory analysis and flow cytometry revealed that DN B cells highly expressed genes involved in the antigen processing and presentation pathway, such as HLA-DR. The abundance of DN B cells and LMAs in ESCC provides novel potential targets for optimal immunotherapy against ESCC.
Collapse
Affiliation(s)
- Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ge-Fei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yi-Meng Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Cong Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ying-Qi Ran
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Zhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, PR China
| | - Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Shantou Academy Medical Sciences, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
2
|
Peckert-Maier K, Wild AB, Sprißler L, Fuchs M, Beck P, Auger JP, Sinner P, Strack A, Mühl-Zürbes P, Ramadan N, Kunz M, Krönke G, Stich L, Steinkasserer A, Royzman D. Soluble CD83 modulates human-monocyte-derived macrophages toward alternative phenotype, function, and metabolism. Front Immunol 2023; 14:1293828. [PMID: 38162675 PMCID: PMC10755915 DOI: 10.3389/fimmu.2023.1293828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in macrophage (Mφ) polarization, function, and metabolic signature can foster development of chronic diseases, such as autoimmunity or fibrotic tissue remodeling. Thus, identification of novel therapeutic agents that modulate human Mφ biology is crucial for treatment of such conditions. Herein, we demonstrate that the soluble CD83 (sCD83) protein induces pro-resolving features in human monocyte-derived Mφ biology. We show that sCD83 strikingly increases the expression of inhibitory molecules including ILT-2 (immunoglobulin-like transcript 2), ILT-4, ILT-5, and CD163, whereas activation markers, such as MHC-II and MSR-1, were significantly downregulated. This goes along with a decreased capacity to stimulate alloreactive T cells in mixed lymphocyte reaction (MLR) assays. Bulk RNA sequencing and pathway analyses revealed that sCD83 downregulates pathways associated with pro-inflammatory, classically activated Mφ (CAM) differentiation including HIF-1A, IL-6, and cytokine storm, whereas pathways related to alternative Mφ activation and liver X receptor were significantly induced. By using the LXR pathway antagonist GSK2033, we show that transcription of specific genes (e.g., PPARG, ABCA1, ABCG1, CD36) induced by sCD83 is dependent on LXR activation. In summary, we herein reveal for the first time mechanistic insights into the modulation of human Mφ biology by sCD83, which is a further crucial preclinical study for the establishment of sCD83 as a new therapeutical agent to treat inflammatory conditions.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Laura Sprißler
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Beck
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Jean-Philippe Auger
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pia Sinner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Ntilek Ramadan
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Riaz B, Islam SMS, Ryu HM, Sohn S. CD83 Regulates the Immune Responses in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24032831. [PMID: 36769151 PMCID: PMC9917562 DOI: 10.3390/ijms24032831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Activating the immune system plays an important role in maintaining physiological homeostasis and defending the body against harmful infections. However, abnormalities in the immune response can lead to various immunopathological responses and severe inflammation. The activation of dendritic cells (DCs) can influence immunological responses by promoting the differentiation of T cells into various functional subtypes crucial for the eradication of pathogens. CD83 is a molecule known to be expressed on mature DCs, activated B cells, and T cells. Two isotypes of CD83, a membrane-bound form and a soluble form, are subjects of extensive scientific research. It has been suggested that CD83 is not only a ubiquitous co-stimulatory molecule but also a crucial player in monitoring and resolving inflammatory reactions. Although CD83 has been involved in immunological responses, its functions in autoimmune diseases and effects on pathogen immune evasion remain unclear. Herein, we outline current immunological findings and the proposed function of CD83 in inflammatory disorders.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S. M. Shamsul Islam
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hye Myung Ryu
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Peckert-Maier K, Langguth P, Strack A, Stich L, Mühl-Zürbes P, Kuhnt C, Drassner C, Zinser E, Wrage M, Mattner J, Steinkasserer A, Royzman D, Wild AB. CD83 expressed by macrophages is an important immune checkpoint molecule for the resolution of inflammation. Front Immunol 2023; 14:1085742. [PMID: 36875129 PMCID: PMC9975560 DOI: 10.3389/fimmu.2023.1085742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Excessive macrophage (Mφ) activation results in chronic inflammatory responses or autoimmune diseases. Therefore, identification of novel immune checkpoints on Mφ, which contribute to resolution of inflammation, is crucial for the development of new therapeutic agents. Herein, we identify CD83 as a marker for IL-4 stimulated pro-resolving alternatively activated Mφ (AAM). Using a conditional KO mouse (cKO), we show that CD83 is important for the phenotype and function of pro-resolving Mφ. CD83-deletion in IL-4 stimulated Mφ results in decreased levels of inhibitory receptors, such as CD200R and MSR-1, which correlates with a reduced phagocytic capacity. In addition, CD83-deficient Mφ upon IL-4 stimulation, show an altered STAT-6 phosphorylation pattern, which is characterized by reduced pSTAT-6 levels and expression of the target gene Gata3. Concomitantly, functional studies in IL-4 stimulated CD83 KO Mφ reveal an increased production of pro-inflammatory mediators, such as TNF-α, IL-6, CXCL1 and G-CSF. Furthermore, we show that CD83-deficient Mφ have enhanced capacities to stimulate the proliferation of allo-reactive T cells, which was accompanied by reduced frequencies of Tregs. In addition, we show that CD83 expressed by Mφ is important to limit the inflammatory phase using a full-thickness excision wound healing model, since inflammatory transcripts (e.g. Cxcl1, Il6) were increased, whilst resolving transcripts (e.g. Ym1, Cd200r, Msr-1) were decreased in wounds at day 3 after wound infliction, which reflects the CD83 resolving function on Mφ also in vivo. Consequently, this enhanced inflammatory milieu led to an altered tissue reconstitution after wound infliction. Thus, our data provide evidence that CD83 acts as a gatekeeper for the phenotype and function of pro-resolving Mφ.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Langguth
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marius Wrage
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Royzman D, Peckert-Maier K, Stich L, König C, Wild AB, Tauchi M, Ostalecki C, Kiesewetter F, Seyferth S, Lee G, Eming SA, Fuchs M, Kunz M, Stürmer EK, Peters EMJ, Berking C, Zinser E, Steinkasserer A. Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. Front Immunol 2022; 13:1012647. [PMID: 36248909 PMCID: PMC9564224 DOI: 10.3389/fimmu.2022.1012647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
To facilitate the recovery process of chronic and hard-to-heal wounds novel pro-resolving treatment options are urgently needed. We investigated the pro-regenerative properties of soluble CD83 (sCD83) on cutaneous wound healing, where sCD83 accelerated wound healing not only after systemic but also after topical application, which is of high therapeutic interest. Cytokine profile analyses revealed an initial upregulation of inflammatory mediators such as TNFα and IL-1β, followed by a switch towards pro-resolving factors, including YM-1 and IL-10, both expressed by tissue repair macrophages. These cells are known to mediate resolution of inflammation and stimulate wound healing processes by secretion of growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which promote vascularization as well as fibroblast and keratinocyte differentiation. In conclusion, we have found strong wound healing capacities of sCD83 beyond the previously described role in transplantation and autoimmunity. This makes sCD83 a promising candidate for the treatment of chronic- and hard-to-heal wounds.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Katrin Peckert-Maier
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | | | - Stefan Seyferth
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine A. Eming
- Department of Dermatology, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ewa K. Stürmer
- Department for Vascular Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Klinik für Psychosomatik und Psychotherapie, Justus-Liebig Universität Gießen, Gießen, Germany
| | - Carola Berking
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
7
|
Royzman D, Andreev D, Stich L, Peckert-Maier K, Wild AB, Zinser E, Mühl-Zürbes P, Jones E, Adam S, Frey S, Fuchs M, Kunz M, Bäuerle T, Nagel L, Schett G, Bozec A, Steinkasserer A. The soluble CD83 protein prevents bone destruction by inhibiting the formation of osteoclasts and inducing resolution of inflammation in arthritis. Front Immunol 2022; 13:936995. [PMID: 36003376 PMCID: PMC9393726 DOI: 10.3389/fimmu.2022.936995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Here we show that soluble CD83 induces the resolution of inflammation in an antigen-induced arthritis (AIA) model. Joint swelling and the arthritis-related expression levels of IL-1β, IL-6, RANKL, MMP9, and OC-Stamp were strongly reduced, while Foxp3 was induced. In addition, we observed a significant inhibition of TRAP+ osteoclast formation, correlating with the reduced arthritic disease score. In contrast, cell-specific deletion of CD83 in human and murine precursor cells resulted in an enhanced formation of mature osteoclasts. RNA sequencing analyses, comparing sCD83- with mock treated cells, revealed a strong downregulation of osteoclastogenic factors, such as Oc-Stamp, Mmp9 and Nfatc1, Ctsk, and Trap. Concomitantly, transcripts typical for pro-resolving macrophages, e.g., Mrc1/2, Marco, Klf4, and Mertk, were upregulated. Interestingly, members of the metallothionein (MT) family, which have been associated with a reduced arthritic disease severity, were also highly induced by sCD83 in samples derived from RA patients. Finally, we elucidated the sCD83-induced signaling cascade downstream to its binding to the Toll-like receptor 4/(TLR4/MD2) receptor complex using CRISPR/Cas9-induced knockdowns of TLR4/MyD88/TRIF and MTs, revealing that sCD83 acts via the TRIF-signaling cascade. In conclusion, sCD83 represents a promising therapeutic approach to induce the resolution of inflammation and to prevent bone erosion in autoimmune arthritis.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Evan Jones
