1
|
Holers VM. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol Rev 2023; 313:181-193. [PMID: 36111456 DOI: 10.1111/imr.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complement system plays an important pathophysiologic role in human diseases associated with immune or ischemic insults. In addition to understanding the effector mechanisms that are important for the biological effects of the system, substantial efforts have gone into understanding which specific complement activation pathways generate these potent effects. These approaches include the use of gene-targeted mice and specific pathway inhibitors, as well as the integration of human disease genetic and biomarker studies. In some disease states, it is quite clear that the alternate pathway plays a unique role in the initiation of the complement system. However, although initially a widely unexpected finding, it has now been shown in many tissue-based disease models and in initial human studies that engagement of the amplification loop is also essential for tissue injury when the classical and/or lectin pathways initiate pathway activation through pathogenic autoantibodies. This review provides evidence for such a conclusion through animal models, focusing on pathogenic antibody passive transfer models but also other relevant experimental systems. These data, along with initial biomarkers and clinical trial outcomes in human diseases that are associated with pathogenic autoantibodies, suggest that targeting the alternative pathway amplification loop may have near-universal therapeutic utility for tissue-based diseases.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Banda NK, Deane KD, Bemis EA, Strickland C, Seifert J, Jordan K, Goldman K, Morgan BP, Moreland LW, Lewis MJ, Pitzalis C, Holers VM. Analysis of Complement Gene Expression, Clinical Associations, and Biodistribution of Complement Proteins in the Synovium of Early Rheumatoid Arthritis Patients Reveals Unique Pathophysiologic Features. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2482-2496. [PMID: 35500934 PMCID: PMC9133225 DOI: 10.4049/jimmunol.2101170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and inflammation. The finding of autoantibodies in seropositive RA suggests that complement system activation might play a pathophysiologic role due to the local presence of immune complexes in the joints. Our first objective was to explore the Pathobiology of Early Arthritis Cohort (PEAC) mRNA sequencing data for correlations between clinical disease severity as measured by DAS28-ESR (disease activity score in 28 joints for erythrocyte sedimentation rate) and complement system gene expression, both in the synovium and in blood. Our second objective was to determine the biodistribution using multiplex immunohistochemical staining of specific complement activation proteins and inhibitors from subjects in the Accelerating Medicines Partnership (AMP) RA/SLE study. In the PEAC study, there were significant positive correlations between specific complement gene mRNA expression levels in the synovium and DAS28-ESR for the following complement genes: C2, FCN1, FCN3, CFB, CFP, C3AR1, C5AR1, and CR1 Additionally, there were significant negative correlations between DAS28-ESR and Colec12, C5, C6, MASP-1, CFH, and MCP In the synovium there were also significant positive correlations between DAS28-ESR and FcγR1A, FcγR1B, FcγR2A, and FcγR3A Notably, CFHR4 synovial expression was positively correlated following treatment with the DAS28-ESR at 6 mo, suggesting a role in worse therapeutic responses. The inverse correlation of C5 RNA expression in the synovium may underlie the failure of significant benefit from C5/C5aR inhibitors in clinical trials performed in patients with RA. Multiplex immunohistochemical analyses of early RA synovium reveal significant evidence of regional alterations of activation and inhibitory factors that likely promote local complement activation.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth A Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin Strickland
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kimberly Jordan
- Human Immune Monitoring Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katriona Goldman
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - B Paul Morgan
- Systems Immunity URI, Division of Infection and Immunity, and UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, U.K
| | - Larry W Moreland
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
