1
|
Chaaban H, Burge K, McElroy SJ. Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut. J Perinatol 2024; 44:1552-1559. [PMID: 38844520 PMCID: PMC11521761 DOI: 10.1038/s41372-024-02026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/22/2024]
Abstract
Necrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant's exposure to amniotic fluid (AF) is abruptly truncated. Replete with bioactive molecules, AF plays an important role in fetal intestinal maturation and preparation for contact with the environment, thus its absence during development of the intestine may contribute to increased susceptibility to NEC. Human milk (HM), particularly during the initial phases of lactation, is a cornerstone of neonatal intestinal defense. The concentrations and activities of several bioactive factors in HM parallel those of AF, suggesting continuity of protection. In this review, we discuss the predominant overlapping bioactive components of HM and AF, with an emphasis on those associated with intestinal growth or reduction of NEC.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J McElroy
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:728-738. [PMID: 38948093 PMCID: PMC11212546 DOI: 10.4252/wjsc.v16.i6.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
3
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:727-737. [DOI: 10.4252/wjsc.v16.i6.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
4
|
Jones IH, Collins JE, Hall NJ, Heinson AI. Transcriptomic analysis of the effect of remote ischaemic conditioning in an animal model of necrotising enterocolitis. Sci Rep 2024; 14:10783. [PMID: 38734725 PMCID: PMC11088709 DOI: 10.1038/s41598-024-61482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸβ2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.
Collapse
Affiliation(s)
- Ian Howard Jones
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK.
| | - Jane Elizabeth Collins
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton, UK
| | - Nigel John Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Southampton Children's Hospital, Tremona Road, Southampton, UK
| | - Ashley Ivan Heinson
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical Informatics Research Unit, Cancer Sciences, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
5
|
Roberts AG, Younge N, Greenberg RG. Neonatal Necrotizing Enterocolitis: An Update on Pathophysiology, Treatment, and Prevention. Paediatr Drugs 2024; 26:259-275. [PMID: 38564081 DOI: 10.1007/s40272-024-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease predominantly affecting premature and very low birth weight infants resulting in inflammation and necrosis of the small bowel and colon and potentially leading to sepsis, peritonitis, perforation, and death. Numerous research efforts have been made to better understand, treat, and prevent NEC. This review explores a variety of factors involved in the pathogenesis of NEC (prematurity, low birth weight, lack of human breast milk exposure, alterations to the microbiota, maternal and environmental factors, and intestinal ischemia) and reports treatment modalities surrounding NEC, including pain medications and common antibiotic combinations, the rationale for these combinations, and recent antibiotic stewardship approaches surrounding NEC treatment. This review also highlights the effect of early antibiotic exposure, infections, proton pump inhibitors (PPIs), and H2 receptor antagonists on the microbiota and how these risk factors can increase the chances of NEC. Finally, modern prevention strategies including the use of human breast milk and standardized feeding regimens are discussed, as well as promising new preventative and treatment options for NEC including probiotics and stem cell therapy.
Collapse
|
6
|
Halpern MD, Gupta A, Zaghloul N, Thulasingam S, Calton CM, Camp SM, Garcia JGN, Ahmed M. Extracellular Nicotinamide Phosphoribosyltransferase Is a Therapeutic Target in Experimental Necrotizing Enterocolitis. Biomedicines 2024; 12:970. [PMID: 38790933 PMCID: PMC11118767 DOI: 10.3390/biomedicines12050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of prematurity. Postulated mechanisms leading to inflammatory necrosis of the ileum and colon include activation of the pathogen recognition receptor Toll-like receptor 4 (TLR4) and decreased levels of transforming growth factor beta (TGFβ). Extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a novel damage-associated molecular pattern (DAMP), is a TLR4 ligand and plays a role in a number of inflammatory disease processes. To test the hypothesis that eNAMPT is involved in NEC, an eNAMPT-neutralizing monoclonal antibody, ALT-100, was used in a well-established animal model of NEC. Preterm Sprague-Dawley pups delivered prematurely from timed-pregnant dams were exposed to hypoxia/hypothermia and randomized to control-foster mother dam-fed rats, injected IP with saline (vehicle) 48 h after delivery; control + mAB-foster dam-fed rats, injected IP with 10 µg of ALT-100 at 48 h post-delivery; NEC-orally gavaged, formula-fed rats injected with saline; and NEC + mAb-formula-fed rats, injected IP with 10 µg of ALT-100 at 48 h. The distal ileum was processed 96 h after C-section delivery for histological, biochemical, molecular, and RNA sequencing studies. Saline-treated NEC pups exhibited markedly increased fecal blood and histologic ileal damage compared to controls (q < 0.0001), and findings significantly reduced in ALT-100 mAb-treated NEC pups (q < 0.01). Real-time PCR in ileal tissues revealed increased NAMPT in NEC pups compared to pups that received the ALT-100 mAb (p < 0.01). Elevated serum levels of tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), interleukin-8 (IL-8), and NAMPT were observed in NEC pups compared to NEC + mAb pups (p < 0.01). Finally, RNA-Seq confirmed dysregulated TGFβ and TLR4 signaling pathways in NEC pups that were attenuated by ALT-100 mAb treatment. These data strongly support the involvement of eNAMPT in NEC pathobiology and eNAMPT neutralization as a strategy to address the unmet need for NEC therapeutics.
Collapse
Affiliation(s)
- Melissa D. Halpern
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Akash Gupta
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Nahla Zaghloul
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Senthilkumar Thulasingam
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Christine M. Calton
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sara M. Camp
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL 33458, USA (J.G.N.G.)
| | - Joe G. N. Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL 33458, USA (J.G.N.G.)
| | - Mohamed Ahmed
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
7
|
Sodhi CP, Ahmad R, Fulton WB, Lopez CM, Eke BO, Scheese D, Duess JW, Steinway SN, Raouf Z, Moore H, Tsuboi K, Sampah ME, Jang HS, Buck RH, Hill DR, Niemiro GM, Prindle T, Wang S, Wang M, Jia H, Catazaro J, Lu P, Hackam DJ. Human milk oligosaccharides reduce necrotizing enterocolitis-induced neuroinflammation and cognitive impairment in mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G23-G41. [PMID: 37120853 PMCID: PMC10259852 DOI: 10.1152/ajpgi.00233.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in premature infants. One of the most devastating complications of NEC is the development of NEC-induced brain injury, which manifests as impaired cognition that persists beyond infancy and which represents a proinflammatory activation of the gut-brain axis. Given that oral administration of the human milk oligosaccharides (HMOs) 2'-fucosyllactose (2'-FL) and 6'-sialyslactose (6'-SL) significantly reduced intestinal inflammation in mice, we hypothesized that oral administration of these HMOs would reduce NEC-induced brain injury and sought to determine the mechanisms involved. We now show that the administration of either 2'-FL or 6'-SL significantly attenuated NEC-induced brain injury, reversed myelin loss in the corpus callosum and midbrain of newborn mice, and prevented the impaired cognition observed in mice with NEC-induced brain injury. In seeking to define the mechanisms involved, 2'-FL or 6'-SL administration resulted in a restoration of the blood-brain barrier in newborn mice and also had a direct anti-inflammatory effect on the brain as revealed through the study of brain organoids. Metabolites of 2'-FL were detected in the infant mouse brain by nuclear magnetic resonance (NMR), whereas intact 2'-FL was not. Strikingly, the beneficial effects of 2'-FL or 6'-SL against NEC-induced brain injury required the release of the neurotrophic factor brain-derived neurotrophic factor (BDNF), as mice lacking BDNF were not protected by these HMOs from the development of NEC-induced brain injury. Taken in aggregate, these findings reveal that the HMOs 2'-FL and 6'-SL interrupt the gut-brain inflammatory axis and reduce the risk of NEC-induced brain injury.NEW & NOTEWORTHY This study reveals that the administration of human milk oligosaccharides, which are present in human breast milk, can interfere with the proinflammatory gut-brain axis and prevent neuroinflammation in the setting of necrotizing enterocolitis, a major intestinal disorder seen in premature infants.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Raheel Ahmad
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Carla M Lopez
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Benjamin O Eke
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Daniel Scheese
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Johannes W Duess
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Steve N Steinway
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Zachariah Raouf
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Hannah Moore
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Koichi Tsuboi
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Maame Efua Sampah
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Hee-Seong Jang
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Rachael H Buck
- Nutrition Division, Abbott, Columbus, Ohio, United States
| | - David R Hill
- Nutrition Division, Abbott, Columbus, Ohio, United States
| | | | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Menghan Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - Jonathan Catazaro
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, United States
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Yang S, Wei X, Zhong Y, Guo C, Liu X, Wang Z, Tu Y. Programmed death of intestinal epithelial cells in neonatal necrotizing enterocolitis: a mini-review. Front Pediatr 2023; 11:1199878. [PMID: 37342533 PMCID: PMC10277470 DOI: 10.3389/fped.2023.1199878] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is one of the most fatal diseases in premature infants. Damage to the intestinal epithelial barrier (IEB) is an important event in the development of intestinal inflammation and the evolution of NEC. The intestinal epithelial monolayer formed by the tight arrangement of intestinal epithelial cells (IECs) constitutes the functional IEB between the organism and the extra-intestinal environment. Programmed death and regenerative repair of IECs are important physiological processes to maintain the integrity of IEB function in response to microbial invasion. However, excessive programmed death of IECs leads to increased intestinal permeability and IEB dysfunction. Therefore, one of the most fundamental questions in the field of NEC research is to reveal the pathological death process of IECs, which is essential to clarify the pathogenesis of NEC. This review focuses on the currently known death modes of IECs in NEC mainly including apoptosis, necroptosis, pyroptosis, ferroptosis, and abnormal autophagy. Furthermore, we elaborate on the prospect of targeting IECs death as a treatment for NEC based on exciting animal and clinical studies.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuting Zhong
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Conglu Guo
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhibin Wang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin Pediatr Surg 2023; 32:151309. [PMID: 37290338 PMCID: PMC10330774 DOI: 10.1016/j.sempedsurg.2023.151309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disorder in premature infants that causes significant morbidity and mortality. Research efforts into the pathogenesis of NEC have discovered a pivotal role for the gram-negative bacterial receptor, Toll-like receptor 4 (TLR4), in its development. TLR4 is activated by dysbiotic microbes within the intestinal lumen, which leads to an exaggerated inflammatory response within the developing intestine, resulting in mucosal injury. More recently, studies have identified that the impaired intestinal motility that occurs early in NEC has a causative role in disease development, as strategies to enhance intestinal motility can reverse NEC in preclinical models. There has also been broad appreciation that NEC also contributes to significant neuroinflammation, which we have linked to the effects of gut-derived pro-inflammatory molecules and immune cells which activate microglia in the developing brain, resulting in white matter injury. These findings suggest that the management of the intestinal inflammation may secondarily be neuroprotective. Importantly, despite the significant burden of NEC on premature infants, these and other studies have provided a strong rationale for the development of small molecules with the capability of reducing NEC severity in pre-clinical models, thus guiding the development of specific anti-NEC therapies. This review summarizes the roles of TLR4 signaling in the premature gut in the pathogenesis of NEC, and provides insights into optimal clinical management strategies based upon findings from laboratory studies.