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Adam
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Frey
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Nagel
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
8
|
Silveira PA, Kupresanin F, Romano A, Hsu WH, Lo TH, Ju X, Chen HT, Roberts H, Baker DG, Clark GJ. Anti-Mouse CD83 Monoclonal Antibody Targeting Mature Dendritic Cells Provides Protection Against Collagen Induced Arthritis. Front Immunol 2022; 13:784528. [PMID: 35222372 PMCID: PMC8866188 DOI: 10.3389/fimmu.2022.784528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies targeting the activation marker CD83 can achieve immune suppression by targeting antigen-presenting mature dendritic cells (DC). This study investigated the immunosuppressive mechanisms of anti-CD83 antibody treatment in mice and tested its efficacy in a model of autoimmune rheumatoid arthritis. A rat anti-mouse CD83 IgG2a monoclonal antibody, DCR-5, was developed and functionally tested in mixed leukocyte reactions, demonstrating depletion of CD83+ conventional (c)DC, induction of regulatory DC (DCreg), and suppression of allogeneic T cell proliferation. DCR-5 injection into mice caused partial splenic cDC depletion for 2-4 days (mostly CD8+ and CD83+ cDC affected) with a concomitant increase in DCreg and regulatory T cells (Treg). Mice with collagen induced arthritis (CIA) treated with 2 or 6 mg/kg DCR-5 at baseline and every three days thereafter until euthanasia at day 36 exhibited significantly reduced arthritic paw scores and joint pathology compared to isotype control or untreated mice. While both doses reduced anti-collagen antibodies, only 6 mg/kg achieved significance. Treatment with 10 mg/kg DCR-5 was ineffective. Immunohistological staining of spleens at the end of CIA model with CD11c, CD83, and FoxP3 showed greater DC depletion and Treg induction in 6 mg/kg compared to 10 mg/kg DCR-5 treated mice. In conclusion, DCR-5 conferred protection from arthritis by targeting CD83, resulting in selective depletion of mature cDC and subsequent increases in DCreg and Treg. This highlights the potential for anti-CD83 antibodies as a targeted therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Hsiao-Ting Chen
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Kira Biotech Pty Ltd., Brisbane, QLD, Australia
| |
Collapse
|
9
|
Marginal Zone B-Cell Populations and Their Regulatory Potential in the Context of HIV and Other Chronic Inflammatory Conditions. Int J Mol Sci 2022; 23:ijms23063372. [PMID: 35328792 PMCID: PMC8949885 DOI: 10.3390/ijms23063372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably, with increased frequencies of a population sharing features of both transitional immature (TI) and marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques, and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and antibody producing capacities is a threat to the self-integrity of their antibody responses and immune surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell populations and their functions could be beneficial to innovative therapeutic avenues that could be deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving excess BAFF.
Collapse
|
10
|
Peckert-Maier K, Schönberg A, Wild AB, Royzman D, Braun G, Stich L, Hadrian K, Tripal P, Cursiefen C, Steinkasserer A, Zinser E, Bock F. Pre-incubation of corneal donor tissue with sCD83 improves graft survival via the induction of alternatively activated macrophages and tolerogenic dendritic cells. Am J Transplant 2022; 22:438-454. [PMID: 34467638 DOI: 10.1111/ajt.16824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 01/25/2023]
Abstract
Immune responses reflect a complex interplay of cellular and extracellular components which define the microenvironment of a tissue. Therefore, factors that locally influence the microenvironment and re-establish tolerance might be beneficial to mitigate immune-mediated reactions, including the rejection of a transplant. In this study, we demonstrate that pre-incubation of donor tissue with the immune modulator soluble CD83 (sCD83) significantly improves graft survival using a high-risk corneal transplantation model. The induction of tolerogenic mechanisms in graft recipients was achieved by a significant upregulation of Tgfb, Foxp3, Il27, and Il10 in the transplant and an increase of regulatory dendritic cells (DCs), macrophages (Mφ), and T cells (Tregs) in eye-draining lymph nodes. The presence of sCD83 during in vitro DC and Mφ generation directed these cells toward a tolerogenic phenotype leading to reduced proliferation-stimulating activity in MLRs. Mechanistically, sCD83 induced a tolerogenic Mφ and DC phenotype, which favors Treg induction and significantly increased transplant survival after adoptive cell transfer. Conclusively, pre-incubation of corneal grafts with sCD83 significantly prolongs graft survival by modulating recipient Mφ and DCs toward tolerance and thereby establishing a tolerogenic microenvironment. This functional strategy of donor graft pre-treatment paves the way for new therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alfrun Schönberg
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gabriele Braun
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Karina Hadrian
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Cursiefen
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Bock
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
12
|
Bellucci M, Pompa A, De Marcos Lousa C, Panfili E, Orecchini E, Maricchiolo E, Fraternale D, Orabona C, De Marchis F, Pallotta MT. Human Indoleamine 2,3-dioxygenase 1 (IDO1) Expressed in Plant Cells Induces Kynurenine Production. Int J Mol Sci 2021; 22:5102. [PMID: 34065885 PMCID: PMC8151846 DOI: 10.3390/ijms22105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic engineering of plants has turned out to be an attractive approach to produce various secondary metabolites. Here, we attempted to produce kynurenine, a health-promoting metabolite, in plants of Nicotiana tabacum (tobacco) transformed by Agrobacterium tumefaciens with the gene, coding for human indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme responsible for the kynurenine production because of tryptophan degradation. The presence of IDO1 gene in transgenic plants was confirmed by PCR, but the protein failed to be detected. To confer higher stability to the heterologous human IDO1 protein and to provide a more sensitive method to detect the protein of interest, we cloned a gene construct coding for IDO1-GFP. Analysis of transiently transfected tobacco protoplasts demonstrated that the IDO1-GFP gene led to the expression of a detectable protein and to the production of kynurenine in the protoplast medium. Interestingly, the intracellular localisation of human IDO1 in plant cells is similar to that found in mammal cells, mainly in cytosol, but in early endosomes as well. To the best of our knowledge, this is the first report on the expression of human IDO1 enzyme capable of secreting kynurenines in plant cells.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Carine De Marcos Lousa
- Centre for Biomedical Sciences, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS13HE, UK;
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK
| | - Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
| | - Maria Teresa Pallotta
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| |
Collapse
|
13
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Huo S, Wu F, Zhang J, Wang X, Li W, Cui D, Zuo Y, Hu M, Zhong F. Porcine soluble CD83 alleviates LPS-induced abortion in mice by promoting Th2 cytokine production, Treg cell generation and trophoblast invasion. Theriogenology 2020; 157:149-161. [PMID: 32810792 DOI: 10.1016/j.theriogenology.2020.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
CD83, either in its membrance-bound form (mCD83) or soluble form (sCD83), is an important immunomodulatory molecule in humans and mice. While mCD83 is immunostimulatory, sCD83 exhibits striking immunosuppressive activities, suggesting that sCD83 may be used to combat inflammatory diseases, such as rheumatoid arthritis, graft-versus-host disease and habitual abortion. Although many studies had shed lights on the role of CD83 in humans and mice, little is known about CD83 in other animals. Recently, we showed that porcine CD83 had similar biochemical characteristics and immunoregulatory functions as its human counterpart. However, whether porcine sCD83 (psCD83) is involved in maintaining the immunological tolerance at the maternal-fetal interface and thereby prevents embryo loss and abortion during pregnancy is unclear. In this study, we used LPS-induced animal model to analyze the effect of porcine sCD83 on the mouse abortion. Results showed that psCD83 could significantly alleviate LPS-induced abortion in mice, indicating that the psCD83 had the function of fetal protection. Mechanically, psCD83-mediated fetal protection was related to the promotion on Th2 cytokine production, Treg cell differentiation and trophoblast invasion. This study provides a molecular basis for the fetal protection of psCD83, as well as a potential target for the regulation of maternal-fetal interfacial immune tolerance.
Collapse
Affiliation(s)
- Shanshan Huo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fengyang Wu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Jianlou Zhang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Xing Wang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Wenyan Li
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Department of Biology, College of Basic Medicine, Hebei University, 180 Wusi Dong Road, Baoding, Hebei, 071000, China.
| | - Dan Cui
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Yuzhu Zuo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Man Hu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fei Zhong
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| |
Collapse
|
15
|
Shrestha B, Walton K, Reff J, Sagatys EM, Tu N, Boucher J, Li G, Ghafoor T, Felices M, Miller JS, Pidala J, Blazar BR, Anasetti C, Betts BC, Davila ML. Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J Clin Invest 2020; 130:4652-4662. [PMID: 32437331 PMCID: PMC7456225 DOI: 10.1172/jci135754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed what we believe is a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated conventional CD4+ T cells (Tconvs) and proinflammatory dendritic cells (DCs), which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, substantially increase the ratio of regulatory T cells (Tregs) to allo-activated Tconvs, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show that human acute myeloid leukemia (AML) expresses CD83 and that myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to preventing 2 critical complications of allo-HCT - GVHD and relapse. Thus, the use of human CD83 CAR T cells for GVHD prevention and treatment, as well as for targeting CD83+ AML, warrants clinical investigation.