Haque A, Cortes C, Alam MN, Sreedhar M, Ferreira VP, Pangburn MK. Characterization of Binding Properties of Individual Functional Sites of Human Complement Factor H. Front Immunol 2020; 11:1728. [PMID: 32849614 PMCID: PMC7417313 DOI: 10.3389/fimmu.2020.01728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Factor H exists as a 155,000 dalton, extended protein composed of twenty small domains which is flexible enough that it folds back on itself. Factor H regulates complement activation through its interactions with C3b and polyanions. Three binding sites for C3b and multiple polyanion binding sites have been identified on Factor H. In intact Factor H these sites appear to act synergistically making their individual contributions difficult to distinguish. Recombinantly expressed fragments of human Factor H were examined using surface plasmon resonance (SPR) for interactions with C3, C3b, iC3b, C3c, and C3d. Eleven recombinant proteins of lengths from one to twenty domains were used to show that the three C3b-binding sites exhibit 100-fold different affinities for C3b. The N-terminal site [complement control protein (CCP) domains 1-6] bound C3b with a Kd of 0.08 μM and this interaction was not influenced by the presence or absence of domains 7 and 8. Full length Factor H similarly exhibited a Kd for C3b of 0.1 μM. Unexpectedly, the N-terminal site (CCP 1-6) bound native C3 with a Kd of 0.4 μM. The C-terminal domains (CCP 19-20) exhibited a Kd of 1.7 μM for C3b. We localized a weak third C3b binding site in the CCP 13-15 region with a Kd estimated to be ~15 μM. The C-terminal site (CCP 19-20) bound C3b, iC3b, and C3d equally well with a Kd of 1 to 2 μM. In order to identify and compare regions of Factor H that interact with polyanions a family of 18 overlapping three domain recombinant proteins spanning the entire length of Factor H were expressed and purified. Immobilized heparin was used as a model polyanion and SPR confirmed the presence of heparin binding sites in CCP 6-8 (Kd 1.2 μM) and in CCP 19-20 (4.9 μM) and suggested the existence of a weak third polyanion binding site in the center of Factor H (CCP 11-13). Our results unveil the relative contributions of different regions of Factor H to its regulation of complement, and may contribute to the understanding of how defects in certain Factor H domains lead to disease.
Collapse
Affiliation(s)
- Aftabul Haque
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - M Nurul Alam
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,Department of Biology, College of Arts, Sciences, and Education, Texas A&M University-Texarkana, Texarkana, TX, United States
| | - Maladi Sreedhar
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Michael K Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
5
|
Wu J, Fan KJ, Wang QS, Xu BX, Cai Q, Wang TY. DMY protects the knee joints of rats with collagen-induced arthritis by inhibition of NF-κB signaling and osteoclastic bone resorption. Food Funct 2020; 11:6251-6264. [PMID: 32596704 DOI: 10.1039/d0fo00396d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Collagen-induced arthritis (CIA) is a widely used animal model for studying rheumatoid arthritis (RA), which manifests serious joint dysfunction, progressive bone erosion and articular cartilage destruction. Considering that joint damage in RA is caused by systemic inflammation and dihydromyricetin (DMY), the main flavonoid of Ampelopsis Michx, possesses anti-inflammatory properties, in the present study we have investigated the potential capability of DMY to inhibit inflammation-mediated joint damage and explore the underlying mechanisms. A rat model of RA induced by CIA was administered with DMY for 5 weeks. Prior to histological analysis, the knee joints were scanned by microcomputed tomography (μCT) to detect bone damage. Articular cartilage destruction was assessed by Alcian blue and Toluidine blue staining and the pathological alteration of osteoblasts and osteoclasts in joints was evaluated by hematoxylin-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining, respectively. The effects of DMY on osteoblast differentiation and osteoclast formation in vitro were investigated. Consistent with the in vivo results, DMY had no significant effect on osteoblast differentiation but an inhibitory effect on osteoclast formation. Furthermore, we determined that the mechanism of the DMY-suppressed osteoclast formation was blocking the phosphorylation of I-κB kinase (IKK) so as to hinder the activation of nuclear factor-κB (NF-κB). Collectively, DMY could ameliorate knee joint damage, especially in articular cartilage, which is the weight-bearing region, by inhibiting osteoclast formation through NF-κB signaling.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
6
|
Alexander JJ, Sankaran JS, Seldeen KL, Thiyagarajan R, Jacob A, Quigg RJ, Troen BR, Judex S. Absence of complement factor H alters bone architecture and dynamics. Immunobiology 2018; 223:761-771. [DOI: 10.1016/j.imbio.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
|
7
|
Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, Peng T, Hunter J, Johnson K, Wang Y, Lundberg AS, Mehta G, Banda NK, Michael Holers V. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol 2018; 105:150-164. [PMID: 30513451 DOI: 10.1016/j.molimm.