1
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Celada SI, Lim CX, Carisey AF, Ochsner SA, Arce Deza CF, Rexie P, Poli De Frias F, Cardenas-Castillo R, Polverino F, Hengstschläger M, Tsoyi K, McKenna NJ, Kheradmand F, Weichhart T, Rosas IO, Van Kaer L, Celada LJ. SHP2 promotes sarcoidosis severity by inhibiting SKP2-targeted ubiquitination of TBET in CD8 + T cells. Sci Transl Med 2023; 15:eade2581. [PMID: 37703351 PMCID: PMC11126869 DOI: 10.1126/scitranslmed.ade2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Clarice X. Lim
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Hospital, Memphis, TN 38105, USA
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Carlos F. Arce Deza
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Rexie
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Fernando Poli De Frias
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Mout Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Rafael Cardenas-Castillo
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Konstantin Tsoyi
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Lindsay J. Celada
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
3
|
Das A, Wang X, Wei J, Hoji A, Coon TA, Popescu I, Brown M, Frizzell S, Iasella CJ, Noda K, Sembrat J, Devonshire K, Hannan SJ, Snyder ME, Pilewski J, Sanchez PG, Chandra D, Mallampalli RK, Alder JK, Chen BB, McDyer JF. Cross-Regulation of F-Box Protein FBXL2 with T-bet and TNF-α during Acute and Chronic Lung Allograft Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1788-1795. [PMID: 36113884 PMCID: PMC9588753 DOI: 10.4049/jimmunol.2200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
Chronic lung allograft dysfunction is the major barrier to long-term survival in lung transplant recipients. Evidence supports type 1 alloimmunity as the predominant response in acute/chronic lung rejection, but the immunoregulatory mechanisms remain incompletely understood. We studied the combinatorial F-box E3 ligase system: F-box protein 3 (FBXO3; proinflammatory) and F-box and leucine-rich repeat protein 2 (FBXL2; anti-inflammatory and regulates TNFR-associated factor [TRAF] protein). Using the mouse orthotopic lung transplant model, we evaluated allografts from BALB/c → C57BL/6 (acute rejection; day 10) and found significant induction of FBXO3 and diminished FBXL2 protein along with elevated T-bet, IFN-γ, and TRAF proteins 1-5 compared with isografts. In the acute model, treatment with costimulation blockade (MR1/CTLA4-Ig) resulted in attenuated FBXO3, preserved FBXL2, and substantially reduced T-bet, IFN-γ, and TRAFs 1-5, consistent with a key role for type 1 alloimmunity. Immunohistochemistry revealed significant changes in the FBXO3/FBXL2 balance in airway epithelia and infiltrating mononuclear cells during rejection compared with isografts or costimulation blockade-treated allografts. In the chronic lung rejection model, DBA/2J/C57BL/6F1 > DBA/2J (day 28), we observed persistently elevated FBXO3/FBXL2 balance and T-bet/IFN-γ protein and similar findings from lung transplant recipient lungs with chronic lung allograft dysfunction versus controls. We hypothesized that FBXL2 regulated T-bet and found FBXL2 was sufficient to polyubiquitinate T-bet and coimmunoprecipitated with T-bet on pulldown experiments and vice versa in Jurkat cells. Transfection with FBXL2 diminished T-bet protein in a dose-dependent manner in mouse lung epithelial cells. In testing type 1 cytokines, TNF-α was found to negatively regulate FBXL2 protein and mRNA levels. Together, our findings show the combinatorial E3 ligase FBXO3/FBXL2 system plays a role in the regulation of T-bet through FBXL2, with negative cross-regulation of TNF-α on FBXL2 during lung allograft rejection.