Collapse
Affiliation(s)
- Daniel J Scheese
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Matsuura R, Doi K, Rabb H. Acute kidney injury and distant organ dysfunction-network system analysis. Kidney Int 2023; 103:1041-1055. [PMID: 37030663 DOI: 10.1016/j.kint.2023.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Acute kidney injury (AKI) occurs in about half of critically ill patients and associates with high in-hospital mortality, increased long-term mortality post-discharge and subsequent progression to chronic kidney disease. Numerous clinical studies have shown that AKI is often complicated by dysfunction of distant organs, which is a cause of the high mortality associated with AKI. Experimental studies have elucidated many mechanisms of AKI-induced distant organ injury, which include inflammatory cytokines, oxidative stress and immune responses. This review will provide an update on evidence of organ crosstalk and potential therapeutics for AKI-induced organ injuries, and present the new concept of a systemic organ network to balance homeostasis and inflammation that goes beyond kidney-crosstalk with a single distant organ.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, the University of Tokyo Hospital.
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine
| |
Collapse
|
11
|
Duess JW, Sampah ME, Lopez CM, Tsuboi K, Scheese DJ, Sodhi CP, Hackam DJ. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 2023; 15:2221470. [PMID: 37312412 PMCID: PMC10269420 DOI: 10.1080/19490976.2023.2221470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease in premature infants and the leading cause of death and disability from gastrointestinal disease in this vulnerable population. Although the pathophysiology of NEC remains incompletely understood, current thinking indicates that the disease develops in response to dietary and bacterial factors in the setting of a vulnerable host. As NEC progresses, intestinal perforation can result in serious infection with the development of overwhelming sepsis. In seeking to understand the mechanisms by which bacterial signaling on the intestinal epithelium can lead to NEC, we have shown that the gram-negative bacterial receptor toll-like receptor 4 is a critical regulator of NEC development, a finding that has been confirmed by many other groups. This review article provides recent findings on the interaction of microbial signaling, the immature immune system, intestinal ischemia, and systemic inflammation in the pathogenesis of NEC and the development of sepsis. We will also review promising therapeutic approaches that show efficacy in pre-clinical studies.
Collapse
Affiliation(s)
- Johannes W. Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Maame E. Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Carla M. Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel J. Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Chhinder P. Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David J. Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
12
|
Yu W, Venkatraman A, Menden HL, Martinez M, Umar S, Sampath V. Short-chain fatty acids ameliorate necrotizing enterocolitis-like intestinal injury through enhancing Notch1-mediated single immunoglobulin interleukin-1-related receptor, toll-interacting protein, and A20 induction. Am J Physiol Gastrointest Liver Physiol 2023; 324:G24-G37. [PMID: 36410023 PMCID: PMC9799135 DOI: 10.1152/ajpgi.00057.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Single immunoglobulin interleukin-1-related receptor (SIGIRR), toll-interacting protein (TOLLIP), and A20 are major inhibitors of toll-like receptor (TLR) signaling induced postnatally in the neonatal intestine. Short-chain fatty acids (SCFAs), fermentation products of indigestible carbohydrates produced by symbiotic bacteria, inhibit intestinal inflammation. Herein, we investigated the mechanisms by which SCFAs regulate SIGIRR, A20, and TOLLIP expression and mitigate experimental necrotizing enterocolitis (NEC). Butyrate induced NOTCH activation by repressing sirtuin 1 (SIRT1)-mediated deacetylation of the Notch intracellular domain (NICD) in human intestinal epithelial cells (HIECs). Overexpression of NICD induced SIGIRR, A20, and TOLLIP expression. Chromatin immunoprecipitation revealed that butyrate-induced NICD binds to the SIGIRR, A20, and TOLLIP gene promoters. Notch1-shRNA suppressed butyrate-induced SIGIRR/A20 upregulation in mouse enteroids and HIEC. Flagellin (TLR5 agonist)-induced inflammation in HIEC was inhibited by butyrate in a SIGIRR-dependent manner. Neonatal mice fed butyrate had increased NICD, A20, SIGIRR, and TOLLIP expression in the ileal epithelium. Butyrate inhibited experimental NEC-induced intestinal apoptosis, cytokine expression, and histological injury. Our data suggest that SCFAs can regulate the expression of the major negative regulators of TLR signaling in the neonatal intestine through Notch1 and ameliorate experimental NEC. Enteral SCFAs supplementation in preterm infants provides a promising bacteria-free, therapeutic option for NEC.NEW & NOTEWORTHY Short-chain fatty acids (SCFAs), such as propionate and butyrate, metabolites produced by symbiotic gut bacteria are known to be anti-inflammatory, but the mechanisms by which they protect against NEC are not fully understood. In this study, we reveal that SCFAs regulate intestinal inflammation by inducing the key TLR and IL1R inhibitors, SIGIRR and A20, through activation of the pluripotent transcriptional factor NOTCH1. Butyrate-mediated SIGIRR and A20 induction represses experimental NEC in the neonatal intestine.
Collapse
MESH Headings
- Infant, Newborn
- Animals
- Mice
- Humans
- Enterocolitis, Necrotizing/drug therapy
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/genetics
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Infant, Premature
- Inflammation/metabolism
- Intestinal Mucosa/metabolism
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/metabolism
- Butyrates/metabolism
- Immunoglobulins/metabolism
- Interleukin-1/metabolism
- Receptor, Notch1/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
Collapse
Affiliation(s)
- Wei Yu
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Heather L Menden
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Maribel Martinez
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
13
|
Machine learning-based risk factor analysis of necrotizing enterocolitis in very low birth weight infants. Sci Rep 2022; 12:21407. [PMID: 36496465 PMCID: PMC9741654 DOI: 10.1038/s41598-022-25746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study used machine learning and a national prospective cohort registry database to analyze the major risk factors of necrotizing enterocolitis (NEC) in very low birth weight (VLBW) infants, including environmental factors. The data consisted of 10,353 VLBW infants from the Korean Neonatal Network database from January 2013 to December 2017. The dependent variable was NEC. Seventy-four predictors, including ambient temperature and particulate matter, were included. An artificial neural network, decision tree, logistic regression, naïve Bayes, random forest, and support vector machine were used to evaluate the major predictors of NEC. Among the six prediction models, logistic regression and random forest had the best performance (accuracy: 0.93 and 0.93, area under the receiver-operating-characteristic curve: 0.73 and 0.72, respectively). According to random forest variable importance, major predictors of NEC were birth weight, birth weight Z-score, maternal age, gestational age, average birth year temperature, birth year, minimum birth year temperature, maximum birth year temperature, sepsis, and male sex. To the best of our knowledge, the performance of random forest in this study was among the highest in this line of research. NEC is strongly associated with ambient birth year temperature, as well as maternal and neonatal predictors.