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Complement activation in human diseases is characterized by the local covalent deposition of the long-lived C3 fragments iC3b/C3dg/C3d. Previously, TT30, a complement alternative pathway (AP)-selective inhibitor, was designed as a fusion protein linking the first four short consensus repeats (SCRs) of human complement receptor type 2 (CR2) with the first five SCRs of human factor H (fH). TT30 acts by utilizing CR2 SCR1-4 to bind the initially formed iC3b/C3dg/C3d fragments and delivering surface-targeted inhibition of AP C3 and C5 convertases through fH SCR 1-5. In order to combine classical (CP) and lectin (LP) pathway inhibitory abilities employing CR2-mediated targeting, TT32 was developed. TT32 is a CR2-CR1 fusion protein using the first ten SCRs of CR1, chosen because they contain both C3 and C5 convertase inhibitory activity through utilization of decay-acceleration and cofactor activity for both AP and CP. In Wieslab assays, TT32 showed potent inhibition of the CP and AP with IC50 of 11 and 46 nM, respectively. The TT32 inhibitory activity is partially blocked with a molar excess of a competing anti-CR2 mAb, thus demonstrating the importance of the CR2 targeting. TT32 was studied in the type II (CII) collagen-induced arthritis (CIA), an active immunization model, and the CII antibody-induced arthritis (CAIA) passive transfer model. In CIA, injection of 2.0 mg TT32 at day 21 and 28 post disease induction, but not untargeted CR1 alone, resulted in a 51.5% decrease in clinical disease activity (CDA). In CAIA, treatment with TT32 resulted in a 47.4% decrease in CDA. Therefore, a complement inhibitor that targets both the AP and CP/LP C3/C5 convertases was shown to limit complement-mediated tissue damage and inflammation in disease models in which all three complement activation pathways are implicated.
Collapse
Affiliation(s)
| | - Michael Storek
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Eran Or
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Richard Altman
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Suresh Katti
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Fang Sun
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Tao Peng
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Jeff Hunter
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Krista Johnson
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Yi Wang
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Ante S Lundberg
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Gaurav Mehta
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| |
Collapse
|
8
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
9
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
11
|
Cserhalmi M, Csincsi ÁI, Mezei Z, Kopp A, Hebecker M, Uzonyi B, Józsi M. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation. Front Immunol 2017; 8:1145. [PMID: 28974948 PMCID: PMC5610720 DOI: 10.3389/fimmu.2017.01145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Collapse
Affiliation(s)
- Marcell Cserhalmi
- MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám I Csincsi
- MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Mezei
- MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anne Kopp
- Junior Research Group for Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Mario Hebecker
- Junior Research Group for Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 2017; 274:172-190. [PMID: 27782331 PMCID: PMC5096056 DOI: 10.1111/imr.12466] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement alternative pathway is a powerful arm of the innate immune system that enhances diverse inflammatory responses in the human host. Key to the effects of the alternative pathway is properdin, a serum glycoprotein that can both initiate and positively regulate alternative pathway activity. Properdin is produced by many different leukocyte subsets and circulates as cyclic oligomers of monomeric subunits. While the formation of non‐physiological aggregates in purified properdin preparations and the presence of potential properdin inhibitors in serum have complicated studies of its function, properdin has, regardless, emerged as a key player in various inflammatory disease models. Here, we review basic properdin biology, emphasizing the major hurdles that have complicated the interpretation of results from properdin‐centered studies. In addition, we elaborate on an emerging role for properdin in thromboinflammation and discuss the potential utility of properdin inhibitors as long‐term therapeutic options to treat diseases marked by increased formation of platelet/granulocyte aggregates. Finally, we describe the interplay between properdin and the alternative pathway negative regulator, Factor H, and how aiming to understand these interactions can provide scientists with the most effective ways to manipulate alternative pathway activation in complex systems.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sabina Pathan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
13
|
Schäfer N, Grosche A, Reinders J, Hauck SM, Pouw RB, Kuijpers TW, Wouters D, Ehrenstein B, Enzmann V, Zipfel PF, Skerka C, Pauly D. Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases. Front Immunol 2016; 7:542. [PMID: 27965669 PMCID: PMC5124756 DOI: 10.3389/fimmu.2016.00542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