Collapse
Affiliation(s)
- Antu Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Tiffany A. Coon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Sheila Frizzell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy; Pittsburgh, Pennsylvania, 15213, USA
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Kaitlyn Devonshire
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Stefanie J. Hannan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Joseph Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Divay Chandra
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Rama K. Mallampalli
- Department of Medicine, Ohio State University School of Medicine; Columbus, Ohio, 43210, USA
| | - Jonathan K. Alder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Bill B. Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA,Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
4
|
Choi Y, Lee EG, Lee G, Jeong MG, Kim HK, Oh JH, Kwon SW, Hwang ES. Amodiaquine promotes testosterone production and de novo synthesis of cholesterol and triglycerides in Leydig cells. J Lipid Res 2021; 62:100152. [PMID: 34808194 PMCID: PMC8666709 DOI: 10.1016/j.jlr.2021.100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Testosterone is a hormone essential for male reproductive function. It is produced primarily by Leydig cells in the testicle through activation of steroidogenic acute regulatory protein and a series of steroidogenic enzymes, including a cytochrome P450 side-chain cleavage enzyme (cytochome P450 family 11 subfamily A member 1), 17α-hydroxylase (cytochrome P450 family 17 subfamily A member 1), and 3β-hydroxysteroid dehydrogenase. These steroidogenic enzymes are mainly regulated at the transcriptional level, and their expression is increased by the nuclear receptor 4A1. However, the effect on Leydig cell function of a small molecule-activating ligand, amodiaquine (AQ), is unknown. We found that AQ effectively and significantly increased testosterone production in TM3 and primary Leydig cells through enhanced expression of steroidogenic acute regulatory protein, cytochome P450 family 11 subfamily A member 1, cytochrome P450 family 17 subfamily A member 1, and 3β-hydroxysteroid dehydrogenase. Concurrently, AQ dose-dependently increased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the cholesterol synthesis pathway, through induction of the transcriptional and DNA-binding activities of nuclear receptor 4A1, contributing to increased cholesterol synthesis in Leydig cells. Furthermore, AQ increased the expression of fatty acid synthase and diacylglycerol acyltransferase and potentiated de novo synthesis of fatty acids and triglycerides (TGs). Lipidomics profiling further confirmed a significant elevation of intracellular lipid and TG levels by AQ in Leydig cells. These results demonstrated that AQ effectively promotes testosterone production and de novo synthesis of cholesterol and TG in Leydig cells, indicating that AQ may be beneficial for treating patients with Leydig cell dysfunction and subsequent testosterone deficiency.
Collapse
Affiliation(s)
- Yujeong Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Eun Goo Lee
- Department of Pharmacy and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Ji-Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Sung Won Kwon
- Department of Pharmacy and College of Pharmacy, Seoul National University, Seoul, Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
5
|
Huang C, Bi J. Expression Regulation and Function of T-Bet in NK Cells. Front Immunol 2021; 12:761920. [PMID: 34675939 PMCID: PMC8524037 DOI: 10.3389/fimmu.2021.761920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell 2020; 183:1826-1847.e31. [PMID: 33296702 PMCID: PMC7770098 DOI: 10.1016/j.cell.2020.10.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αβ T and non-classic CD4+ αβ TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αβ T, and CD4+ αβ TH1∗ cells unable to compensate for this deficit.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - David Langlais
- Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Ibithal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Houda Elarabi
- Pediatrics Department, Hassan II Hospital, 80030 Dakhla, Morocco
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France; University of Paris, 75006 Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - David Jarrossay
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Daniela Latorre
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yichao Shen
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Lucas T Husquin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France
| | - Julia L Maclsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mohamed Jeljeli
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Mathieu Bourgey
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics, Montreal, QC H3A 0G1, Canada
| | | | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Fréderic Batteux
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Flore Rozenberg
- University of Paris, 75006 Paris, France; Virology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, PO 34110, Qatar
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France; Chair of Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Gros
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Study Center for Primary Immunodeficiencies, Necker Children Hospital, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
8
|
Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment. Cell Mol Immunol 2020; 18:528-538. [PMID: 32999454 PMCID: PMC7525231 DOI: 10.1038/s41423-020-00554-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.