Collapse
Affiliation(s)
- Bishwas Shrestha
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan Reff
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Nhan Tu
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Justin Boucher
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Gongbo Li
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Tayyebb Ghafoor
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph Pidala
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claudio Anasetti
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marco L. Davila
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
16
|
Song W, Li H, Jia B, Wang Z, Liu Q, Yang G, Li X. Soluble CD83 suppresses experimental food allergy via regulating aberrant T helper 2 responses. Immunol Res 2020; 68:141-151. [PMID: 32529460 DOI: 10.1007/s12026-020-09133-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aberrant T helper-2 (Th2) responses play a critical role in the pathogenesis of allergic diseases. The underlying mechanism is to be further investigated. It is reported that soluble CD83 (sCD83) has immune-regulatory effects. This study aims to investigate the role of sCD83 in the regulation of Th2 polarization. Blood samples were collected from pediatric patients with food allergy (FA). The Th2 response was analyzed by pertinent immunological approaches. An FA murine model was developed to test the role of sCD83 in the regulation of FA response. We found that the serum sCD83 levels were lower in FA patients. A negative correlation was detected between serum sCD83 levels and serum Th2 cytokine levels. The presence of sCD83 suppressed Th2 cell differentiation and antigen-specific Th2 cell activation. sCD83 upregulated the T-bet expression and suppressed the GATA3 expression in CD4+ T cells. Administration of sCD83 suppressed experimental FA. Pediatric FA patients have low serum sCD83 levels. Administration of sCD83 can alleviate experimental FA via suppression of aberrant Th2 polarization.
Collapse
Affiliation(s)
- Wenyue Song
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Hongfen Li
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Bingkun Jia
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Zhenxi Wang
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Qingsheng Liu
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Guangping Yang
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China
| | - Xiaorong Li
- Departments of Pediatrics, Obstetrics and Gynecology, Jiaozuo Women and Children Hospital, 158 Minzhu Zhong Road, Jiaozuo, 454150, China.
| |
Collapse
|
17
|
Schönberg A, Hamdorf M, Bock F. Immunomodulatory Strategies Targeting Dendritic Cells to Improve Corneal Graft Survival. J Clin Med 2020; 9:E1280. [PMID: 32354200 PMCID: PMC7287922 DOI: 10.3390/jcm9051280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Even though the cornea is regarded as an immune-privileged tissue, transplantation always comes with the risk of rejection due to mismatches between donor and recipient. It is common sense that an alternative to corticosteroids as the current gold standard for treatment of corneal transplantation is needed. Since blood and lymphatic vessels have been identified as a severe risk factor for corneal allograft survival, much research has focused on vessel regression or inhibition of hem- and lymphangiogenesis in general. However, lymphatic vessels have been identified as required for the inflammation's resolution. Therefore, targeting other players of corneal engraftment could reveal new therapeutic strategies. The establishment of a tolerogenic microenvironment at the graft site would leave the recipient with the ability to manage pathogenic conditions independent from transplantation. Dendritic cells (DCs) as the central player of the immune system represent a target that allows the induction of tolerogenic mechanisms by many different strategies. These strategies are reviewed in this article with regard to their success in corneal transplantation.
Collapse
Affiliation(s)
- Alfrun Schönberg
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Matthias Hamdorf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
18
|
Grosche L, Knippertz I, König C, Royzman D, Wild AB, Zinser E, Sticht H, Muller YA, Steinkasserer A, Lechmann M. The CD83 Molecule - An Important Immune Checkpoint. Front Immunol 2020; 11:721. [PMID: 32362900 PMCID: PMC7181454 DOI: 10.3389/fimmu.2020.00721] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The CD83 molecule has been identified to be expressed on numerous activated immune cells, including B and T lymphocytes, monocytes, dendritic cells, microglia, and neutrophils. Both isoforms of CD83, the membrane-bound as well as its soluble form are topic of intensive research investigations. Several studies revealed that CD83 is not a typical co-stimulatory molecule, but rather plays a critical role in controlling and resolving immune responses. Moreover, CD83 is an essential factor during the differentiation of T and B lymphocytes, and the development and maintenance of tolerance. The identification of its interaction partners as well as signaling pathways have been an enigma for the last decades. Here, we report the latest data on the expression, structure, and the signaling partners of CD83. In addition, we review the regulatory functions of CD83, including its striking modulatory potential to maintain the balance between tolerance versus inflammation during homeostasis or pathologies. These immunomodulatory properties of CD83 emphasize its exceptional therapeutic potential, which has been documented in specific preclinical disease models.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology 2020; 225:151929. [PMID: 32115260 DOI: 10.1016/j.imbio.2020.151929] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is an environmental sensor and ligand-activated transcription factor that is critically involved in the regulation of inflammatory responses and the induction of tolerance by modulating immune cells. As dendritic cells (DCs) express high AhR levels, they are efficient to induce immunomodulatory effects after being exposed to AhR-activating compounds derived from the environment or diet. To gain new insights into the molecular targets following AhR-activation in human monocyte-derived (mo)DCs, we investigated whether the natural AhR ligand quercetin or the synthetic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates the function of human moDCs regarding their capability to prime naïve T cells or to migrate. As only quercetin, but not TCDD, impaired T cell activation and migration of LPS-matured DCs (LPS-DCs), we analyzed the mode of action of quercetin on moDCs in more detail. Here, we found a specific down-regulation of the immunomodulatory molecule CD83 through the direct binding of the activated AhR to the CD83 promoter. Furthermore, treatment of LPS-DCs with quercetin resulted in a reduced production of the pro-inflammatory cytokine IL-12p70 and in an increased expression of the immunoregulatory molecules disabled adaptor protein (Dab) 2, immunoglobulin-like transcript (ILT)-3, ILT4, ILT5 as well as ectonucleotidases CD39 and CD73, thereby inducing a tolerogenic phenotype in quercetin-treated maturing DCs. Overall, these data demonstrate that quercetin represents a potent immunomodulatory agent to alter human DC phenotype and function, shifting the immune balance from inflammation to resolution.
Collapse
|
20
|
Wild AB, Krzyzak L, Peckert K, Stich L, Kuhnt C, Butterhof A, Seitz C, Mattner J, Grüner N, Gänsbauer M, Purtak M, Soulat D, Winkler TH, Nitschke L, Zinser E, Steinkasserer A. CD83 orchestrates immunity toward self and non-self in dendritic cells. JCI Insight 2019; 4:126246. [PMID: 31527313 PMCID: PMC6824307 DOI: 10.1172/jci.insight.126246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/04/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial to balance protective immunity and autoimmune inflammatory processes. Expression of CD83 is a well-established marker for mature DCs, although its physiological role is still not completely understood. Using a DC-specific CD83-conditional KO (CD83ΔDC) mouse, we provide new insights into the function of CD83 within this cell type. Interestingly, CD83-deficient DCs produced drastically increased IL-2 levels and displayed higher expression of the costimulatory molecules CD25 and OX40L, which causes superior induction of antigen-specific T cell responses and compromises Treg suppressive functions. This also directly translates into accelerated immune responses in vivo. Upon Salmonella typhimurium and Listeria monocytogenes infection, CD83ΔDC mice cleared both pathogens more efficiently, and CD83-deficient DCs expressed increased IL-12 levels after bacterial encounter. Using the experimental autoimmune encephalomyelitis model, autoimmune inflammation was dramatically aggravated in CD83ΔDC mice while resolution of inflammation was strongly reduced. This phenotype was associated with increased cell influx into the CNS accompanied by elevated Th17 cell numbers. Concomitantly, CD83ΔDC mice had reduced Treg numbers in peripheral lymphoid organs. In summary, we show that CD83 ablation on DCs results in enhanced immune responses by dysregulating tolerance mechanisms and thereby impairing resolution of inflammation, which also demonstrates high clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jochen Mattner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niklas Grüner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Gänsbauer
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Purtak
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Didier Soulat
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
21
|
Huo S, Zhang J, Liang S, Wu F, Zuo Y, Cui D, Zhang Y, Zhong Z, Zhong F. Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103398. [PMID: 31121186 DOI: 10.1016/j.dci.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
22
|
Salabarria AC, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, Cursiefen C, Bock F. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transplant 2019; 19:2446-2456. [PMID: 30821887 DOI: 10.1111/ajt.15331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/25/2023]
Abstract
The microenvironment plays an important role in several immunological processes. Vascular endothelial growth factor-A (VEGF-A) not only regulates angiogenesis, but is known as a modulator of the immune microenvironment. Modulating the site of transplantation might be beneficial for subsequent transplant survival. In this study, we therefore analyzed the effect that a local blockade of VEGF-A in the inflamed cornea as the graft receiving tissue has on the immune system. We used the murine model of suture-induced neovascularization and subsequent high-risk corneal transplantation, which is an optimal model for local drug application. Mice were treated with VEGFR1/R2 trap prior to transplantation. We analyzed corneal gene expression, as well as protein levels in the cornea and serum on the day of transplantation, 2 and 8 weeks later. Local VEGF depletion prior to transplantation increases the expression of pro-inflammatory as well as immune regulatory cytokines only in the corneal microenvironment, but not in the serum. Furthermore, local VEGFR1/R2 trap treatment significantly inhibits the infiltration of CD11c+ dendritic cells into the cornea. Subsequent increased corneal transplantation success was accompanied by a local upregulation of Foxp3 gene expression. This study demonstrates that locally restricted VEGF depletion increases transplantation success by modulating the receiving corneal microenvironment and inducing tolerogenic mechanisms.