The human complement factor H-related protein-3 (FHR-3) is a soluble regulator of the complement system. Homozygous cfhr3/1 deletion is a genetic risk factor for the autoimmune form of atypical hemolytic-uremic syndrome (aHUS), while also found to be protective in age-related macular degeneration (AMD). The precise function of FHR-3 remains to be fully characterized. We generated four mouse monoclonal antibodies (mAbs) for FHR-3 (RETC) without cross-reactivity to the complement factor H (FH)-family. These antibodies detected FHR-3 from human serum with a mean concentration of 1 μg/mL. FHR-3 levels in patients were significantly increased in sera from systemic lupus erythematosus, rheumatoid arthritis, and polymyalgia rheumatica but remained almost unchanged in samples from AMD or aHUS patients. Moreover, by immunostaining of an aged human donor retina, we discovered a local FHR-3 production by microglia/macrophages. The mAb RETC-2 modulated FHR-3 binding to C3b but not the binding of FHR-3 to heparin. Interestingly, FHR-3 competed with FH for binding C3b and the mAb RETC-2 reduced the interaction of FHR-3 and C3b, resulting in increased FH binding. Our results unveil a previously unknown systemic involvement of FHR-3 in rheumatoid diseases and a putative local role of FHR-3 mediated by microglia/macrophages in the damaged retina. We conclude that the local FHR-3/FH equilibrium in AMD is a potential therapeutic target, which can be modulated by our specific mAb RETC-2.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg , Regensburg , Germany
| | - Antje Grosche
- Institute of Human Genetics, University of Regensburg , Regensburg , Germany
| | - Joerg Reinders
- Institute of Functional Genomics, University of Regensburg , Regensburg , Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands; Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Boris Ehrenstein
- Klinik und Poliklinik für Rheumatologie und Klinische Immunologie, Asklepios Klinikum Bad Abbach , Bad Abbach , Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, University of Bern , Bern , Switzerland
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
14
|
Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ? Semin Immunol 2016; 28:250-9. [PMID: 27179705 DOI: 10.1016/j.smim.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
The part of the innate immune system that communicates and effectively primes the adaptive immune system was termed "complement" by Ehrlich to reflect its complementarity to antibodies having previously been described as "alexine" (i.e protective component of serum) by Buchner and Bordet. It has been established that complement is not solely produced systemically but may have origin in different tissues where it can influence organ specific functions that may affect the outcome of transplanted organs. This review looks at the role of complement in particular to kidney transplantation. We look at current literature to determine whether blockade of the peripheral or central compartments of complement production may prevent ischaemic reperfusion injury or rejection in the transplanted organ. We also review new therapeutics that have been developed to inhibit components of the complement cascade with varying degrees of success leading to an increase in our understanding of the multiple triggers of this complex system. In addition, we consider whether biomarkers in this field are effective markers of disease or treatment.
Collapse
Affiliation(s)
- R M Montero
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| | - S H Sacks
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom.
| | - R A Smith
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
15
|
Blatt AZ, Saggu G, Kulkarni KV, Cortes C, Thurman JM, Ricklin D, Lambris JD, Valenzuela JG, Ferreira VP. Properdin-Mediated C5a Production Enhances Stable Binding of Platelets to Granulocytes in Human Whole Blood. THE JOURNAL OF IMMUNOLOGY 2016; 196:4671-4680. [PMID: 27183616 DOI: 10.4049/jimmunol.1600040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Enhanced levels of platelet/granulocyte aggregates (PGAs) are found in patients suffering from many different inflammatory vascular diseases, and their formation in animal models of vascular disease is associated with increased thromboinflammation and worsened outcomes. The complement system, a part of the innate immune system, influences PGA formation, but the mechanisms for its effects are unknown. In this study, we have defined complement-mediated mechanisms that enhance PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP) using ex vivo flow cytometry assays. We demonstrate that physiological properdin, a positive regulator of complement alternative pathway activity, increases PGA formation when added to TRAP-stimulated blood. All physiological properdin forms increase PGA formation, but properdin tetramers are the most efficient at increasing complement activity and PGA formation. Inhibition of endogenous properdin, either circulating in the blood or produced locally by leukocytes, impairs TRAP-mediated PGA formation to the same level as specific inhibition of either the alternative or classical pathway. Additionally, blocking the interaction of C5a with its cellular receptor prevents properdin-mediated increases in PGA formation. Adding either properdin tetramers or C5a to whole blood increases CD11b expression on granulocytes, and this increase is prevented by blockade of the C5a-C5a receptor axis. Finally, we demonstrate that the effects of properdin on PGA formation are tightly regulated by Factor H. Cumulatively, our data indicate that properdin enhances PGA formation via increased production of C5a, and that inhibition of properdin function has therapeutic potential to limit thromboinflammation in diseases characterized by increased PGA formation.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Gurpanna Saggu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Koustubh V Kulkarni