Collapse
|
14
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
15
|
Yan X, Cao Y, Chen W, Yu Q, Chen Y, Yao S, Jiang C, Chen X, Han S. Peptide Tat(48-60) YVEEL protects against necrotizing enterocolitis through inhibition of toll-like receptor 4-mediated signaling in a phosphatidylinositol 3-kinase/AKT dependent manner. Front Nutr 2022; 9:992145. [PMID: 36299988 PMCID: PMC9590307 DOI: 10.3389/fnut.2022.992145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a catastrophic disease largely occurring in preterm infants, and toll-like receptor 4 (TLR4) has been implicated in its pathogenesis. The current therapeutic strategies for NEC are, however, far from optimal. In the present study, a whey-derived antioxidative peptide conjugated with a cell-penetrating TAT [Tat (48-60) YVEEL] was prepared to endow it with enhanced cell uptake capability and bioavailability. The protective effect of Tat (48-60) YVEEL on experimental NEC was evaluated both in vitro and in vivo. Inhibition of TLR4-mediated signaling by Tat (48-60) YVEEL was assessed in FHC and IEC-6 enterocytes, neonatal rat model of NEC, and the mechanism underlying this effect was determined. Tat (48-60) YVEEL significantly inhibited TLR4-mediated expression of pro-inflammatory cytokines, p65 nuclear translocation and restored the impaired enterocyte migration in cultured enterocytes. In addition, Tat (48-60) YVEEL administration strikingly increased the survival rate, and reduced the severity of NEC in rats through inhibition of TLR4-mediated signaling. These protective effects of Tat (48-60) YVEEL occurred in a PI3K/AKT dependent manner, as administration of PI3K activator Ys49 abrogated its protective effects. Combined with liposomes, Tat (48-60) YVEEL demonstrated longer retention in the intestines that better for potential clinical applications. These data demonstrate that Tat (48-60) YVEEL protects against NEC through inhibition of TLR4-mediated signaling in a PI3K/AKT dependent manner, and offer a potential therapeutic approach to this disease.
Collapse
Affiliation(s)
- Xiangyun Yan
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinlei Yu
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanjie Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwen Yao
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyao Jiang
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohui Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,Xiaohui Chen,
| | - Shuping Han
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Shuping Han,
| |
Collapse
|
16
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
17
|
Effect of Dexmedetomidine on Intestinal Barrier in Patients Undergoing Gastrointestinal Surgery–A Single-Center Randomized Clinical Trial. J Surg Res 2022; 277:181-188. [DOI: 10.1016/j.jss.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
18
|
Sodhi CP, Ahmad R, Jia H, Fulton WB, Lopez C, Gonzalez Salazar AJ, Ishiyama A, Sampah M, Steinway S, Wang S, Prindle T, Wang M, Steed DL, Wessel H, Kirshner Z, Brown LR, Lu P, Hackam DJ. The administration of amnion-derived multipotent cell secretome ST266 protects against necrotizing enterocolitis in mice and piglets. Am J Physiol Gastrointest Liver Physiol 2022; 323:G265-G282. [PMID: 35819175 PMCID: PMC9448291 DOI: 10.1152/ajpgi.00364.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and is steadily rising in frequency. Patients who develop NEC have a very high mortality, illustrating the importance of developing novel prevention or treatment approaches. We and others have shown that NEC arises in part from exaggerated signaling via the bacterial receptor, Toll-like receptor 4 (TLR4) on the intestinal epithelium, leading to widespread intestinal inflammation and intestinal ischemia. Strategies that limit the extent of TLR4 signaling, including the administration of amniotic fluid, can reduce NEC development in mouse and piglet models. We now seek to test the hypothesis that a secretome derived from amnion-derived cells can prevent or treat NEC in preclinical models of this disease via a process involving TLR4 inhibition. In support of this hypothesis, we show that the administration of this secretome, named ST266, to mice or piglets can prevent and treat experimental NEC. The protective effects of ST266 occurred in the presence of marked TLR4 inhibition in the intestinal epithelium of cultured epithelial cells, intestinal organoids, and human intestinal samples ex vivo, independent of epidermal growth factor. Strikingly, RNA-seq analysis of the intestinal epithelium in mice reveals that the ST266 upregulates critical genes associated with gut remodeling, intestinal immunity, gut differentiation. and energy metabolism. These findings show that the amnion-derived secretome ST266 can prevent and treat NEC, suggesting the possibility of novel therapeutic approaches for patients with this devastating disease.NEW & NOTEWORTHY This work provides hope for children who develop NEC, a devastating disease of premature infants that is often fatal, by revealing that the secreted product of amniotic progenitor cells (called ST266) can prevent or treat NEC in mice, piglet, and "NEC-in-a-dish" models of this disease. Mechanistically, ST266 prevented bacterial signaling, and a detailed transcriptomic analysis revealed effects on gut differentiation, immunity, and metabolism. Thus, an amniotic secretome may offer novel approaches for NEC.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Raheel Ahmad
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hongpeng Jia
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - William B Fulton
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Carla Lopez
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Andres J Gonzalez Salazar
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Asuka Ishiyama
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Maame Sampah
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Steve Steinway
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sanxia Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Thomas Prindle
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - Menghan Wang
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Ziv Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania
| | - Peng Lu
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| | - David J Hackam
- Division of General Pediatric Surgery Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, Maryland
| |
Collapse
|
19
|
Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis. Nat Rev Gastroenterol Hepatol 2022; 19:468-479. [PMID: 35347256 DOI: 10.1038/s41575-022-00594-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death and disability from gastrointestinal disease in premature infants. Recent discoveries have shed light on a unifying theorem to explain the pathogenesis of NEC, suggesting that specific treatments might finally be forthcoming. A variety of experiments have highlighted how the interaction between bacterial signalling receptors on the premature intestine and an abnormal gut microbiota incites a pro-inflammatory response in the intestinal mucosa and its underlying endothelium that leads to NEC. Central amongst the bacterial signalling receptors implicated in NEC development is the lipopolysaccharide receptor Toll-like receptor 4 (TLR4), which is expressed at higher levels in the premature gut than in the full-term gut. The high prenatal intestinal expression of TLR4 reflects the role of TLR4 in the regulation of normal gut development, and supports additional studies indicating that NEC develops in response to signalling events that occur in utero. This Review provides new evidence explaining the pathogenesis of NEC, explores new findings indicating that NEC development has origins before birth, and discusses future questions and opportunities for discovery in this field.
Collapse
|
20
|
β-Carotene Attenuates Apoptosis and Autophagy via PI3K/AKT/mTOR Signaling Pathway in Necrotizing Enterocolitis Model Cells IEC-6. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2502263. [PMID: 35754683 PMCID: PMC9232345 DOI: 10.1155/2022/2502263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022]
Abstract
Background Necrotizing enterocolitis (NEC) is a devastating disease affecting the gastrointestinal tract in the newborn period. In recent years, the role of apoptosis and autophagy in intestinal mucosal barrier dysfunction has come into prominence in research regarding the pathogenesis of NEC. β-Carotene is a well-known vitamin A precursor, and its content in breast milk is relatively high, especially in the colostrum. In the present study, we investigated the protective effect of β-carotene on necrotizing enterocolitis model cells IEC-6 induced by lipopolysaccharide (LPS). Methods CCK-8 assay was performed to evaluate cell viability. The Annexin V-FITC/PI method was used to detect apoptosis. Western blotting was utilized to measure the expression levels of proteins. Immunofluorescence analysis was used to assess the autophagy of IEC-6 cells. Results Our findings indicated that β-carotene inhibited the apoptosis of IEC-6 cells by downregulating cleaved caspase-3 levels and Bax levels and upregulating Bcl-2 levels, reducing cell autophagy via downregulating LC3II/I ratio and upregulating p62 levels. In addition, the expression of p-PI3K, p-AKT, and p-mTOR was upregulated after β-carotene treatment. Interestingly, these changes induced by β-carotene were partially reversed by rapamycin and voxtalisib. Conclusion In conclusion, our findings indicated that β-carotene can attenuate apoptosis and autophagy of IEC-6 cells induced by LPS via activating the PI3K/AKT/mTOR signaling pathway. Therefore, β-carotene may be a promising drug used in the clinical treatment of NEC.