Collapse
Affiliation(s)
- Amania A Sheikh
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Eomesodermin promotes interaction of RelA and NFATc2 with the Ifng promoter and multiple conserved noncoding sequences across the Ifng locus in mouse lymphoma BW5147 cells. Immunol Lett 2020; 225:33-43. [DOI: 10.1016/j.imlet.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
|
10
|
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ, Sytwu HK. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases. Int J Mol Sci 2020; 21:ijms21093207. [PMID: 32369982 PMCID: PMC7246881 DOI: 10.3390/ijms21093207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Chao-Yuan Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Shin-Huei Fu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Molecular Cell Biology, Taiwan International Graduate Program, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shyi-Jou Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18539); Fax: +886-2-8792-1774
| |
Collapse
|
11
|
Pritchard GH, Kedl RM, Hunter CA. The evolving role of T-bet in resistance to infection. Nat Rev Immunol 2020; 19:398-410. [PMID: 30846856 DOI: 10.1038/s41577-019-0145-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of T-bet as a key transcription factor associated with the development of IFNγ-producing CD4+ T cells predicted a crucial role for T-bet in cell-mediated immunity and in resistance to many intracellular infections. This idea was reinforced by initial reports showing that T-bet-deficient mice were more susceptible to pathogens that survived within the lysosomal system of macrophages. However, subsequent studies revealed IFNγ-dependent, T-bet-independent pathways of resistance to diverse classes of microorganisms that occupy other intracellular niches. Consequently, a more complex picture has emerged of how T-bet and the related transcription factor eomesodermin (EOMES) coordinate many facets of the immune response to bona fide pathogens as well as commensals. This article provides an overview of the discovery and evolutionary relationship between T-bet and EOMES and highlights the studies that have uncovered broader functions of T-bet in innate and adaptive immunity and in the development of the effector and memory T cell populations that mediate long-term resistance to infection.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Mechanisms of Mixed Th1/Th2 Responses in Mice Induced by Albizia julibrissin Saponin Active Fraction by i n Silico Analysis. Vaccines (Basel) 2020; 8:vaccines8010048. [PMID: 32012760 PMCID: PMC7158666 DOI: 10.3390/vaccines8010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
The purified active fraction of Albizia julibrissin saponin (AJSAF) is an ideal adjuvant candidate that improves antigen-specific both cellular and humoral immune responses and elicits mixed Th1/Th2 responses, but its mechanisms remain unclear. The key features of action of AJSAF were investigated in mice immunized with Newcastle disease virus-based recombinant influenza vaccine (rL-H5) and AJSAF at the same leg (AJSAF+rL-H5) or different legs (AJSAF/rL-H5). The adjuvant activity of AJSAF on rL-H5 is strictly dependent on their spatial colocalization. Serum H5 antigen (H5Ag)-specific IgG, IgG1, IgG2a, and IgG2b antibody titers in AJSAF+rL-H5 group were significantly higher than those in AJSAF/rL-H5 group. The mechanisms of selectivity of Th1 or Th2 in mice induced by AJSAF was explored by the transcriptomic and proteomic profiles of H5Ag-stimulated splenocytes from the immunized mice using gene microarray and two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Compared to rL-H5 alone, AJSAF/rL-H5 induced more differentially expressed genes (DEGs) than AJSAF+rL-H5, whereas AJSAF+rL-H5 upregulated higher mRNA expression of Th1 (T-bet, IFN-γ, TNF-α, IL-12β, and IL-12Rβ1) and Th2 (IL-10 and AICDA) immune response genes. The neutrophil response and its derived S100A8 and S100A9 might be involved in the AJSAF-mediated Th1 response. Meanwhile, AJSAF might induce the adaptive immune responses by improving a local innate immune microenvironment. These findings expanded the current knowledge on the mechanisms of action of saponin-based adjuvants, and provided new insights into how adjuvants shape adaptive immune responses.
Collapse
|
13
|
Kong D, Wan Q, Li J, Zuo S, Liu G, Liu Q, Wang C, Bai P, Duan SZ, Zhou B, Gounari F, Lyu A, Lazarus M, Breyer RM, Yu Y. DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. Circulation 2020; 141:655-666. [PMID: 31893939 DOI: 10.1161/circulationaha.119.042532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.
Collapse
Affiliation(s)
- Deping Kong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Juanjuan Li
- Department of Gastroenterology (J.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shengkai Zuo
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Guizhu Liu
- National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| | - Qian Liu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Chenchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Peiyuan Bai
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.-Z.D.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (B.Z.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Fotini Gounari
- Division of Rheumatology and Knapp Center for Lupus and Immunology Research, University of Chicago, IL (F.G.)
| | - Ankang Lyu
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.)