Collapse
Affiliation(s)
| | - Gabriele Braun
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Malte Heykants
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Zinser E, Naumann R, Wild AB, Michalski J, Deinzer A, Stich L, Kuhnt C, Steinkasserer A, Knippertz I. Endogenous Expression of the Human CD83 Attenuates EAE Symptoms in Humanized Transgenic Mice and Increases the Activity of Regulatory T Cells. Front Immunol 2019; 10:1442. [PMID: 31293592 PMCID: PMC6603205 DOI: 10.3389/fimmu.2019.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The CD83 is a type I membrane protein and part of the immunoglobulin superfamily of receptors. CD83 is involved in the regulation of antigen presentation and dendritic cell dependent allogeneic T cell proliferation. A soluble form of CD83 inhibits dendritic cell maturation and function. Furthermore, CD83 is expressed on activated B cells, T cells, and in particular on regulatory T cells. Previous studies on murine CD83 demonstrated this molecule to be involved in several immune-regulatory processes, comprising that CD83 plays a key role in the development und function of different immune cells. In order to get further insights into the function of the human CD83 and to provide preclinical tools to guide the function of CD83/sCD83 for therapeutic purposes we generated Bacterial Artificial Chromosomes (BAC) transgenic mice. BACs are excellent tools for manipulating large DNA fragments and are utilized to engineer transgenic mice by pronuclear injection. Two different founders of BAC transgenic mice expressing human CD83 (BAC-hCD83tg mice) were generated and were examined for the hCD83 expression on different immune cells as well as both the in vitro and in vivo role of human CD83 (hCD83) in health and disease. Here, we found the hCD83 molecule to be present on activated DCs, B cells and subtypes of CD4+ T cells. CD8+ T cells, on the other hand, showed almost no hCD83 expression. To address the function of hCD83, we performed in vitro mixed lymphocyte reactions (MLR) as well as suppression assays and we used the in vivo model of experimental autoimmune encephalomyelitis (EAE) comparing wild-type and hCD83-BAC mice. Results herein showed a clearly diminished capacity of hCD83-BAC-derived T cells to proliferate accompanied by an enhanced activation and suppressive activity of hCD83-BAC-derived Tregs. Furthermore, hCD83-BAC mice were found to recover faster from EAE-associated symptoms than wild-type mice, encouraging the relevance also of the hCD83 as a key molecule for the regulatory phenotype of Tregs in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Transgenic
- Somatostatin-Secreting Cells/immunology
- Somatostatin-Secreting Cells/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- CD83 Antigen
Collapse
Affiliation(s)
- Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Michalski
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea Deinzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol 2019; 10:1312. [PMID: 31231400 PMCID: PMC6568190 DOI: 10.3389/fimmu.2019.01312] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis. Soluble CD83 (sCD83), which is elevated in the serum of patients with autoimmune disease and some hematological malignancies is reported to have an immune suppressive function. While CD83 is emerging as a promising immune modulator with therapeutic potential, some important aspects such as its ligand/s, intracellular signaling pathways and modulators of its expression are unclear. In this review we discuss the recent biological findings and the potential clinical value of CD83 based therapeutics in various conditions including autoimmune disease, graft-vs.-host disease, transplantation and hematological malignancies.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek N. J. Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Reuer T, Schneider AC, Cakir B, Bühler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, Reinhard T, Bock F, Stahl A. Semaphorin 3F Modulates Corneal Lymphangiogenesis and Promotes Corneal Graft Survival. Invest Ophthalmol Vis Sci 2019; 59:5277-5284. [PMID: 30383199 DOI: 10.1167/iovs.18-24287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Corneal vascularization significantly increases the risk for graft rejection after keratoplasty. Semaphorin 3F (Sema3F) is a known modulator of physiologic avascularity in the outer retina. The aim of this study was to investigate whether Sema3F is involved in maintaining corneal avascularity and can reduce the risk for corneal graft rejection. Methods Corneal Sema3F expression was investigated using immunohistochemistry and qPCR in human and murine tissue. Pathologic invasion of blood and lymph vessels into corneal tissue was analyzed in the murine corneal suture and high-risk keratoplasty model. The anti-lymphangiogenic effects of Sema3F were further investigated using an in vitro spheroidal sprouting model with supernatant from isolated primary human corneal epithelial cells (hCECs). Results Sema3F is constitutively expressed in human and murine corneal epithelium. In the corneal suture model, lymphangiogenesis was significantly suppressed by topical Sema3F treatment (P = 0.0003). In the murine high-risk keratoplasty model, pretreatment by topical Sema3F in the inflammation phase significantly promoted subsequent graft survival (P = 0.0006). In this model, both lymph- and blood angiogenesis were reduced (P < 0.05). In vitro, hCEC supernatant had a direct anti-lymphangiogenic effect on human lymphatic endothelial cells (P < 0.01). This effect was completely abolished by addition of anti-Sema3F antibodies. Conclusions Sema3F is a novel mediator of corneal avascularity with potent anti-lymphangiogenic properties. Topical treatment with Sema3F eye drops may help to limit corneal vascularization and improve outcomes in high-risk keratoplasty patients.
Collapse
Affiliation(s)
- Tristan Reuer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bertan Cakir
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anima D Bühler
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna M Walz
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Stahl
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Royzman D, Andreev D, Stich L, Rauh M, Bäuerle T, Ellmann S, Boon L, Kindermann M, Peckert K, Bozec A, Schett G, Steinkasserer A, Zinser E. Soluble CD83 Triggers Resolution of Arthritis and Sustained Inflammation Control in IDO Dependent Manner. Front Immunol 2019; 10:633. [PMID: 31001257 PMCID: PMC6455294 DOI: 10.3389/fimmu.2019.00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-β antibodies further revealed that also TGF-β is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-β dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Cytokines/immunology
- Female
- Immunoglobulins/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Joints/immunology
- Joints/pathology
- Membrane Glycoproteins/immunology
- Mice
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Solubility
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- CD83 Antigen
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Markus Kindermann
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katrin Peckert
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
27
|
Juhas U, Ryba-Stanisławowska M, Ławrynowicz U, Myśliwiec M, Myśliwska J. Putative loss of CD83 immunosuppressive activity in long-standing complication-free juvenile diabetic patients during disease progression. Immunol Res 2019; 67:70-76. [PMID: 30937729 DOI: 10.1007/s12026-019-09074-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The CD83 molecule is a known marker of dendritic cell differentiation process, and its soluble form (sCD83) exerts immunosuppressive functions. In our research, we examined whether the sCD83 plasma concentration is impaired in DM1 children and if the expected changes are in line with the disturbed process of monocyte's transformation into mCD83+ monocyte-derived cells. 28 newly diagnosed (ND-DM1) and 30 long-standing (LS-DM1) patients were enrolled into our study. We revealed that the examined cells show a high mCD83 expression level in ND-DM1, which was significantly downregulated by the TNF-α stimulation. The results were in line with those from healthy controls. We also observed that monocyte differentiation process into CD83+ cells was much defective in LS-DM1 children and the mCD83 expression level seems not to be controlled by TNF-α. Moreover, the sCD83 level was significantly decreased in plasma from LS-DM1 children and it was negatively related to HbA1c levels, while no correlations were observed between TNF-α plasma concentration or disease duration. Summarizing, our results suggest that reduced sCD83 levels may correspond with a poor metabolic control in LS-DM1 patients and therapeutic administration of this molecule may indicate a new therapy approach in the chronic phase of diabetes.