Collapse
|
21
|
Hui Y, Vestergaard G, Deng L, Kot WP, Thymann T, Brunse A, Nielsen DS. Donor-dependent fecal microbiota transplantation efficacy against necrotizing enterocolitis in preterm pigs. NPJ Biofilms Microbiomes 2022; 8:48. [PMID: 35680942 PMCID: PMC9184500 DOI: 10.1038/s41522-022-00310-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
The development of necrotizing enterocolitis (NEC), a life-threatening inflammatory bowel disease affecting preterm infants, is connected with gut microbiota dysbiosis. Using preterm piglets as a model for preterm infants we recently showed that fecal microbiota transplantation (FMT) from healthy suckling piglet donors to newborn preterm piglets decreased the NEC risk. However, in a follow-up study using donor stool from piglets recruited from another farm, this finding could not be replicated. This allowed us to study donor-recipient microbiota dynamics in a controlled model system with a clear difference in NEC phenotype. Preterm piglets (n = 38) were randomly allocated to receive control saline (CON), or rectal FMT using either the ineffective (FMT1) or the effective donor stool (FMT2). All animals were followed for four days before necropsy and gut pathological evaluation. Donor and recipient colonic gut microbiota (GM) were analyzed by 16 S rRNA gene amplicon sequencing and shotgun metagenomics. As expected, only FMT2 recipients were protected against NEC. Both FMT groups had shifted GM composition relative to CON, but FMT2 recipients had a higher lactobacilli relative abundance compared to FMT1. Limosilactobacillus reuteri and Lactobacillus crispatus strains of FMT recipients showed high phylogenetic similarity with their respective donors, indicating engraftment. Moreover, the FMT2 group had a higher lactobacilli replication rate and harbored specific glycosaminoglycan-degrading Bacteroides. In conclusion, subtle species-level donor differences translate to major changes in engraftment dynamics and the ability to prevent NEC. This could have implications for proper donor selection in future FMT trials for NEC prevention.
Collapse
Affiliation(s)
- Yan Hui
- Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Gisle Vestergaard
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark.,Chr. Hansen A/S, 2970, Hoersholm, Denmark
| | - Ling Deng
- Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Witold Piotr Kot
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Intestinal epithelium in early life. Mucosal Immunol 2022; 15:1181-1187. [PMID: 36380094 DOI: 10.1038/s41385-022-00579-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Rapid development of the fetal and neonatal intestine is required to meet the growth requirements of early life and form a protective barrier against external insults encountered by the intestinal mucosa. The fetus receives nutrition via the placenta and is protected from harmful pathogens in utero, which leads to intestinal development in a relatively quiescent environment. Upon delivery, the intestinal mucosa is suddenly tasked with providing host defense and meeting nutritional demands. To serve these functions, an array of specialized epithelial cells develop from intestinal stem cells starting in utero and continuing postnatally. Intestinal disease results when these homeostatic processes are interrupted. For preterm neonates, the most common pathology resulting from epithelial barrier dysfunction is necrotizing enterocolitis (NEC). In this review, we discuss the normal development and function of the intestinal epithelium in early life as well as how disruption of these processes can lead to NEC.
Collapse
|
23
|
Hackam DJ. Anemia, blood transfusions, and necrotizing enterocolitis in premature infants. Pediatr Res 2022; 91:1317-1319. [PMID: 35292729 DOI: 10.1038/s41390-022-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/03/2023]
Affiliation(s)
- David J Hackam
- Professor and Chief of Pediatric Surgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Hua M, Duan A, Li Q, Yue J, Liu X, Yuan L, Liu J, Chen C. Alteration of microbiota and immune response of mice gavaged with Klebsiella oxytoca. Microbes Infect 2022; 24:104977. [DOI: 10.1016/j.micinf.2022.104977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
|
25
|
Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. NEWBORN 2022; 1:32-43. [PMID: 35846894 PMCID: PMC9286028 DOI: 10.5005/jp-journals-11002-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
26
|
Zhou X, Liao Y. Gut-Lung Crosstalk in Sepsis-Induced Acute Lung Injury. Front Microbiol 2022; 12:779620. [PMID: 35003009 PMCID: PMC8733643 DOI: 10.3389/fmicb.2021.779620] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and severe cases of the respiratory system with complicated pathogenesis and high mortality. Sepsis is the leading indirect cause of ALI/ARDS in the intensive care unit (ICU). The pathogenesis of septic ALI/ARDS is complex and multifactorial. In the development of sepsis, the disruption of the intestinal barrier function, the alteration of gut microbiota, and the translocation of the intestinal microbiome can lead to systemic and local inflammatory responses, which further alter the immune homeostasis in the systemic environment. Disruption of homeostasis may promote and propagate septic ALI/ARDS. In turn, when ALI occurs, elevated levels of inflammatory cytokines and the shift of the lung microbiome may lead to the dysregulation of the intestinal microbiome and the disruption of the intestinal mucosal barrier. Thus, the interaction between the lung and the gut can initiate and potentiate sepsis-induced ALI/ARDS. The gut–lung crosstalk may be a promising potential target for intervention. This article reviews the underlying mechanism of gut-lung crosstalk in septic ALI/ARDS.
Collapse
Affiliation(s)
- Xin Zhou
- Department of ICU/Emergency, Wuhan University, Wuhan Third Hospital, Wuhan, China
| | - Youxia Liao
- Department of ICU/Emergency, Wuhan University, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
27
|
Tian Y, Mao M, Cao X, Zhu H, Shen C. Identification and Validation of Autophagy-Related Genes in Necrotizing Enterocolitis. Front Pediatr 2022; 10:839110. [PMID: 35573972 PMCID: PMC9096030 DOI: 10.3389/fped.2022.839110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autophagy plays an essential role in the occurrence and progression of necrotizing enterocolitis (NEC). We intend to carry out the identification and validation of the probable autophagy-related genes of NEC via bioinformatics methods and experiment trials. METHODS The autophagy-related differentially expressed genes (arDEGs) of NEC were identified by analyzing the RNA sequencing data of the experiment neonatal mouse model and dataset GSE46619. Protein-protein interactions (PPIs), Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used for the arDEGs. Then, co-expressed autophagy-related genes in two datasets were identified by Venn analysis and verified by qRT-PCR in experimental NEC. RESULTS Autophagy increased in experimental NEC and 47 arDEGs were identified in experimental NEC by RNA-sequencing. The PPI results proclaimed those genes interplayed with each other. The GO and KEGG enrichment results of arDEGs reported certain enriched pathways related to autophagy and macroautophagy. Furthermore, 22 arDEGs were identified in human NEC from dataset GSE46619. The GO and KEGG enrichment analysis of these genes showed similar enriched terms with the results of experimental NEC. Finally, HIF-1a, VEGFA, ITGA3, ITGA6, ITGB4, and NAMPT were identified as co-expressed autophagy-related genes by Venn analysis in human NEC from dataset GSE46619 and experimental NEC. The result of quantified real-time PCR (qRT-PCR) revealed that the expression levels of HIF-1a and ITGA3 were upregulated, while VEGFA and ITGB4 were downregulated in experimental NEC. CONCLUSION We identified 47 arDEGs in experimental NEC and 22 arDEGs in human NEC via bioinformatics analysis. HIF-1a, ITGA3, VEGFA, and ITGB4 may have effects on the progression of NEC through modulating autophagy.