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (R.M.B.)
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.).,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.,National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| |
Collapse
|
14
|
Essential Kinases and Transcriptional Regulators and Their Roles in Autoimmunity. Biomolecules 2019; 9:biom9040145. [PMID: 30974919 PMCID: PMC6523499 DOI: 10.3390/biom9040145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kinases and transcriptional regulators are fundamental components of cell signaling that are expressed on many types of immune cells which are involved in secretion of cytokines, cell proliferation, differentiation, and apoptosis. Both play important roles in biological responses in health as well as in illnesses such as the autoimmune diseases which comprise at least 80 disorders. These diseases are caused by complex genetic and environmental interactions that lead to a breakage of immunologic tolerance and a disruption of the balance between self-reactive cells and regulatory cells. Kinases or transcriptional regulatory factors often have an abnormal expression in the autoimmune cells that participate in the pathogenesis of autoimmune disease. These abnormally expressed kinases or transcriptional regulators can over-activate the function of self-reactive cells to produce inflammatory cytokines or down-regulate the activity of regulatory cells, thus causing autoimmune diseases. In this review we introduce five kinds of kinase and transcriptional regulator related to autoimmune diseases, namely, members of the Janus kinase (JAK) family (JAK3 and/or tyrosine kinase 2 (TYK2)), fork head box protein 3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and T-box expressed in T cells (T-bet) factors. We also provide a mechanistic insight into how these kinases and transcriptional regulators affect the function of the immune cells related to autoimmune diseases, as well as a description of a current drug design targeting these kinases and transcriptional regulators. Understanding their exact role helps offer new therapies for control of the inflammatory responses that could lead to clinical improvement of the autoimmune diseases.
Collapse
|
15
|
Briand N, Guénantin AC, Jeziorowska D, Shah A, Mantecon M, Capel E, Garcia M, Oldenburg A, Paulsen J, Hulot JS, Vigouroux C, Collas P. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks. Hum Mol Genet 2019; 27:1447-1459. [PMID: 29438482 DOI: 10.1093/hmg/ddy055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.
Collapse
Affiliation(s)
- Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.,Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France
| | - Anne-Claire Guénantin
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Dorota Jeziorowska
- Sorbonne Université, UPMC Université Paris 6, UMR-S1166 ICAN, 75013 Paris, France
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Matthieu Mantecon
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France
| | - Emilie Capel
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France
| | - Marie Garcia
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France
| | - Anja Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Jonas Paulsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Jean-Sebastien Hulot
- Sorbonne Université, UPMC Université Paris 6, UMR-S1166 ICAN, 75013 Paris, France
| | - Corinne Vigouroux
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, 75012 Paris, France.,AP-HP Saint-Antoine Hospital, Molecular Biology and Genetics Laboratory, Endocrinology Department, National Reference Center for Insulin Secretion and Insulin Sensitivity Rare Diseases, 75012 Paris, France
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Norwegian Center for Stem Cell Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
16
|
Abstract
Chimeric antigen receptor (CAR) therapy has shown promise against B cell malignancies in the clinic. However, limited success in patients with solid tumors has prompted the development of new CAR strategies. In this study, a B7H6-specific CAR was combined with different variants of T-bet, a transcription factor that acts as the master regulator to induce a Th1 phenotype in CD4+ T cells, to create more effective CAR T cells. Skewing CD4+ CAR T cells into a Th1 improved CAR T cell functional activity while promoting a robust proinflammatory response against B7H6-expressing tumors. The expression of T-bet with the B7H6-specific CAR in CD4+ T cells conferred higher expression of the CAR, elevated secretion of Th1 and proinflammatory cytokines, and improved cellular cytotoxicity against B7H6-expressing tumor cells. In vivo, CD4+ T cells co-expressing a B7H6-specific CAR and T-bet improved the survival of RMA-B7H6 lymphoma-bearing mice. Thus, CD4+ CAR T cells with increased T-bet expression have the potential to modify the tumor microenvironment and the immune response to better treat solid and hematologic cancers.