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudio Cortes
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel Ricklin
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Lambris
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
16
|
Yuan X, Tong B, Dou Y, Wu X, Wei Z, Dai Y. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor. Biochem Pharmacol 2016; 101:87-99. [DOI: 10.1016/j.bcp.2015.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
17
|
Targeting mechanisms at sites of complement activation for imaging and therapy. Immunobiology 2015; 221:726-32. [PMID: 25979851 DOI: 10.1016/j.imbio.2015.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
The complement system plays a key role in many acute injury states as well as chronic autoimmune and inflammatory diseases. Localized complement activation and alternative pathway-mediated amplification on diverse target surfaces promote local recruitment of pro-inflammatory cells and elaboration of other mediators. Despite a general understanding of the architecture of the system, though, many of the mechanisms that underlie site-specific complement activation and amplification in vivo are incompletely understood. In addition, there is no capability yet to measure the level of local tissue site-specific complement activation in patients without performing biopsies to detect products using immunohistochemical techniques. Herein is reviewed emerging evidence obtained through clinical research studies of human rheumatoid arthritis along with translational studies of its disease models which demonstrate that several parallel mechanisms are involved in site-specific amplification of activation of the complement system in vivo. Among these processes are de-regulation of the alternative pathway, effector pathway-catalyzed amplification of proximal complement activation, recognition of injury-associated ligands by components of the lectin pathway, and engagement of pathogenic natural antibodies that recognize a limited set of injury-associated neoepitopes. Studies suggest that each of these inter-related processes can play key roles in amplification of complement-dependent injury on self-tissues in vivo. These findings, in addition to development of an imaging strategy described herein designed to quantitatively measure local complement C3 fixation, have relevance to therapeutic and diagnostic strategies targeting the complement system.
Collapse
|
18
|
Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, Greco C, Feruglio F, Molgora M, Laface I, Tartari S, Doni A, Pasqualini F, Barbati E, Basso G, Galdiero M, Nebuloni M, Roncalli M, Colombo P, Laghi L, Lambris J, Jaillon S, Garlanda C, Mantovani A. PTX3 Is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancer. Cell 2015; 160:700-714. [DOI: 10.1016/j.cell.2015.01.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
|
19
|
Mehta G, Ferreira VP, Skerka C, Zipfel PF, Banda NK. New insights into disease-specific absence of complement factor H related protein C in mouse models of spontaneous autoimmune diseases. Mol Immunol 2014; 62:235-48. [PMID: 25033230 DOI: 10.1016/j.molimm.2014.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 12/18/2022]
Abstract
Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2±44.4, 54.5±5.75 and 729±252.9, 74.04±22.76, respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9±23.8, 58.8±1.41 and 890.3±135.2, 63.30±9.2, respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ∼4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes.
Collapse
Affiliation(s)
- Gaurav Mehta
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Peter F Zipfel
- Hans Knoell Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany
| | - Nirmal K Banda
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
20
|
Holers VM. Human C3 glomerulopathy provides unique insights into complement factor H-related protein function. J Clin Invest 2013; 123:2357-60. [PMID: 23728171 DOI: 10.1172/jci69684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The study in this issue of the JCI by Tortajada et al. demonstrates that a duplication within the gene complement factor H–related 1 (CFHR1; encoding FHR1) leads to the production of an aberrant larger form of the protein. Elegant in vitro studies of the mutant and normal variants demonstrate an unexpected mechanism of action of FHR1, wherein homodimeration and hetero- oligomerization with FHR2 and FHR5 generates more avid molecules that very effectively compete with FH binding to surfaces and impair its ability to regulate local complement activation. As variants of FHRs are linked to many human inflammatory and autoimmune diseases, these and other recently published structure/function studies of these proteins provide key insights into their complement regulatory activities and likely roles in disease.