Collapse
Affiliation(s)
- Yuxin Tian
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mengjia Mao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xuqing Cao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Haitao Zhu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chun Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
28
|
SIGIRR Mutation in Human Necrotizing Enterocolitis (NEC) Disrupts STAT3-Dependent microRNA Expression in Neonatal Gut. Cell Mol Gastroenterol Hepatol 2021; 13:425-440. [PMID: 34563711 PMCID: PMC8688179 DOI: 10.1016/j.jcmgh.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin interleukin-1-related receptor (SIGIRR) is a major inhibitor of Toll-like receptor signaling. Our laboratory identified a novel SIGIRR stop mutation (p.Y168X) in an infant who died of severe necrotizing enterocolitis (NEC). Herein, we investigated the mechanisms by which SIGIRR mutations induce Toll-like receptor hyper-responsiveness in the neonatal gut, disrupting postnatal intestinal adaptation. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate transgenic mice encoding the SIGIRR p.Y168X mutation. Ileal lysates, mouse intestinal epithelial cell (IEC) lysates, and intestinal sections were used to assess inflammation, signal transducer and activator of transcription 3 (STAT3) phosphorylation, microRNA (miRNA), and interleukin-1-related-associated kinase 1 (IRAK1) expression. Western blot, quantitative reverse-transcription polymerase chain reaction(qRT-PCR), and luciferase assays were performed to investigate SIGIRR-STAT3 signaling in human intestinal epithelial cells (HIEC) expressing wild-type or SIGIRR (p.Y168X) plasmids. RESULTS SigirrTg mice showed increased intestinal inflammation and nuclear factor-κB activation concomitant with decreased IEC expression of miR-146a and miR-155. Mechanistic studies in HIECs showed that although SIGIRR induced STAT3-mediated expression of miR-146a and miR-155, the p.Y168X mutation disrupted SIGIRR-mediated STAT3-dependent miRNA expression. Chromatin immunoprecipitation and luciferase assays showed that SIGIRR activation of STAT3-induced miRNA expression is dependent on IRAK1. Both in HIECs and in the mouse intestine, decreased expression of miR-146a observed with the p.Y168X mutation increased expression of IRAK1, a protein whose down-regulation is important for postnatal gut adaptation. CONCLUSIONS Our results uncover a novel pathway (SIGIRR-STAT3-miRNA-IRAK1 repression) by which SIGIRR regulates postnatal intestine adaptation, which is disrupted by a SIGIRR mutation identified in human NEC. These data provide new insights into how human genetic mutations in SIGIRR identified in NEC result in loss of postnatal intestinal immune tolerance.
Collapse
|
29
|
De Fazio L, Beghetti I, Bertuccio SN, Marsico C, Martini S, Masetti R, Pession A, Corvaglia L, Aceti A. Necrotizing Enterocolitis: Overview on In Vitro Models. Int J Mol Sci 2021; 22:6761. [PMID: 34201786 PMCID: PMC8268427 DOI: 10.3390/ijms22136761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a gut inflammatory disorder which constitutes one of the leading causes of morbidity and mortality for preterm infants. The pathophysiology of NEC is yet to be fully understood; several observational studies have led to the identification of multiple factors involved in the pathophysiology of the disease, including gut immaturity and dysbiosis of the intestinal microbiome. Given the complex interactions between microbiota, enterocytes, and immune cells, and the limited access to fetal human tissues for experimental studies, animal models have long been essential to describe NEC mechanisms. However, at present there is no animal model perfectly mimicking human NEC; furthermore, the disease mechanisms appear too complex to be studied in single-cell cultures. Thus, researchers have developed new approaches in which intestinal epithelial cells are exposed to a combination of environmental and microbial factors which can potentially trigger NEC. In addition, organoids have gained increasing attention as promising models for studying NEC development. Currently, several in vitro models have been proposed and have contributed to describe the disease in deeper detail. In this paper, we will provide an updated review of available in vitro models of NEC and an overview of current knowledge regarding its molecular underpinnings.
Collapse
Affiliation(s)
- Luigia De Fazio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Isadora Beghetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Concetta Marsico
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| |
Collapse
|
30
|
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease affecting premature infants. Intestinal microbial composition may play a key role in determining which infants are predisposed to NEC and when infants are at highest risk of developing NEC. It is unclear how to optimize antibiotic therapy in preterm infants to prevent NEC and how to optimize antibiotic regimens to treat neonates with NEC. This article discusses risk factors for NEC, how dysbiosis in preterm infants plays a role in the pathogenesis of NEC, and how probiotic and antibiotic therapy may be used to prevent and/or treat NEC and its sequelae.
Collapse
Affiliation(s)
- Jennifer Duchon
- Division of Newborn Medicine, Jack and Lucy Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1000 10th Avenue, New York, NY 10019, USA
| | - Maria E Barbian
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, 3rd Floor, Atlanta, GA 30322, USA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Children's Healthcare of Atlanta, Emory University Hospital Midtown, 550 Peachtree Street, 3rd Floor MOT, Atlanta, GA 30308, USA.
| |
Collapse
|
31
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
32
|
Sampah MES, Hackam DJ. Prenatal Immunity and Influences on Necrotizing Enterocolitis and Associated Neonatal Disorders. Front Immunol 2021; 12:650709. [PMID: 33968047 PMCID: PMC8097145 DOI: 10.3389/fimmu.2021.650709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Prior to birth, the neonate has limited exposure to pathogens. The transition from the intra-uterine to the postnatal environment initiates a series of complex interactions between the newborn host and a variety of potential pathogens that persist over the first few weeks of life. This transition is particularly complex in the case of the premature and very low birth weight infant, who may be susceptible to many disorders as a result of an immature and underdeveloped immune system. Chief amongst these disorders is necrotizing enterocolitis (NEC), an acute inflammatory disorder that leads to necrosis of the intestine, and which can affect multiple systems and have the potential to result in long term effects if the infant is to survive. Here, we examine what is known about the interplay of the immune system with the maternal uterine environment, microbes, nutritional and other factors in the pathogenesis of neonatal pathologies such as NEC, while also taking into consideration the effects on the long-term health of affected children.
Collapse
Affiliation(s)
| | - David J. Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, United States
| |
Collapse
|
33
|
Liu L, Aron CZ, Grable CM, Robles A, Liu X, Liu Y, Fatheree NY, Rhoads JM, Alcorn JL. Surfactant protein A reduces TLR4 and inflammatory cytokine mRNA levels in neonatal mouse ileum. Sci Rep 2021; 11:2593. [PMID: 33510368 PMCID: PMC7843620 DOI: 10.1038/s41598-021-82219-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
Levels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A-/-) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A-/- mice compared to wild type mice. Gavage of neonatal SP-A-/- mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A-/- mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110036, China
| | - Chaim Z Aron
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA
| | - Cullen M Grable
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adrian Robles
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiangli Liu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuying Liu
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nicole Y Fatheree
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - J Marc Rhoads
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joseph L Alcorn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin, Suite 3.222, Houston, TX, 77030, USA. .,Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Paveglio S, Ledala N, Rezaul K, Lin Q, Zhou Y, Provatas AA, Bennett E, Lindberg T, Caimano M, Matson AP. Cytotoxin-producing Klebsiella oxytoca in the preterm gut and its association with necrotizing enterocolitis. Emerg Microbes Infect 2021; 9:1321-1329. [PMID: 32525754 PMCID: PMC7473113 DOI: 10.1080/22221751.2020.1773743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal inflammatory disease of premature infants associated with gut bacterial dysbiosis. Using 16S rRNA-based methods, our laboratory identified an unclassified Enterobacteriaceae sequence (NEC_unk_OTU) with high abundance in NEC fecal samples. We aimed to identify this bacterium and determine its potential role in the disease. NCBI database searches for the 16S sequence, selective culture systems, biotyping and polymerase chain reaction were employed to refine classification of NEC_unk_OTU and identify toxin-encoding genes from the index NEC case. Bacterial cytotoxin production was confirmed by mass spectrometry and apoptosis assays. Additional fecal samples from 9 NEC and 5 non-NEC controls were analyzed using similar methods and multi-locus sequence typing (MLST) was performed to investigate clonal relationships and define sequence types of the isolates. NEC_unk_OTU was identified as Klebsiella oxytoca, a pathobiont known to cause antibiotic-associated hemorrhagic colitis, but not previously linked to NEC. Including the index case, cytotoxin-producing strains of K. oxytoca were isolated from 6 of 10 subjects with NEC; in these, the K. oxytoca 16S sequence predominated the fecal microbiota. Cytotoxin-producing strains of K. oxytoca also were isolated from 4 of 5 controls; in these, however, the abundance of the corresponding 16S sequence was very low. MLST analysis of the toxin-positive isolates demonstrated no clonal relationships and similar genetic clustering between cases and controls. These results suggest cytotoxin-producing strains of K. oxytoca colonize a substantial proportion of premature infants. Some, perhaps many, cases of NEC may be precipitated by outgrowth of this opportunistic pathogen.