Collapse
|
17
|
RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth. Proc Natl Acad Sci U S A 2017; 114:12791-12796. [PMID: 29133416 DOI: 10.1073/pnas.1710756114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.
Collapse
|
18
|
Sabins NC, Chornoguz O, Leander K, Kaplan F, Carter R, Kinder M, Bachman K, Verona R, Shen S, Bhargava V, Santulli-Marotto S. TIM-3 Engagement Promotes Effector Memory T Cell Differentiation of Human Antigen-Specific CD8 T Cells by Activating mTORC1. THE JOURNAL OF IMMUNOLOGY 2017; 199:4091-4102. [PMID: 29127145 DOI: 10.4049/jimmunol.1701030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
T cell expression of TIM-3 following Ag encounter has been associated with a continuum of functional states ranging from effector memory T cells to exhaustion. We have designed an in vitro culture system to specifically address the impact of anti-TIM-3/TIM-3 engagement on human Ag-specific CD8 T cells during a normal response to Ag and found that anti-TIM-3 treatment enhances T cell function. In our in vitro T cell culture system, MART1-specific CD8 T cells were expanded from healthy donors using artificial APCs. To ensure that the T cells were the only source of TIM-3, cells were rechallenged with peptide-loaded artificial APCs in the presence of anti-TIM-3 Ab. In these conditions, anti-TIM-3 treatment promotes generation of effector T cells as shown by acquisition of an activated phenotype, increased cytokine production, enhanced proliferation, and a transcription program associated with T cell differentiation. Activation of mTORC1 has been previously demonstrated to enhance CD8 T cell effector function and differentiation. Anti-TIM-3 drives CD8 T cell differentiation through activation of the mTORC1 as evidenced by increased levels of phosphorylated S6 protein and rhebl1 transcript. Altogether these findings suggest that anti-TIM-3, together with Ag, drives differentiation in favor of effector T cells via the activation of mTOR pathway. To our knowledge, this is the first report demonstrating that TIM-3 engagement during Ag stimulation directly influences T cell differentiation through mTORC1.
Collapse
Affiliation(s)
- Nina Chi Sabins
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Olesya Chornoguz
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Karen Leander
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Fred Kaplan
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Richard Carter
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Michelle Kinder
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Kurtis Bachman
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Raluca Verona
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Shixue Shen
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Vipul Bhargava
- Computational and Systems Biology, Janssen Research and Development, Spring House, PA 19477; and
| | | |
Collapse
|
19
|
Chornoguz O, Hagan RS, Haile A, Arwood ML, Gamper CJ, Banerjee A, Powell JD. mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 198:3939-3948. [PMID: 28424242 DOI: 10.4049/jimmunol.1601078] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022]
Abstract
CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287.,Janssen Research and Development, Department of Biologics Research, Spring House, PA 19477
| | - Robert S Hagan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Azeb Haile
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Matthew L Arwood
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Christopher J Gamper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| | - Arnob Banerjee
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201; and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287; .,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, MD 21287
| |
Collapse
|
20
|
Novel benzoxazole derivatives DCPAB and HPAB attenuate Th1 cell-mediated inflammation through T-bet suppression. Sci Rep 2017; 7:42144. [PMID: 28169371 PMCID: PMC5294415 DOI: 10.1038/srep42144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Interferon-γ (IFN-γ), a critical inflammatory cytokine, is primarily produced by T helper 1 (Th1) cells and accelerates the pathogenesis of inflammatory colitis. Pharmacological suppression of IFN-γ production attenuates dysregulated inflammatory responses and may be beneficial for treating inflammatory disease. In this study, we aimed to discover potent anti-inflammatory compounds that suppress IFN-γ production and found that the novel benzoxazole derivatives, 2-((3,4-dichlorophenyl) amino) benzo[d]xazol-5-ol (DCPAB) and 2-((3,4-hydroxyphenyl) amino) benzo[d]xazol-5-ol (HPAB), suppressed IFN-γ production by T cells. Treatment of CD4+ T cells with DCPAB and HPAB selectively inhibited Th1 cell development, and DCPAB more potently suppressed IFN-γ than HPAB did. Interestingly, DCPAB and HPAB significantly suppressed the expression of T-box containing protein expressed in T cells (T-bet) that activates IFN-γ gene transcription. DCPAB additionally suppressed transcriptional activity of T-bet on IFN-γ gene promoter, whereas HPAB had no effect on T-bet activity. IFN-γ suppressive activity of DCPAB and HPAB was impaired in the absence of T-bet but was retrieved by the restoration of T-bet in T-bet-deficient T cells. Furthermore, DCPAB and HPAB attenuated inflammatory colitis development that was induced by CD4+ T cells in vivo. We suggest that the novel benzoxazole derivatives, DCPAB and HPAB, may have therapeutic effects on inflammatory colitis.