Collapse
Affiliation(s)
- Ulana Juhas
- Department of Medical Immunology, Laboratory of Experimental Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Monika Ryba-Stanisławowska
- Department of Medical Immunology, Laboratory of Experimental Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Urszula Ławrynowicz
- Department of Medical Immunology, Laboratory of Experimental Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Jolanta Myśliwska
- Department of Medical Immunology, Laboratory of Experimental Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
28
|
Lin W, Buscher K, Wang B, Fan Z, Song N, Li P, Yue Y, Li B, Li C, Bi H. Soluble CD83 Alleviates Experimental Autoimmune Uveitis by Inhibiting Filamentous Actin-Dependent Calcium Release in Dendritic Cells. Front Immunol 2018; 9:1567. [PMID: 30050530 PMCID: PMC6052908 DOI: 10.3389/fimmu.2018.01567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Soluble CD83 (sCD83) is the extracellular domain of the membrane-bound CD83 molecule, and known for its immunoregulatory functions. Whether and how sCD83 participates in the pathogenesis of uveitis, a serious inflammatory disease of the eye that can cause visual disability and blindness, is unknown. By flow cytometry and imaging studies, we show that sCD83 alleviates experimental autoimmune uveitis (EAU) through a novel mechanism. During onset and recovery of EAU, the level of sCD83 rises in the serum and aqueous humor, and CD83+ leukocytes infiltrate the inflamed eye. Systemic or topical application of sCD83 exerts a protective effect by decreasing inflammatory cytokine expression, reducing ocular and splenic leukocyte including CD4+ T cells and dendritic cells (DCs). Mechanistically, sCD83 induces tolerogenic DCs by decreasing the synaptic expression of co-stimulatory molecules and hampering the calcium response in DCs. These changes are caused by a disruption of the cytoskeletal rearrangements at the DC–T cell contact zone, leading to altered localization of calcium microdomains and suppressed T-cell activation. Thus, the ability of sCD83 to modulate DC-mediated inflammation in the eye could be harnessed to develop new immunosuppressive therapeutics for autoimmune uveitis.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Immunology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Konrad Buscher
- Department of Nephrology and Rheumatology, University Hospital Muenster, Münster, Germany.,Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Beibei Wang
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Nannan Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Cuiling Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Hongsheng Bi
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
29
|
Bo L, Guojun T, Li G. An Expanded Neuroimmunomodulation Axis: sCD83-Indoleamine 2,3-Dioxygenase-Kynurenine Pathway and Updates of Kynurenine Pathway in Neurologic Diseases. Front Immunol 2018; 9:1363. [PMID: 29963055 PMCID: PMC6013554 DOI: 10.3389/fimmu.2018.01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many neurologic diseases are related to autoimmune dysfunction and a variety of molecules or reaction pathways are involved in the regulation of immune function of the nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker of mature dendritic cell, which has recently been shown to have an immunomodulatory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan kynurenine pathway (KP) participates in the immunoregulation through a variety of mechanisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, a previously known immunomodulatory axis, this review focused on an expanded neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system diseases.
Collapse
Affiliation(s)
- Li Bo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tan Guojun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Doebbeler M, Koenig C, Krzyzak L, Seitz C, Wild A, Ulas T, Baßler K, Kopelyanskiy D, Butterhof A, Kuhnt C, Kreiser S, Stich L, Zinser E, Knippertz I, Wirtz S, Riegel C, Hoffmann P, Edinger M, Nitschke L, Winkler T, Schultze JL, Steinkasserer A, Lechmann M. CD83 expression is essential for Treg cell differentiation and stability. JCI Insight 2018; 3:99712. [PMID: 29875316 PMCID: PMC6124443 DOI: 10.1172/jci.insight.99712] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Foxp3-positive regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and keep immune responses in check. Upon activation, Tregs are transferred into an effector state expressing transcripts essential for their suppressive activity, migration, and survival. However, it is not completely understood how different intrinsic and environmental factors control differentiation. Here, we present for the first time to our knowledge data suggesting that Treg-intrinsic expression of CD83 is essential for Treg differentiation upon activation. Interestingly, mice with Treg-intrinsic CD83 deficiency are characterized by a proinflammatory phenotype. Furthermore, the loss of CD83 expression by Tregs leads to the downregulation of Treg-specific differentiation markers and the induction of an inflammatory profile. In addition, Treg-specific conditional knockout mice showed aggravated autoimmunity and an impaired resolution of inflammation. Altogether, our results show that CD83 expression in Tregs is an essential factor for the development and function of effector Tregs upon activation. Since Tregs play a crucial role in the maintenance of immune tolerance and thus prevention of autoimmune disorders, our findings are also clinically relevant.
Collapse
Affiliation(s)
- Marina Doebbeler
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christina Koenig
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Krzyzak
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Wild
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Ulas
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Dmitry Kopelyanskiy
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alina Butterhof
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Christin Riegel
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim L. Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Front Immunol 2018. [PMID: 29541071 PMCID: PMC5835767 DOI: 10.3389/fimmu.2018.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host’s T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Collapse
Affiliation(s)
- Emilia Vendelova
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Diyaaeldin Ashour
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Lin W, Man X, Li P, Song N, Yue Y, Li B, Li Y, Sun Y, Fu Q. NK cells are negatively regulated by sCD83 in experimental autoimmune uveitis. Sci Rep 2017; 7:12895. [PMID: 29038541 PMCID: PMC5643513 DOI: 10.1038/s41598-017-13412-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells represent a subset of lymphocytes that contribute to innate immunity and have been reported to play a role in autoimmune uveitis. However, the mechanisms regulating NK cellular function in this condition remain unclear. Herein, we investigated the status of NK cells in experimental autoimmune uveitis (EAU). We found that the number of CD83+CD3-NK1.1+ cells was increased in the inflamed eyes and spleens of the EAU mouse model. At the recovery stage of EAU, serum concentrations of soluble CD83 (sCD83) were increased. sCD83 treatment relieved retinal tissue damage and decreased the number of infiltrating NK cells in inflamed eyes. Further analysis of the effects of sCD83 treatment in EAU revealed that it reduced: 1) the expressions of CD11b and CD83 in NK cells, 2) the percent of CD11bhighCD27lowCD3-NK1.1+ cells and 3) the secretion of granzyme B, perforin and IFN-γ in NK cells as demonstrated both in vivo and in vitro. When sCD83 treated-NK cells were transferred into EAU mice, retinal tissue damage was relieved. These results demonstrate sCD83 down-regulate NK cellular function and thus provide important, new information regarding the means for the beneficial effects of this agent in the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Wei Lin
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China.
| | - Xuejing Man
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, 264001, China
| | - Peng Li
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Nannan Song
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Yingying Yue
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Bingqing Li
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Yuanbin Li
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, 264001, China
| | - Yufei Sun
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
33
|
Guo F, Hu M, Huang D, Zhao Y, Heng B, Guillemin G, Lim CK, Hawthorne WJ, Yi S. Human regulatory macrophages are potent in suppression of the xenoimmune response via indoleamine-2,3-dioxygenase-involved mechanism(s). Xenotransplantation 2017; 24. [PMID: 28771838 DOI: 10.1111/xen.12326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/17/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND For xenotransplantation to truly succeed, we must develop immunomodulatory strategies to suppress the xenoimmune response but by minimizing immunosuppression over the long term. Regulatory macrophages (Mreg) have been shown to suppress polyclonal T-cell proliferation in vitro and prolong allograft survival in vivo. However, the question of whether they are capable of suppressing xenoimmune responses remains unknown. This study assessed the potential of human Mreg to be used as an effective immunomodulatory method in xenotransplantation. METHODS CD14+ monocytes selected from human peripheral blood mononuclear cells (PBMC) were cultured with macrophage colony-stimulating factor (M-CSF) for 7 days with IFN-γ added at day 6 for Mreg induction. Mreg phenotyping was performed by flow cytometric analysis, and the in vitro suppressive function was assessed by mixed lymphocyte reaction (MLR) using irradiated pig PBMC as the xenogeneic stimulator cells, human PBMC as responder cells, and autologous Mreg as suppressor cells. To assess mRNA expression of Mreg functional molecules indoleamine-2,3-dioxygenase (IDO), IL-10, inducible nitric oxide synthase (iNOS) and TGF-β were measured by real-time PCR. Supernatants were collected from the MLR cultures for IDO activity assay by high-performance liquid chromatography (HPLC). The effects of the IDO inhibitor 1-D/L-methyl-tryptophan (1-MT), iNOS inhibitor NG -monomethyl-l-arginine (L-NMMA), and anti-IFN-γ or anti-TGF-β monoclonal antibody (mAb) treatment on Mreg suppressive capacity were tested from the supernatants of the MLR assays. RESULTS We demonstrated that induced Mreg with a phenotype of CD14low CD16-/low CD80low CD83-/low CD86+/hi HLA-DR+/hi were capable of suppressing proliferating human PBMC, CD4+, and CD8+ T cells, even at a higher responder:Mreg ratio of 32:1 in a pig-human xenogeneic MLR. The strong suppressive potency of Mreg was further correlated with their upregulated IDO expression and activity. The IDO upregulation of Mreg was associated with an increased production of IFN-γ, an IDO stimulator, by xenoreactive responder cells in the xenogeneic MLR. While no effect on Mreg suppressive potency was detected by addition of the iNOS inhibitor L-NMMA or anti-TGF-β mAb into the MLR assays, inhibition of IDO activity by neutralizing IFN-γ or by IDO inhibitor 1-MT substantially impaired the capacity of Mreg to suppress the xenogeneic response, indicating the importance of upregulated IDO activity in Mreg-mediated suppression of the xenogeneic response in vitro. CONCLUSION This study demonstrates that human Mreg are capable of suppressing the xenoimmune response in vitro via IDO-involved mechanism(s), suggesting their potential role as an effective immunomodulatory tool in xenotransplantation.