Collapse
Affiliation(s)
- Sara Paveglio
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, UConn Health, Farmington, CT, USA
| | | | - Karim Rezaul
- Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Qingqi Lin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Yanjiao Zhou
- Department of Medicine, UConn Health, Farmington, CT, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Anthony A Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Erin Bennett
- Department of Research, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Tristan Lindberg
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Melissa Caimano
- Department of Pediatrics, UConn Health, Farmington, CT, USA.,Department of Medicine, UConn Health, Farmington, CT, USA.,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Adam P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, UConn Health, Farmington, CT, USA.,Department of Immunology, UConn Health, Farmington, CT, USA
| |
Collapse
|
35
|
Wang X, Sun Y, Wang F, You L, Cao Y, Tang R, Wen J, Cui X. A novel endogenous antimicrobial peptide CAMP 211-225 derived from casein in human milk. Food Funct 2021; 11:2291-2298. [PMID: 32104859 DOI: 10.1039/c9fo02813g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large number of bioactive peptides derived from breast milk have been identified to be multifunctional having anti-inflammatory, immunoregulatory and antimicrobial activities. Here, we report that an endogenous peptide located at β-casein 211-225 amino acid from human breast milk (hereafter called CAMP211-225) presents specific antimicrobial activity against pathogenic E. coli and Y. enterocolitica. CAMP211-225 is a novel peptide that occurs at higher levels in preterm milk than in term milk. The minimal inhibitory concentrations (MIC) of CAMP211-225 against E. coli and Y. enterocolitica are 3.125 μg ml-1 and 6.25 μg ml-1, respectively, and the antimicrobial activity of CAMP211-225 was also confirmed by a disk diffusion assay. Further studies using fluorescence staining, scanning electron microscopy and a DNA-binding assay revealed that CAMP211-225 kills bacteria through a membrane-disrupting mechanism, but not by binding to intracellular nucleic acids. Neonatal necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease in neonatal intensive care units. In our study, CAMP211-225 administration effectively reduced ileal mucosa damage in an experimental NEC mice model. These results suggest that the antimicrobial peptide CAMP211-225 may have potential value in the prevention and treatment of neonatal infections.
Collapse
Affiliation(s)
- Xing Wang
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Yazhou Sun
- Department of Pediatrics, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Fei Wang
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Yan Cao
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Hospital, the Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China.
| |
Collapse
|
36
|
Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 2021; 9:713344. [PMID: 34712628 PMCID: PMC8547806 DOI: 10.3389/fped.2021.713344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) represents one of the major causes of morbidity and mortality in premature infants. Several recent studies, however, have contributed to a better understanding of the pathophysiology of this dreadful disease. Numerous intracellular pathways play a key role in NEC, namely: bacterial lipopolysaccharide (LPS), LPS toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. In a large number of pathologies, canonical Wnt/β-catenin signaling and PPARγ operate in opposition to one another, so that when one of the two pathways is overexpressed the other is downregulated and vice-versa. In NEC, activation of TLR4 by LPS leads to downregulation of the canonical Wnt/β-catenin signaling and upregulation of PPARγ. This review aims to shed light on the complex intracellular mechanisms involved in this pathophysiological profile by examining additional pathways such as the GSK-3β, NF-κB, TGF-β/Smads, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Alexia Gomart
- Département de Pédiatrie et Médecine de l'adolescent, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
37
|
Yu S, Lv Z, Gao Z, Shi J, Sheng Q, Zheng L, Zhou J, Wang X. Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis. Front Pediatr 2021; 9:710382. [PMID: 34869093 PMCID: PMC8635714 DOI: 10.3389/fped.2021.710382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Hydrogen is protective against intestinal injury in necrotizing enterocolitis (NEC), mainly through to alleviate inflammation response. The M1 macrophages can promote inflammation. We hypothesized that hydrogen would promote the M1 macrophages conversion during the polarization and reduce the inflammatory factors in NEC. Methods: We used M1 and M2 macrophages induced from RAW264.7 cells and bone marrow-derived macrophages, models of NEC and macrophages derived from spleens, abdominal lymph nodes and lamina propria in model mice. Cytokines, CD16/32 and CD206 were measured by quantitative PCR, flow cytometry. Nuclear factor-κB (NF-κB) p65 were determined by western blot. Histology staining were used to assess the severity of NEC. Results: Macrophages were successfully polarized to M1 or M2 by assessing the expression of inflammatory factors. Pro-inflammatory factors and CD16/32 in M1 macrophages were decreased, and the expression of CD16/32 in lamina propria were inhibited after treatment with hydrogen, but the changes has no effects in other tissues. Hydrogen inhibited the NF-κB p65 in M1 macrophages nucleus and distal ileum of NEC. HE staining showed hydrogen could attenuate the severity of NEC. Conclusion: Hydrogen could attenuate the severity of NEC through promoting M1 macrophages conversion by inhibited the expression of NF-κB p65 in the nucleus.
Collapse
Affiliation(s)
- Shenghua Yu
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - ZhiBao Lv
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Zhimei Gao
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai, China
| | - Qingfeng Sheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Lulu Zheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Junmei Zhou
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Xueli Wang
- Department of Pathology, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
38
|
Hui Y, Smith B, Mortensen MS, Krych L, Sørensen SJ, Greisen G, Krogfelt KA, Nielsen DS. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes 2021; 13:1951113. [PMID: 34264803 PMCID: PMC8284123 DOI: 10.1080/19490976.2021.1951113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 02/04/2023] Open
Abstract
Premature birth, especially if born before week 32 of gestation, is associated with increased risk of neonatal morbidity and mortality. Prophylactic use of probiotics has been suggested to protect preterm infants via supporting a healthy gut microbiota (GM) development, but the suggested strains and doses vary between studies. In this study, we profiled the GM of 5, 10 and 30-day fecal samples from two cohorts of preterm neonates (born <30 weeks of gestation) recruited in the same neonatal intensive care unit. One cohort (n = 165) was recruited from September 2006 to January 2009 before probiotics were introduced in the clinic. The second cohort (n = 87) was recruited from May 2010 to October 2011 after introducing Lacticaseibacillus rhamnosus GG and Bifidobacterium animalis ssp. lactis BB-12 supplementation policy. Through V3-V4 region 16S rRNA gene amplicon sequencing, a distinct increase of L. rhamnosus and B. animalis was found in the fecal samples of neonates supplemented with probiotics. During the first 30 days of life, the preterm GM went through similarly patterned progression of bacterial populations. Staphylococcus and Weissella dominated in early samples, but was gradually overtaken by Veillonella, Enterococcus and Enterobacteriaceae. Probiotic supplementation was associated with pronounced reduction of Weissella, Veillonella spp. and the opportunistic pathogen Klebsiella. Potential nosocomial pathogens Citrobacter and Chryseobacterium species also gradually phased out. In conclusion, probiotic supplementation to preterm neonates affected gut colonization by certain bacteria, but did not change the overall longitudinal bacterial progression in the neonatal period.Abbreviations: GM: Gut microbiota; ASV: Amplicon sequence variant; NEC: Necrotizing enterocolitis; DOL: Days of life; NICU: Neonatal intensive care unit; ESPGHAN: European Society for Pediatric Gastroenterology, Hepatology and Nutrition; Db-RDA: Distance-based redundancy analysis; PERMANOVA: Permutational multivariate analysis of variance; ANCOM: Analysis of compositions of microbiomes; LGG: Lacticaseibacillus (former Lactobacillus) rhamnosus GG; BB-12: Bifidobacterium animalis ssp. lactis BB-12; DGGE: Denaturing Gradient Gel Electrophoresis.
Collapse
Affiliation(s)
- Yan Hui
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Birgitte Smith
- Department of Pediatrics, Hvidovre Hospital, Hvidovre, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, Denmark
| | | | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Søren J. Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
39
|
Xiong C, Du Z, Zhu Y, Xue M, Jiang Y, Zhong Y, Jiang L, Chen H, Shi M. Mycophenolate mofetil preconditioning protects mouse liver against ischemia/reperfusion injury in wild type and toll-like receptor 4 knockout mice. Transpl Immunol 2020; 65:101357. [PMID: 33279598 DOI: 10.1016/j.trim.2020.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mycophenolate mofetil (MMF), an immunosuppressive drug, exerts anti-inflammatory effects on organs during ischemia/reperfusion (I/R) injury. However, the exact function of MMF in hepatic I/R injury remains largely unknown. The purpose of this study was to explore the role and potential mechanism of MMF protection in hepatic I/R injury. METHODS Male wild type (WT) and TLR4 knockout (KO) mice were injected intraperitoneally with MMF or normal saline. Animals underwent 90 min of partial hepatic ischemia, followed by 1, 6, or 24 h of reperfusion. Hepatic histology, serum amiotransferase, inflammatory cytokines, hepatocyte apoptosis, and hepatocyte autophagy were examined to assess liver injury. RESULTS Treatment with MMF significantly decreased hepatic I/R injury as indicated by a reduction in serum aminotransferase levels, Suzuki scores, and the overall degree of necrosis. MMF treatment inhibited TLR4 activation dramatically. MMF administration also significantly inhibited the activation of the NF-κB pathway and the expression of pro-inflammatory cytokines. In TLR4 KO mice, MMF still exerted protection from hepatic I/R injury. MMF treatment inhibited hepatocyte apoptosis, as indicated by reduced TUNEL staining, and reduced the accumulation of cleaved caspase-3. In addition, MMF may induce autophagy and increase autophagic flux before and after hepatic reperfusion by augmenting the expression of LC3-II, P62, and Beclin-1. The induction of autophagy by MMF treatment may be related to TLR4 activation. CONCLUSIONS Our results indicate that MMF treatment ameliorates hepatic I/R injury. The mechanism of action likely involves the ability of MMF to decrease apoptosis and the inflammatory response while inducing autophagy.