Collapse
|
21
|
Gao SF, Zhong B, Lin D. Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. Int Immunopharmacol 2016; 42:150-156. [PMID: 27914308 DOI: 10.1016/j.intimp.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
CD4 T cells are essential components of adaptive immunity and play a critical role in anti-pathogenic or anti-tumor responses as well as autoimmune and allergic diseases. Naive CD4 T cells differentiate into distinct subsets of T helper (Th) cells by various signals including TCR, costimulatory and cytokine signals. Accumulating evidence suggests that these signaling pathways are critically regulated by ubiquitination and deubiquitination, two reversible posttranslational modifications mediated by E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), respectively. In this review, we briefly introduce the signaling pathways that control the differentiation of Th cells and then focused on the roles of E3s- and DUBs-mediated ubiquitin modification or demodification in regulating Th cell differentiation.
Collapse
Affiliation(s)
- Si-Fa Gao
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
22
|
Abstract
The nematode Caenorhabditis elegans is a simple metazoan animal that is widely used as a model to understand the genetic control of development. The completely sequenced C. elegans genome contains 22 T-box genes, and they encode factors that show remarkable diversity in sequence, DNA-binding specificity, and function. Only three of the C. elegans T-box factors can be grouped into the conserved subfamilies found in other organisms, while the remaining factors are significantly diverged and unlike those in most other animals. While some of the C. elegans factors can bind canonical T-box binding elements, others bind and regulate target gene expression through distinct sequences. The nine genetically characterized T-box factors have varied functions in development and morphogenesis of muscle, hypodermal tissues, and neurons, as well as in early blastomere fate specification, cell migration, apoptosis, and sex determination, but the functions of most of the C. elegans T-box factors have not yet been extensively characterized. Like T-box factors in other animals, interaction with a Groucho-family corepressor and posttranslational SUMOylation have been shown to affect C. elegans T-box factor activity, and it is likely that additional mechanisms affecting T-box factor activity will be discovered using the effective genetic approaches in this organism.
Collapse
|
23
|
Layman AAK, Oliver PM. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3975-82. [PMID: 27183634 PMCID: PMC5738552 DOI: 10.4049/jimmunol.1502660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/10/2016] [Indexed: 12/22/2022]
Abstract
The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function.
Collapse
Affiliation(s)
- Awo A K Layman
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Paula M Oliver
- Department of Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
24
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
25
|
Fukuoka N, Harada M, Nishida A, Ito Y, Shiota H, Kataoka T. Eomesodermin promotes interferon-γ expression and binds to multiple conserved noncoding sequences across the Ifng locus in mouse thymoma cell lines. Genes Cells 2016; 21:146-62. [PMID: 26749212 DOI: 10.1111/gtc.12328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
The T-box transcription factors T-bet and eomesodermin (Eomes) have been shown to regulate the lineage-specific expression of interferon-γ (IFN-γ). However, in contrast to T-bet, the role of Eomes in the expression of IFN-γ remains unclear. In this study, we investigated the Eomes-dependent expression of IFN-γ in the mouse thymoma BW5147 and EL4 cells, which do not express T-bet or Eomes. The ectopic expression of Eomes induced BW5147 and EL4 cells to produce IFN-γ in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In BW5147 cells, Eomes augmented luciferase activity driven by the Ifng promoter encoding from -2500 to +113 bp; however, it was not increased by a stimulation with PMA and IM. A chromatin immunoprecipitation assay showed that Eomes bound to the Ifng promoter and conserved noncoding sequence (CNS) -22 kb across the Ifng locus with high efficacy in BW5147 cells. Moreover, Eomes increased permissive histone modifications in the Ifng promoter and multiple CNSs. The stimulation with PMA and IM greatly augmented Eomes binding to CNS-54, CNS-34, CNS+19 and CNS+30, which was inhibited by FK506. These results indicated that Eomes bound to the Ifng promoter and multiple CNSs in stimulation-dependent and stimulation-independent manners.