Collapse
Affiliation(s)
- V Michael Holers
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
21
|
Saggu G, Cortes C, Emch HN, Ramirez G, Worth RG, Ferreira VP. Identification of a novel mode of complement activation on stimulated platelets mediated by properdin and C3(H2O). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:6457-67. [PMID: 23677468 PMCID: PMC3784323 DOI: 10.4049/jimmunol.1300610] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Elevated numbers of activated platelets circulate in patients with chronic inflammatory diseases, including atherosclerosis and coronary disease. Activated platelets can activate the complement system. Although complement activation is essential for immune responses and removal of spent cells from circulation, it also contributes to inflammation and thrombosis, especially in patients with defective complement regulation. Proinflammatory activated leukocytes, which interact directly with platelets in response to vascular injury, are among the main sources of properdin, a positive regulator of the alternative pathway. The role of properdin in complement activation on stimulated platelets is unknown. Our data show that physiological forms of human properdin bind directly to human platelets after activation by strong agonists in the absence of C3, and bind nonproportionally to surface CD62P expression. Activation of the alternative pathway on activated platelets occurs when properdin is on the surface and recruits C3b or C3(H2O) to form C3b,Bb or a novel cell-bound C3 convertase [C3(H2O),Bb], which normally is present only in the fluid phase. Alternatively, properdin can be recruited by C3(H2O) on the platelet surface, promoting complement activation. Inhibition of factor H-mediated cell surface complement regulation significantly increases complement deposition on activated platelets with surface properdin. Finally, properdin released by activated neutrophils binds to activated platelets. Altogether, these data suggest novel molecular mechanisms for alternative pathway activation on stimulated platelets that may contribute to localization of inflammation at sites of vascular injury and thrombosis.
Collapse
Affiliation(s)
- Gurpanna Saggu
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
| | - Claudio Cortes
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
- Department of Molecular Sciences, Medical University of the Americas, Charlestown, Nevis, West Indies
| | - Heather N. Emch
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
| | - Galia Ramirez
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
- Department of Preventive Animal Medicine, Faculty of Veterinary Medicine, University of Chile, Santiago, Chile
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH. 43614
| |
Collapse
|
22
|
Arend WP, Mehta G, Antonioli AH, Takahashi M, Takahashi K, Stahl GL, Holers VM, Banda NK. Roles of adipocytes and fibroblasts in activation of the alternative pathway of complement in inflammatory arthritis in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:6423-33. [PMID: 23650618 DOI: 10.4049/jimmunol.1300580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is involved in mediation of joint damage in rheumatoid arthritis, with evidence suggesting activation of both the classical and alternative pathway (AP). The AP is both necessary and sufficient to mediate collagen Ab-induced arthritis, an experimental animal model of immune complex-induced joint disease. The AP in mice is dependent on MASP-1/3 cleavage of pro-factor D (pro-FD) into mature factor D (FD). The objectives of the current study were to determine the cells synthesizing MASP-1/3 and pro-FD in synovial tissue. Collagen Ab-induced arthritis was studied in wild-type C57BL/6 mice, and the localization of mRNA and protein for FD and MASP-1/3 in synovial adipose tissue (SAT) and fibroblast-like synoviocytes (FLS) was determined using various techniques, including laser capture microdissection. SAT was the sole source of mRNA for pro-FD. Cultured differentiated 3T3 adipocytes, a surrogate for SAT, produced pro-FD but no mature FD. FLS were the main source of MASP-1/3 mRNA and protein. Using cartilage microparticles (CMPs) coated with anti-collagen mAb and serum from MASP-1/3(-/-) mice as a source of factor B, pro-FD in 3T3 supernatants was cleaved into mature FD by MASP-1/3 in FLS supernatants. The mature FD was eluted from the CMP, and was not present in the supernatants from the incubation with CMP, indicating that cleavage of pro-FD into mature FD by MASP-1 occurred on the CMP. These results demonstrate that pathogenic activation of the AP can occur in the joint through immune complexes adherent to cartilage and the local production of necessary AP proteins by adipocytes and FLS.
Collapse
Affiliation(s)
- William P Arend
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|