Collapse
Affiliation(s)
- Fei Guo
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,Cell Transplantation and Gene Therapy Institute of Central South University at the 3rd Xiangya Hospital, Changsha, Hunan, China
| | - Min Hu
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Dandan Huang
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Yuanfei Zhao
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
34
|
Packhäuser KRH, Roman-Sosa G, Ehrhardt J, Krüger D, Zygmunt M, Muzzio DO. A Kinetic Study of CD83 Reveals an Upregulation and Higher Production of sCD83 in Lymphocytes from Pregnant Mice. Front Immunol 2017; 8:486. [PMID: 28491062 PMCID: PMC5405069 DOI: 10.3389/fimmu.2017.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
For the normal development of pregnancy, a balance between immune tolerance and defense is crucial. However, the mechanisms mediating such a balance are not fully understood. CD83 is a transmembrane protein whose expression has been linked to anti-inflammatory functions of T and B cells. The soluble form of CD83, released by cleavage of the membrane-bound protein, has strong anti-inflammatory properties and was successfully tested in different mouse models. It is assumed that this molecule contributes to the establishment of immune tolerance. Therefore, we postulated that the expression of CD83 is crucial for immune tolerance during pregnancy in mice. Here, we demonstrated that the membrane-bound form of CD83 was upregulated in T and B cells during allogeneic murine pregnancies. An upregulation was also evident in the main splenic B cell subtypes: marginal zone, follicular zone, and transitional B cells. We also showed that there was an augmentation in the number of CD83+ cells toward the end of pregnancy within splenic B and CD4+ T cells, while CD83+ dendritic cells were reduced in spleen and inguinal lymph nodes of pregnant mice. Additionally, B lymphocytes in late-pregnancy presented a markedly higher sensitivity to LPS in terms of CD83 expression and sCD83 release. Progesterone induced a dosis-dependent upregulation of CD83 on T cells. Our data suggest that the regulation of CD83 expression represents a novel pathway of fetal tolerance and protection against inflammatory threats during pregnancy.
Collapse
Affiliation(s)
| | - Gleyder Roman-Sosa
- Département de Virologie, Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | - Jens Ehrhardt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Diana Krüger
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Heilingloh CS, Klingl S, Egerer-Sieber C, Schmid B, Weiler S, Mühl-Zürbes P, Hofmann J, Stump JD, Sticht H, Kummer M, Steinkasserer A, Muller YA. Crystal Structure of the Extracellular Domain of the Human Dendritic Cell Surface Marker CD83. J Mol Biol 2017; 429:1227-1243. [PMID: 28315353 DOI: 10.1016/j.jmb.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Abstract
CD83 is a type-I membrane protein and an efficient marker for identifying mature dendritic cells. Whereas membrane-bound, full-length CD83 co-stimulates the immune system, a soluble variant (sCD83), consisting of the extracellular domain only, displays strong immune-suppressive activities. Besides a prediction that sCD83 adopts a V-set Ig-like fold, however, little is known about the molecular architecture of CD83 and the mechanism by which CD83 exerts its function on dendritic cells and additional immune cells. Here, we report the crystal structure of human sCD83 up to a resolution of 1.7Å solved in three different crystal forms. Interestingly, β-strands C', C″, and D that are typical for V-set Ig-domains could not be traced in sCD83. Mass spectrometry analyses, limited proteolysis experiments, and bioinformatics studies show that the corresponding segment displays enhanced main-chain accessibility, extraordinary low sequence conservation, and a predicted high disorder propensity. Chimeric proteins with amino acid swaps in this segment show unaltered immune-suppressive activities in a TNF-α assay when compared to wild-type sCD83. This strongly indicates that this segment does not participate in the biological activity of CD83. The crystal structure of CD83 shows the recurrent formation of dimers and trimers in the various crystal forms and reveals strong structural similarities between sCD83 and B7 family members and CD48, a signaling lymphocyte activation molecule family member. This suggests that CD83 exerts its immunological activity by mixed homotypic and heterotypic interactions as typically observed for proteins present in the immunological synapse.
Collapse
Affiliation(s)
- Christiane S Heilingloh
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Claudia Egerer-Sieber
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Joachim D Stump
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany.
| |
Collapse
|
36
|
Horvatinovich JM, Grogan EW, Norris M, Steinkasserer A, Lemos H, Mellor AL, Tcherepanova IY, Nicolette CA, DeBenedette MA. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14 + Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2286-2301. [PMID: 28193829 PMCID: PMC5337811 DOI: 10.4049/jimmunol.1600802] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022]
Abstract
The transmembrane protein CD83, expressed on APCs, B cells, and T cells, can be expressed as a soluble form generated by alternative splice variants and/or by shedding. Soluble CD83 (sCD83) was shown to be involved in negatively regulating the immune response. sCD83 inhibits T cell proliferation in vitro, supports allograft survival in vivo, prevents corneal transplant rejection, and attenuates the progression and severity of autoimmune diseases and experimental colitis. Although sCD83 binds to human PBMCs, the specific molecules that bind sCD83 have not been identified. In this article, we identify myeloid differentiation factor-2 (MD-2), the coreceptor within the TLR4/MD-2 receptor complex, as the high-affinity sCD83 binding partner. TLR4/MD-2 mediates proinflammatory signal delivery following recognition of bacterial LPSs. However, altering TLR4 signaling can attenuate the proinflammatory cascade, leading to LPS tolerance. Our data show that binding of sCD83 to MD-2 alters this signaling cascade by rapidly degrading IL-1R-associated kinase-1, leading to induction of the anti-inflammatory mediators IDO, IL-10, and PGE2 in a COX-2-dependent manner. sCD83 inhibited T cell proliferation, blocked IL-2 secretion, and rendered T cells unresponsive to further downstream differentiation signals mediated by IL-2. Therefore, we propose the tolerogenic mechanism of action of sCD83 to be dependent on initial interaction with APCs, altering early cytokine signal pathways and leading to T cell unresponsiveness.
Collapse
Affiliation(s)
| | | | - Marcus Norris
- Research Department, Argos Therapeutics, Inc., Durham, NC 27704
| | - Alexander Steinkasserer
- Cancer Immunology, Department of Immune Modulation, University Hospital Erlangen, University of Erlangen-Nuremberg, D-91052 Erlangen, Germany; and
| | - Henrique Lemos
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | | | | | | |
Collapse
|
37
|
Heilingloh CS, Grosche L, Kummer M, Mühl-Zürbes P, Kamm L, Scherer M, Latzko M, Stamminger T, Steinkasserer A. The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells. Front Microbiol 2017; 8:119. [PMID: 28203230 PMCID: PMC5285329 DOI: 10.3389/fmicb.2017.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the prototypic beta-herpesvirus and widespread throughout the human population. While infection is asymptomatic in healthy individuals, it can lead to high morbidity and mortality in immunocompromised persons. Importantly, HCMV evolved multiple strategies to interfere with immune cell function in order to establish latency in infected individuals. As mature DCs (mDCs) are antigen-presenting cells able to activate naïve T cells they play a crucial role during induction of effective antiviral immune responses. Interestingly, earlier studies demonstrated that the functionally important mDC surface molecule CD83 is down-regulated upon HCMV infection resulting in a reduced T cell stimulatory capacity of the infected cells. However, the viral effector protein and the precise mechanism of HCMV-mediated CD83 reduction remain to be discovered. Using flow cytometric analyses, we observed significant down-modulation of CD83 surface expression becoming significant already 12 h after HCMV infection. Moreover, Western bot analyses revealed that, in sharp contrast to previous studies, loss of CD83 is not restricted to the membrane-bound molecule, but also occurs intracellularly. Furthermore, inhibition of the proteasome almost completely restored CD83 surface expression during HCMV infection. Results of infection kinetics and cycloheximide-actinomycin D-chase experiments, strongly suggested that an HCMV immediate early gene product is responsible for the induction of CD83 down-modulation. Consequently, we were able to identify the major immediate early protein IE2 as the viral effector protein that induces proteasomal CD83 degradation.
Collapse
Affiliation(s)
| | - Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Myriam Scherer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Melanie Latzko
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | | |
Collapse
|
38
|
Ju X, Silveira PA, Hsu WH, Elgundi Z, Alingcastre R, Verma ND, Fromm PD, Hsu JL, Bryant C, Li Z, Kupresanin F, Lo TH, Clarke C, Lee K, McGuire H, Fazekas de St Groth B, Larsen SR, Gibson J, Bradstock KF, Clark GJ, Hart DNJ. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4613-4625. [PMID: 27837105 DOI: 10.4049/jimmunol.1600339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.