Collapse
Affiliation(s)
- Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Misuzu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuko Ito
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Shiota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
26
|
Oh YJ, Shin JH, Won HY, Hwang ES. Anti-proliferative Activity of T-bet. Immune Netw 2015; 15:199-205. [PMID: 26330806 PMCID: PMC4553258 DOI: 10.4110/in.2015.15.4.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/01/2022] Open
Abstract
T-bet is a critical transcription factor that regulates differentiation of Th1 cells from CD4(+) precursor cells. Since T-bet directly binds to the promoter of the IFN-γ gene and activates its transcription, T-bet deficiency impairs IFN-γ production in Th1 cells. Interestingly, T-bet-deficient Th cells also display substantially augmented the production of IL-2, a T cell growth factor. Exogenous expression of T-bet in T-bet deficient Th cells rescued the IFN-γ production and suppressed IL-2 expression. IFN-γ and IL-2 reciprocally regulate Th cell proliferation following TCR stimulation. Therefore, we examined the effect of T-bet on Th cell proliferation and found that T-bet deficiency significantly enhanced Th cell proliferation under non-skewing, Th1-skewing, and Th2-skewing conditions. By using IFN-γ-null mice to eliminate the anti-proliferative effect of IFN-γ, T-bet deficiency still enhanced Th cell proliferation under both Th1- and Th2-skewing conditions. Since the anti-proliferative activity of T-bet may be influenced by IL-2 suppression in Th cells, we examined whether T-bet modulates IL-2-independent cell proliferation in a non-T cell population. We demonstrated that T-bet expression induced by ecdysone treatment in human embryonic kidney (HEK) cells increased IFN-γ promoter activity in a dose dependent manner, and sustained T-bet expression considerably decreased cell proliferation in HEK cells. Although the molecular mechanisms underlying anti-proliferative activity of T-bet remain to be elucidated, T-bet may directly suppress cell proliferation in an IFN-γ- or an IL-2-independent manner.
Collapse
Affiliation(s)
- Yeon Ji Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
Jha SS, Chakraborty NG, Singh P, Mukherji B, Dorsky DI. Knockdown of T-bet expression in Mart-127-35 -specific T-cell-receptor-engineered human CD4(+) CD25(-) and CD8(+) T cells attenuates effector function. Immunology 2015; 145:124-35. [PMID: 25495780 DOI: 10.1111/imm.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022] Open
Abstract
Gene transfer to create tumour epitope-specific cytolytic T cells for adoptive immunotherapy of cancer remains an area of active inquiry. When the Mart-127-35 -specific DMF5 T-cell receptor (TCR) is transferred into peripheral human CD4(+) T cells, the reprogrammed cells exhibit a T helper type 1 (Th1) phenotype with significant multifactorial effector capabilities. The T-bet transcription factor plays an important role in determination of the Th1 differentiation pathway. To gain a deeper understanding of how T-bet controls the outcome of human T-cell reprogramming by gene transfer, we developed a system for examining the effects of short hairpin RNA-mediated T-bet gene knockdown in sorted cell populations uniformly expressing the knockdown construct. In this system, using activated peripheral human CD4(+) CD25(-) and CD8(+) T cells, T-bet knockdown led to attenuation of the interferon-γ response to both antigen-specific and non-specific TCR stimulation. The interleukin-2 (IL-2) antigen-specific response was not attenuated by T-bet knockdown. Also, in TCR-reprogrammed CD8(+) cells, the cytolytic effector response was attenuated by T-bet knockdown. T-bet knockdown did not cause redirection into a Th2 differentiation pathway, and no increased IL-4, IL-10, or IL-17 response was detected in this system. These results indicate that T-bet expression is required for maintenance of the CD4(+) CD25(-) and CD8(+) effector phenotypes in TCR-reprogrammed human T cells. They also suggest that the activation protocol necessary for transduction with retrovectors and lentivectors may commit the reprogrammed cells to the Th1 phenotype, which cannot be altered by T-bet knockdown but that there is, nevertheless, a continuous requirement of T-bet expression for interferon-γ gene activation.