Collapse
Affiliation(s)
- Cheng Xiong
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhendong Du
- Department of Laboratory Medicine, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Meilin Xue
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Minmin Shi
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Sun J, Zhang J, Wang X, Ji F, Ronco C, Tian J, Yin Y. Gut-liver crosstalk in sepsis-induced liver injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:614. [PMID: 33076940 PMCID: PMC7574296 DOI: 10.1186/s13054-020-03327-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Sepsis is characterized by a dysregulated immune response to infection leading to life-threatening organ dysfunction. Sepsis-induced liver injury is recognized as a powerful independent predictor of mortality in the intensive care unit. During systemic infections, the liver regulates immune defenses via bacterial clearance, production of acute-phase proteins (APPs) and cytokines, and metabolic adaptation to inflammation. Increased levels of inflammatory cytokines and impaired bacterial clearance and disrupted metabolic products can cause gut microbiota dysbiosis and disruption of the intestinal mucosal barrier. Changes in the gut microbiota play crucial roles in liver injury during sepsis. Bacterial translocation and resulting intestinal inflammation lead to a systemic inflammatory response and acute liver injury. The gut-liver crosstalk is a potential target for therapeutic interventions. This review analyzes the underlying mechanisms for the gut-liver crosstalk in sepsis-induced liver injury.
Collapse
Affiliation(s)
- Jian Sun
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.,International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.,International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Xiangfeng Wang
- Department of Pharmacy, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fuxi Ji
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Jiakun Tian
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
41
|
Shadab M, Millar MW, Slavin SA, Leonard A, Fazal F, Rahman A. Autophagy protein ATG7 is a critical regulator of endothelial cell inflammation and permeability. Sci Rep 2020; 10:13708. [PMID: 32792588 PMCID: PMC7426828 DOI: 10.1038/s41598-020-70126-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell (EC) inflammation and permeability are critical pathogenic mechanisms in many inflammatory conditions including acute lung injury. In this study, we investigated the role of ATG7, an essential autophagy regulator with no autophagy-unrelated functions, in the mechanism of EC inflammation and permeability. Knockdown of ATG7 using si-RNA significantly attenuated thrombin-induced expression of proinflammatory molecules such as IL-6, MCP-1, ICAM-1 and VCAM-1. Mechanistic study implicated reduced NF-κB activity in the inhibition of EC inflammation in ATG7-silenced cells. Moreover, depletion of ATG7 markedly reduced the binding of RelA/p65 to DNA in the nucleus. Surprisingly, the thrombin-induced degradation of IκBα in the cytosol was not affected in ATG7-depleted cells, suggesting a defect in the translocation of released RelA/p65 to the nucleus in these cells. This is likely due to suppression of thrombin-induced phosphorylation and thereby inactivation of Cofilin1, an actin-depolymerizing protein, in ATG7-depleted cells. Actin stress fiber dynamics are required for thrombin-induced translocation of RelA/p65 to the nucleus, and indeed our results showed that ATG7 silencing inhibited this response via inactivation of Cofilin1. ATG7 silencing also reduced thrombin-mediated EC permeability by inhibiting the disassembly of VE-cadherin at adherens junctions. Together, these data uncover a novel function of ATG7 in mediating EC inflammation and permeability, and provide a mechanistic basis for the linkage between autophagy and EC dysfunction.
Collapse
Affiliation(s)
- Mohammad Shadab
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Michelle Warren Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
42
|
Shelby RD, Raab R, Besner GE, McElroy SJ. Hope on the horizon: promising novel therapies for necrotizing enterocolitis. Pediatr Res 2020; 88:30-34. [PMID: 32855510 DOI: 10.1038/s41390-020-1077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) remains among the most common and devastating diseases in neonates. Despite advances in neonatal clinical care, specific treatment strategies and diagnostic modalities remain lacking. As a result, morbidity and mortality remain high. Improved understanding of the pathogenesis of NEC has the potential for improved therapeutics. Some of the areas of research leading to promising discoveries include inhibition of Toll-like receptor signaling, modulation of vascular endothelial growth factor signal pathways, defining metabolomic alterations in NEC to discover potential biomarkers, probing for genetic predispositions to NEC susceptibility, determining mechanistic relations between anemia and NEC, and microflora modulation through the use of probiotics. All of these areas may represent novel promising approaches to the prevention and treatment of NEC. This review will focus on these current and possible therapeutic perspectives.
Collapse
Affiliation(s)
- Rita D Shelby
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Steven J McElroy
- Stead Family Department of Pediatrics and Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
43
|
Kovler ML, Sodhi CP, Hackam DJ. Precision-based modeling approaches for necrotizing enterocolitis. Dis Model Mech 2020; 13:dmm044388. [PMID: 32764156 PMCID: PMC7328169 DOI: 10.1242/dmm.044388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and remains stubbornly difficult to treat in many cases. Much of our understanding of NEC pathogenesis has been gained through the study of highly translational animal models. However, most models of NEC are limited by their overall complexity and by the fact that they do not incorporate human tissue. To address these limitations, investigators have recently developed precision-based ex vivo models of NEC, also termed 'NEC-in-a-dish' models, which provide the opportunity to increase our understanding of this disease and for drug discovery. These approaches involve exposing intestinal cells from either humans or animals with or without NEC to a combination of environmental and microbial factors associated with NEC pathogenesis. This Review highlights the current progress in the field of NEC model development, introduces NEC-in-a-dish models as a means to understand NEC pathogenesis and examines the fundamental questions that remain unanswered in NEC research. By answering these questions, and through a renewed focus on precision model development, the research community may finally achieve enduring success in improving the outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Mark L Kovler
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Sampah MES, Hackam DJ. Dysregulated Mucosal Immunity and Associated Pathogeneses in Preterm Neonates. Front Immunol 2020; 11:899. [PMID: 32499778 PMCID: PMC7243348 DOI: 10.3389/fimmu.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many functions of the immune system are impaired in neonates, allowing vulnerability to serious bacterial, viral and fungal infections which would otherwise not be pathogenic to mature individuals. This vulnerability is exacerbated in compromised newborns such as premature neonates and those who have undergone surgery or who require care in an intensive care unit. Higher susceptibility of preterm neonates to infections is associated with delayed immune system maturation, with deficiencies present in both the innate and adaptive immune components. Here, we review recent insights into early life immunity, and highlight features associated with compromised newborns, given the challenges of studying neonatal immunity in compromised neonates due to the transient nature of this period of life, and logistical and ethical obstacles posed by undertaking studies newborns and infants. Finally, we highlight how the unique immunological characteristics of the premature host play key roles in the pathogenesis of diseases that are unique to this population, including necrotizing enterocolitis and the associated sequalae of lung and brain injury.
Collapse
Affiliation(s)
- Maame Efua S Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Feeding Formula Eliminates the Necessity of Bacterial Dysbiosis and Induces Inflammation and Injury in the Paneth Cell Disruption Murine NEC Model in an Osmolality-Dependent Manner. Nutrients 2020; 12:nu12040900. [PMID: 32224880 PMCID: PMC7230818 DOI: 10.3390/nu12040900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) remains a significant cause of morbidity and mortality in preterm infants. Formula feeding is a risk factor for NEC and osmolality, which is increased by the fortification that is required for adequate growth of the infant, has been suggested as a potential cause. Our laboratory has shown that Paneth cell disruption followed by induction of dysbiosis can induce NEC-like pathology in the absence of feeds. We hypothesized adding formula feeds to the model would exacerbate intestinal injury and inflammation in an osmolality-dependent manner. NEC-like injury was induced in 14-16 day-old C57Bl/6J mice by Paneth cell disruption with dithizone or diphtheria toxin, followed by feeding rodent milk substitute with varying osmolality (250-1491 mOsm/kg H2O). Animal weight, serum cytokines and osmolality, small intestinal injury, and cecal microbial composition were quantified. Paneth cell-disrupted mice fed formula had significant NEC scores compared to controls and no longer required induction of bacterial dysbiosis. Significant increases in serum inflammatory markers, small intestinal damage, and overall mortality were osmolality-dependent and not related to microbial changes. Overall, formula feeding in combination with Paneth cell disruption induced NEC-like injury in an osmolality-dependent manner, emphasizing the importance of vigilance in designing preterm infant feeds.