Collapse
Affiliation(s)
- Xinsheng Ju
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Pablo A Silveira
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wei-Hsun Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zehra Elgundi
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Renz Alingcastre
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Nirupama D Verma
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Phillip D Fromm
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jennifer L Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Christian Bryant
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ziduo Li
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona Kupresanin
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Tsun-Ho Lo
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Candice Clarke
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Kenneth Lee
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Helen McGuire
- Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | | | - Stephen R Larsen
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - John Gibson
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Kenneth F Bradstock
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Georgina J Clark
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Derek N J Hart
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia;
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
Krzyzak L, Seitz C, Urbat A, Hutzler S, Ostalecki C, Gläsner J, Hiergeist A, Gessner A, Winkler TH, Steinkasserer A, Nitschke L. CD83 Modulates B Cell Activation and Germinal Center Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3581-94. [PMID: 26983787 DOI: 10.4049/jimmunol.1502163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2023]
Abstract
CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo.
Collapse
Affiliation(s)
- Lena Krzyzak
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Anne Urbat
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Stefan Hutzler
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Joachim Gläsner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Andreas Hiergeist
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Thomas H Winkler
- Division of Genetics, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen, 91058 Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany;
| |
Collapse
|
40
|
Heilingloh CS, Kummer M, Mühl-Zürbes P, Drassner C, Daniel C, Klewer M, Steinkasserer A. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation. J Virol 2015; 89:11046-55. [PMID: 26311871 PMCID: PMC4621140 DOI: 10.1128/jvi.01517-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. IMPORTANCE HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human cytomegalovirus (HCMV), Epstein-Barr virus, and HSV-1. However, the detailed function of these particles is poorly understood. Here, we provide for the first time evidence that functional viral proteins can be transferred to uninfected bystander mDCs via L particles, revealing important biological functions of these particles during lytic replication. Therefore, the transfer of viral proteins by L particles to modulate uninfected bystander cells may represent an additional strategy for viral immune escape.
Collapse
Affiliation(s)
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Monika Klewer
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
41
|
Zhao J, Li Z, Wang L, Liu J, Wang D, Chen G, Wang Q, Zhang H. Foxp3-expressing sensitized Teff cells prolong survival of corneal allograft in corneal allograft transplantation mouse model. Transpl Immunol 2015; 33:192-7. [PMID: 26419203 DOI: 10.1016/j.trim.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The study aimed to investigate whether Foxp3-expressing sensitized Teff cells could inhibit allograft rejection in corneal allograft transplantation mouse model. METHODS Foxp3-expressing sensitized Teff cells were constructed by transfection of retroviral expression plasmid expressing Foxp3 into the sensi-Teff cells from a Balb/c mouse immunized by C57BL/6(H2b) mouse splenocytes. Balb/c mice were randomly divided into 5 groups: Four groups received tail vein injection of Foxp3-expressing sensitized Teff cells, or Foxp3-expressing Teff cells, or Treg cells or no intervention 1 day prior to corneal allograft transplantation. C57BL/6(H2b) was the donor mouse. The last group received corneal autograft transplantation. Corneal allograft survival time and percentage of CD4(+) T cells were detected. ELISPOT and Footpad swelling test were used to measure IL-2 and IFN-γ, and delayed-type hypersensitivity (DTH) response, respectively. RESULTS Mice that had received an injection of Foxp3-expressing sensitized T cells prior to an allograft corneal transplantation, showed significantly longer survival time of corneal allograft, decreased percentage of CD4(+) T cells, IL-2 and IFN-γ, and alleviated footpad swelling than the mice that had received either Foxp3-Teff or Treg cells. CONCLUSION Foxp3-sensi-Teff cell treatment that prolongs corneal allograft survival in the mouse model, might partly through suppressing CD4(+) T cells, IL-2 and IFN-γ.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Ophthalmology, The 2nd Hospital of Shandong University, Jinan 250031, China; Department of Ophthalmology, General Hospital of Liaohe Oil Field, Panjin 124000, China
| | - Zhaohui Li
- The General Hospital of PLA, Beijing 100853, China
| | - Lei Wang
- Department of Ophthalmology, The 2nd Hospital of Shandong University, Jinan 250031, China
| | - Jing Liu
- Department of Ophthalmology, The 2nd Hospital of Shandong University, Jinan 250031, China
| | - Dajiang Wang
- The General Hospital of PLA, Beijing 100853, China
| | - Guoling Chen
- Department of Ophthalmology, The 2nd Hospital of Shandong University, Jinan 250031, China
| | - Qi Wang
- Department of Ophthalmology, General Hospital of Liaohe Oil Field, Panjin 124000, China
| | - Han Zhang
- Department of Ophthalmology, The 2nd Hospital of Shandong University, Jinan 250031, China.
| |
Collapse
|
42
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
43
|
CHEN LIWEN, GUAN SHIHE, ZHOU QIANG, SHENG SHOUQIN, ZHONG FEI, WANG QIN. Continuous expression of CD83 on activated human CD4⁺ T cells is correlated with their differentiation into induced regulatory T cells. Mol Med Rep 2015; 12:3309-3314. [PMID: 25997495 PMCID: PMC4526085 DOI: 10.3892/mmr.2015.3796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
CD83 is a widely recognized surface marker for mature dendritic cells, which are essential for priming naïve CD4+ T cells into effector cells. However, CD83 is also expressed on activated CD4+ T cells, which remains an enigma in T‑cell mediated immunity. Therefore, the identification of the biological features and regulation of the expression of CD83 on activated CD4+ T cells is important in understanding the function of CD83 in the adaptive immune response. The present study revealed a time‑dependent manner of the expression of CD83 on anti‑CD3/CD28‑stimulated human CD4+ T cells, which is characterized by the maximum expression at day 2 and a significant decrease at day 3. The reduced expression is not a result of a reduced rate of cell proliferation. The activation of interleukin‑2 and secretion of interferon‑γ accumulated progressively from day 1 to 3. Of note, sustained expression of CD83 was observed when CD4+ T cells were induced by transforming growth factor-β to differentiate into CD4+CD25+ forkhead box P3+ regulatory T (iTreg) cells. Confocal immunofluorescence microscopy analysis demonstrated that CD83 was highly co‑localized with CD25 on activated CD4+ T cells. In conclusion, the findings of the present study suggested that the continuous expression of CD83 on activated human CD4+ T cells is correlated with their differentiation into iTreg cells.
Collapse
Affiliation(s)
- LIWEN CHEN
- Departments of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - SHIHE GUAN
- Departments of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - QIANG ZHOU
- Departments of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - SHOUQIN SHENG
- Medical Research Center, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - FEI ZHONG
- Department of Medical Oncology, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - QIN WANG
- Departments of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
44
|
Wan X, Hou LJ, Zhang LY, Huang WJ, Liu L, Zhang Q, Hu B, Chen W, Chen X, Cao CC. IKKα is involved in kidney recovery and regeneration of acute ischemia/reperfusion injury in mice through IL10-producing regulatory T cells. Dis Model Mech 2015; 8:733-42. [PMID: 26035380 PMCID: PMC4486855 DOI: 10.1242/dmm.018200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/17/2015] [Indexed: 12/30/2022] Open
Abstract
The recovery phase after kidney ischemia/reperfusion (IR) injury is often associated with the suppression of inflammation and the proliferation of tubular epithelial cells (TECs). The duration of this phase is often determined by the suppression of inflammation and the proliferation of TECs. Several lines of evidence suggest that IκB kinase α (IKKα) not only promotes the production of anti-inflammatory factors and/or prevents the production of inflammatory factors, but also induces the accompanying cell differentiation and regeneration, and suppresses inflammation. We therefore hypothesized that IKKα could participate in the kidney repair after IR injury and have used a mouse model of acute kidney injury (AKI) to test this. We found that IKKα mediated the repair of the kidney via infiltrated regulatory T (Treg) cells, which can produce anti-inflammatory cytokine IL10, and that IKKα also increased the proliferation of the surviving TECs and suppressed of inflammation. In addition, the expression of indoleamine 2,3-dioxygenase (IDO) in TECs is consistent with the infiltration of IL10-producing Treg cells. We conclude that IKKα is involved in kidney recovery and regeneration through the Treg cells that can produce IL10, which might be a potential therapeutic target that can be used to promote kidney repair after IR injury.
Collapse
Affiliation(s)
- Xin Wan
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li-Jun Hou
- Division of Neurosurgery, Department of Surgery and Shanghai Neurosurgical Institute, The Second Military Medical University, Changzheng Hospital, Shanghai 200003, China
| | - Li-Yuan Zhang
- Division of Nephrology, Department of Medicine, Affiliated Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang 222002, China
| | - Wen-Juan Huang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lin Liu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qian Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bo Hu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wen Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chang-Chun Cao
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
45
|
Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, Tucher C, Knippertz I, Becker C, Günther C, Steinkasserer A, Lechmann M. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology 2015; 220:270-9. [PMID: 25151500 DOI: 10.1016/j.imbio.2014.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
The CD83 molecule (CD83) is a well-known surface marker present on mature dendritic cells (mDC). In this study, we show that CD83 is also expressed on a subset of T cells which mediate regulatory T cell (Treg)-like suppressor functions in vitro and in vivo. Treg-associated molecules including CD25, cytotoxic T lymphocyte antigen-4 (CTLA-4), glucocorticoid-induced TNFR family-related gene (GITR), Helios and neuropilin-1 (NRP-1) as well as forkhead box protein 3 (FOXP3) were specifically expressed by these CD83(+) T cells. In contrast, CD83(-) T cells showed a naive T cell phenotype with effector T cell properties upon activation. Noteworthy, CD83(-) T cells were not able to upregulate CD83 despite activation. Furthermore, CD83(+) T cells suppressed the proliferation and inflammatory cytokine release of CD83(-) T cells in vitro. Strikingly, stimulated CD83(+) T cells released soluble CD83 (sCD83), which has been reported to possess immunosuppressive properties. In vivo, using the murine transfer colitis model we could show that CD83(+) T cells were able to suppress colitis symptoms while CD83(-) T cells possessed effector functions. In addition, this CD83 expression is also conserved on expanded human Treg. Thus, from these studies we conclude that CD83(+) T cells share important features with regulatory T cells, identifying CD83 as a novel lineage marker to discriminate between different T cell populations.
Collapse
Affiliation(s)
- Simon Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Jenny Eckhardt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Kuhnt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Marcello Stein
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Lena Krzyzak
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Seitz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Tucher
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Matthias Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany; Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany.
| |
Collapse
|
46
|
Love AC, Schwartz I, Petzke MM. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential. J Leukoc Biol 2015; 97:379-90. [PMID: 25420916 PMCID: PMC4304421 DOI: 10.1189/jlb.4a0714-339r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, the bacterial agent of Lyme disease, induces the production of type I IFNs by human DCs through TLR7 and TLR9 signaling. This type I IFN response occurs in a genotype-dependent manner, with significantly higher levels of IFN-α elicited by B. burgdorferi strains that have a greater capacity for causing disseminated infection. A B. burgdorferi strain that was previously shown to induce IFN-α was found to elicit significantly higher levels of IDO1 protein and its downstream metabolite, kynurenine, compared with a B. burgdorferi mutant that lacks a single linear plasmid (lp36); this mutant is unable to induce IFN-α and is severely attenuated for infectivity in mice. Production of IDO by mDC and pDC populations, present within human PBMCs, was concomitant with increased expression of the DC maturation markers, CD83 and CCR7. The defects in IDO production and expression of CD83 and CCR7 could be restored by complementation of the mutant with lp36. Maximal IDO production in response to the wild-type strain was dependent on contributions by both type I IFN and IFN-γ, the type II IFN. Induction of IDO was mediated by the same TLR7-dependent recognition of B. burgdorferi RNA that contributes to the production of type I IFNs by human DCs. The ability of IFN-α-inducing B. burgdorferi strains to stimulate production of IDO and kynurenines may be a mechanism that is used by the pathogen to promote localized immunosuppression and facilitate hematogenous dissemination.
Collapse
Affiliation(s)
- Andrea C Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
47
|
Eckhardt J, Kreiser S, Döbbeler M, Nicolette C, DeBenedette MA, Tcherepanova IY, Ostalecki C, Pommer AJ, Becker C, Günther C, Zinser E, Mak TW, Steinkasserer A, Lechmann M. Soluble CD83 ameliorates experimental colitis in mice. Mucosal Immunol 2014; 7:1006-18. [PMID: 24424524 DOI: 10.1038/mi.2013.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 12/02/2013] [Indexed: 02/04/2023]
Abstract
The physiological balance between pro- and anti-inflammatory processes is dysregulated in inflammatory bowel diseases (IBD) as in Crohn's disease and ulcerative colitis. Conventional therapy uses anti-inflammatory and immunosuppressive corticosteroids to treat acute-phase symptoms. However, low remission rate and strong side effects of these therapies are not satisfying. Thus, there is a high medical need for new therapeutic strategies. Soluble CD83, the extracellular domain of the transmembrane CD83 molecule, has been reported to have interesting therapeutic and immunosuppressive properties by suppressing dendritic cell (DC)-mediated T-cell activation and inducing tolerogenic DCs. However, the expression and function of CD83 in IBD is still unknown. Here, we show that CD83 expression is upregulated by different leukocyte populations in a chemical-induced murine colitis model. Furthermore, in this study the potential of sCD83 to modulate colitis using an experimental murine colitis model was investigated. Strikingly, sCD83 ameliorated the clinical disease symptoms, drastically reduced mortality, and strongly decreased inflammatory cytokine expression in mesenteric lymph nodes and colon. The infiltration of macrophages and granulocytes into colonic tissues was vigorously inhibited. Mechanistically, we could show that sCD83-induced expression of indolamine 2,3-dioxygenase is essential for its protective effects.
Collapse
Affiliation(s)
- J Eckhardt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - S Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - M Döbbeler
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Nicolette
- Argos Therapeutics, Durham, North Carolina, USA
| | | | | | - C Ostalecki
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - A J Pommer
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Becker
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - C Günther
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - E Zinser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - A Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - M Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
48
|
Yang Y, Xin Z, Chu J, Li N, Sun T. Involvement of Caveolin-1 in CD83 Internalization in Mouse Dendritic Cells. Cell Transplant 2014; 24:1395-404. [PMID: 24898475 DOI: 10.3727/096368914x682116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To become potent T-cell stimulators, DCs need to mature. Treatment with soluble CD83 (sCD83) induces immune tolerance and protects against transplant rejection by maintaining dendritic cells in an immature, tolerogenic state. Until now, the mechanism through which sCD83 keeps DCs immature has not been investigated. The internalizing pathway of CD83 was screened by Western blot, and the direct interactions between internalized proteins were verified through coimmunoprecipitation (co-IP) and transmission electron microscopy (TEM). CD83 plasma membrane levels were detected by Western blot using a plasma membrane protein extraction protocol. The changes in CD83 surface levels in DCs were detected by flow cytometry. Caveolin-1 function was detected in a kidney transplant model. In this study, we demonstrated that caveolin-1 could affect CD83 level during endocytosis in mouse DCs. Caveolin-1 coprecipitates with CD83, as demonstrated by co-IP analysis. TEM morphometric analysis of the entire CD83 distribution associated with internalized caveolin-1 demonstrated a significant interaction in cellular vesicles. sCD83 reduces endogenous CD83 plasma membrane levels, and caveolin-1 knockdown reverts CD83 levels in plasma membrane. sCD83 treatment decreases CD83 surface levels in DCs. siRNA to caveolin-1 in DCs inhibits this effect of sCD83. The effects of sCD83-treated DCs were proved in CD1 mice. Knocking down caveolin-1 in DCs obstructs the effects of sCD83 on kidney transplant. In conclusion, our data indicated that a caveolin-dependent endocytic pathway is involved in CD83 internalization in DCs and that caveolin-1 is involved in the activity of DCs.
Collapse
Affiliation(s)
- Yuejing Yang
- The 2nd Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
49
|
Heilingloh CS, Mühl-Zürbes P, Steinkasserer A, Kummer M. Herpes simplex virus type 1 ICP0 induces CD83 degradation in mature dendritic cells independent of its E3 ubiquitin ligase function. J Gen Virol 2014; 95:1366-1375. [PMID: 24643878 DOI: 10.1099/vir.0.062810-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mature dendritic cells (mDCs) are the most potent antigen-presenting cells known today, as they are the only antigen-presenting cells able to induce naïve T-cells. Therefore, they play a crucial role during the induction of effective antiviral immune responses. Interestingly, the surface molecule CD83 expressed on mDCs is targeted by several viruses. As CD83 has been shown to exert co-stimulatory functions on mDCs, its downmodulation represents a viral immune escape mechanism. Mechanistically, it has been shown that herpes simplex virus type 1 infection leads to proteasomal degradation of CD83, resulting in a strongly diminished T-cell stimulatory capacity of the infected mDC. Previous data suggest that the viral immediate-early protein ICP0 (infected-cell protein 0) plays an important role in this process. In the present study, we showed that ICP0 is sufficient to induce CD83 degradation in the absence of any other viral factor. However, the mechanism of ICP0-mediated CD83 degradation is not yet understood. Here, we provide evidence that ubiquitination of lysine residues is, despite the published E3 ubiquitin ligase activity of ICP0, not necessary for CD83 degradation. This finding was underlined by the observation that expression of an ICP0 mutant lacking the E3 ubiquitin ligase domain in mDCs still induced CD83 degradation. Finally, inhibition of E1 activating enzyme using the specific inhibitor 4[4-(5-nitro-furan-2-ylmethylene)-3.5-dioxo-pyrazolidin-1-yl]-benzoic acid ethyl ester did not prevent CD83 degradation. Taken together, our data provide strong evidence that ICP0 alone induces CD83 degradation independent of its E3 ubiquitin ligase function and of the ubiquitin machinery.
Collapse
Affiliation(s)
- Christiane S Heilingloh
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| |
Collapse
|
50
|
Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis. Inflamm Res 2014; 63:357-67. [PMID: 24458308 DOI: 10.1007/s00011-014-0707-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/28/2013] [Accepted: 01/05/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). METHODS BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. RESULTS BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. CONCLUSIONS BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.
Collapse
|