Collapse
|
46
|
Hou L, Le G, Lin Z, Qian G, Gan F, Gu C, Jiang S, Mu J, Ge L, Huang K. Nontoxic concentration of ochratoxin A decreases the dosage of cyclosporine A to induce chronic nephropathy model via autophagy mediated by toll-like receptor 4. Cell Death Dis 2020; 11:153. [PMID: 32108135 PMCID: PMC7046648 DOI: 10.1038/s41419-020-2353-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
Cyclosporine A (CsA) extracted from the products of fungal fermentation is used to develop a chronic nephropathy model. However, it has numerous side effects. Ochratoxin A (OTA) is a mycotoxin that induces renal injury. We developed a chronic nephropathy model to lessen the side effects of CsA by administration of nontoxic dosage of OTA, and investigated the underlying mechanism. C57BL/10 wild-type mice, toll-like receptor 4 (TLR4)-/- mice, and HK-2 cells were used in this study. The nontoxic dosage (0.25 mg/kg, qod) of OTA could significantly decrease the dosage of CsA from 30 to 20 mg/kg per day, and combination of them induced chronic nephropathy model and alleviated the side effects of onefold CsA in vivo, including cardiotoxicity, hepatotoxicity, and immunosuppression. The nontoxic concentration (0.5 μg/ml) of OTA could significantly decrease the concentration of CsA from 10 to 6 μg/ml that induced cytotoxicity, oxidative stress, and nephrotoxicity in vitro. Nontoxic concentration of OTA and low dosage of CsA activated TLR4 and autophagy. These toxic effects induced by OTA and CsA could be reversed by knockdown of TLR4 and autophagy inhibitor 3-methyladenine in vitro. Furthermore, the renal injury and autophagy induced by OTA and CsA could be attenuated in TLR4-/- mice. It suggested that a chronic nephropathy model had been successfully developed by administration of nontoxic concentration of OTA and low dosage of CsA via TLR4-mediated autophagy. The side effects of current model were significantly lesser than those of the previous model induced by onefold CsA. It provided a new tool for exploring the pathogenesis and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cong Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuai Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiaxin Mu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
47
|
Abstract
The gut is a continuously renewing organ, with cell proliferation, migration, and death occurring rapidly under basal conditions. As the impact of critical illness on cell movement from crypt base to villus tip is poorly understood, the purpose of this study was to determine how sepsis alters enterocyte migration. Wild-type, transgenic, and knockout mice were injected with 5-bromo-2'deoxyuridine (BrdU) to label cells in S-phase before and after the onset of cecal ligation and puncture and were sacrificed at predetermined endpoints to determine distance proliferating cells migrated up the crypt-villus unit. Enterocyte migration rate was decreased from 24 to 96 h after sepsis. BrdU was not detectable on villi 6 days after sham laparotomy, meaning all cells had migrated the length of the gut and been exfoliated into its lumen. However, BrdU positive cells were detectable on villi 10 days after sepsis. Multiple components of gut integrity altered enterocyte migration. Sepsis decreased crypt proliferation, which further slowed enterocyte transit as mice injected with BrdU after the onset of sepsis (decreased proliferation) had slower migration than mice injected with BrdU before the onset of sepsis (normal proliferation). Decreasing intestinal apoptosis via gut-specific overexpression of Bcl-2 prevented sepsis-induced slowing of enterocyte migration. In contrast, worsened intestinal hyperpermeability by genetic deletion of JAM-A increased enterocyte migration. Sepsis therefore significantly slows enterocyte migration, and intestinal proliferation, apoptosis and permeability all affect migration time, which can potentially be targeted both genetically and pharmacologically.
Collapse
|
48
|
Innate immune receptor NOD2 mediates LGR5 + intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation. Proc Natl Acad Sci U S A 2020; 117:1994-2003. [PMID: 31919280 PMCID: PMC6994981 DOI: 10.1073/pnas.1902788117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist muramyl dipeptide (MDP), a peptidoglycan motif common to all bacteria, supports leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)+ intestinal stem cell (ISC) survival through NOD2 activation upon an otherwise lethal oxidative stress-mediated signal. However, the underlying protective mechanisms remain unknown. Here, using irradiation as stressor and primarily murine-derived intestinal organoids as a model system, we show that MDP induced a significant reduction of total and mitochondrial reactive oxygen species (ROS) within ISCs, which was associated with mitophagy induction. ATG16L1 knockout (KO) and NOD2 KO organoids did not benefit from the MDP-induced cytoprotection. We confirmed the MDP-dependent induction of ISC mitophagy upon stress in vivo. These findings elucidate the NOD2-mediated mechanism of cytoprotection involving the clearance of the lethal excess of ROS molecules through mitophagy, triggered by the coordinated activation of NOD2 and ATG16L1 by a nuclear factor κB (NF-κB)-independent pathway.
Collapse
|
49
|
Chen L, Lv Z, Gao Z, Ge G, Wang X, Zhou J, Sheng Q. Human β-defensin-3 reduces excessive autophagy in intestinal epithelial cells and in experimental necrotizing enterocolitis. Sci Rep 2019; 9:19890. [PMID: 31882811 PMCID: PMC6934505 DOI: 10.1038/s41598-019-56535-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of mortality in preterm newborns. Intestinal barrier dysfunction is one key event in NEC pathogenesis. Human β-defensin-3 (hBD3), one member of cationic host defence peptides, was reported to reduce the development of necrotizing enterocolitis in a neonatal rat model. And autophagy was induced in the intestine of human and animals with NEC. We hypothesized that regulation of autophagy might play a critical role in hBD3-mediated protection against NEC injury. Autophagy activity was evaluated both in intestinal epithelial cells and in NEC models. Newborn Sprague-Dawley rats were divided randomly into four groups: Control + NS, Control + rapamycin, NEC + NS, and NEC + hBD3. Body weight, histological score, survival time, enterocyte migration and mucosal barrier were recorded. Our results showed that hBD3 pretreatment could effectively inhibit autophagy activity in cultured IEC-6 and Caco2 enterocytes, and CXCR4 might be involved in hBD3-mediated autophagy suppression. Moreover, hBD3-induced inhibition of autophagy significantly promoted the intestinal epithelial cell migration by wound healing assay and transwell migration assay. In the rat model of NEC, hBD3 could noticeably reduce the expression of autophagy-activated proteins, down-regulate the expression of inflammatory mediators, and promote the mucosal integrity. Our data suggest an additional role of hBD3-mediated protection against intestinal mucosal injury: inhibition of over-activated autophagy in enterocytes.
Collapse
Affiliation(s)
- Liping Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Zhimei Gao
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Guijie Ge
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xueli Wang
- Department of Pathology, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Junmei Zhou
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
50
|
Yamoto M, Lee C, Chusilp S, Yazaki Y, Alganabi M, Li B, Pierro A. The role of autophagy in intestinal epithelial injury. Pediatr Surg Int 2019; 35:1389-1394. [PMID: 31555857 DOI: 10.1007/s00383-019-04566-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE Autophagy is a natural mechanism aimed to degrade and recycle cellular components within cells. Previous studies reported that autophagy in the intestinal epithelium can be activated and that excessive autophagy can have negative consequences. However, the mechanism by which autophagy is regulated during intestinal epithelial injury remains unclear. This study aimed to investigate the mechanism of autophagy regulation during intestinal epithelial cells (IEC) injury. METHODS Rat IEC18 were exposed to hypoxia and Lipopolysaccharide (LPS) (200 μg/ml) to induce injury. IEC18 were treated with autophagy initiation inhibitor, Wortmannin or with autophagy degradation inhibitor, Bafilomycin A1 were added for 24 h. We assessed the number and diameter of autophagic vacuoles, Cell viability, inflammation and apoptosis. RESULTS Hypoxia and LPS administration increased the number and diameter of autophagic vacuoles in IEC18. Wortmannin administration reduced the number and diameter of autophagic vacuoles. On the contrary, Bafilomycin A1 administration increased the number of autophagic vacuoles. Cell viability increased following administration of Wortmannin and decreased following administration of Bafilomycin A1. CONCLUSIONS We found that accumulation of autophagic vacuoles which characterize excessive or incomplete autophagy was detrimental to cell survival. This was shown by an increase in the number and size of the autophagic vacuoles with Bafilomycin A1treatment after hypoxia and LPS stressors relative to hypoxia and LPS alone. Conversely, there was a decrease in the number of autophagic vacuoles with Wortmannin treatment after hypoxia and LPS stressors relative to hypoxia and LPS alone. Therefore, reducing autophagosomes accumulation may represent a novel therapeutic strategy for intestinal injury.
Collapse
Affiliation(s)
- Masaya Yamoto
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.,Department of Pediatric Surgery, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.,Division of Pediatric Surgery, Department of Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Yuta Yazaki
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Division Head, Pediatric Surgery, Robert M. Filler Professor of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|