Collapse
Affiliation(s)
- Sidharth S Jha
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | |
Collapse
|
28
|
Harms Pritchard G, Hall AO, Christian DA, Wagage S, Fang Q, Muallem G, John B, Glatman Zaretsky A, Dunn WG, Perrigoue J, Reiner SL, Hunter CA. Diverse roles for T-bet in the effector responses required for resistance to infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:1131-40. [PMID: 25556247 DOI: 10.4049/jimmunol.1401617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transcription factor T-bet has been most prominently linked to NK and T cell production of IFN-γ, a cytokine required for the control of a diverse array of intracellular pathogens. Indeed, in mice challenged with the parasite Toxoplasma gondii, NK and T cell responses are characterized by marked increases of T-bet expression. Unexpectedly, T-bet(-/-) mice infected with T. gondii develop a strong NK cell IFN-γ response that controls parasite replication at the challenge site, but display high parasite burdens at secondary sites colonized by T. gondii and succumb to infection. The loss of T-bet had a modest effect on T cell production of IFN-γ but did not impact on the generation of parasite-specific T cells. However, the absence of T-bet resulted in lower T cell expression of CD11a, Ly6C, KLRG-1, and CXCR3 and fewer parasite-specific T cells at secondary sites of infection, associated with a defect in parasite control at these sites. Together, these data highlight T-bet-independent pathways to IFN-γ production and reveal a novel role for this transcription factor in coordinating the T cell responses necessary to control this infection in peripheral tissues.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gaia Muallem
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beena John
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arielle Glatman Zaretsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William G Dunn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jacqueline Perrigoue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032; and Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
29
|
Deubiquitination and stabilization of T-bet by USP10. Biochem Biophys Res Commun 2014; 449:289-94. [PMID: 24845384 DOI: 10.1016/j.bbrc.2014.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
The T-box transcriptional factor T-bet is crucial in the development, differentiation and function of Th1 cells. It drives Th1 immune response primarily through promoting expression of Th1 hallmark cytokine IFN-γ. Although T-bet was found associated with many immune-mediated diseases such as asthma and systemic sclerosis, little is known about the regulation of T-bet stability and function. Here we identified USP10, a carboxyl-terminal ubiquitin-processing protease, could interact with T-bet in the nucleus. Overexpression of USP10 directly inhibited T-bet ubiquitination and increased the expression of T-bet. We further confirmed Quercetin, a reported inhibitor of T-bet, could target USP10. Quercetin treatment downregulated USP10 and promoted T-bet degradation in a proteasome dependent way. Moreover, we found USP10 expression was upregulated in asthmatic patient PBMC, suggesting USP10 may maintain high level of T-bet and IFN-γ to fight against Th2-dominated inflammation.
Collapse
|
30
|
The role of protein modifications of T-bet in cytokine production and differentiation of T helper cells. J Immunol Res 2014; 2014:589672. [PMID: 24901011 PMCID: PMC4036734 DOI: 10.1155/2014/589672] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
T-Bet (T-box protein expressed in T cells, also called as TBX21) was originally cloned as a key transcription factor involved in the commitment of T helper (Th) cells to the Th1 lineage. T-Bet directly activates IFN-γ gene transcription and enhances development of Th1 cells. T-Bet simultaneously modulates IL-2 and Th2 cytokines in an IFN-γ-independent manner, resulting in an attenuation of Th2 cell development. Numerous studies have demonstrated that T-bet plays multiple roles in many subtypes of immune cells, including B cell, dendritic cells, natural killer (NK) cells, NK T cells, and innate lymphoid cells. Therefore, T-bet is crucial for the development and coordination of both innate and adaptive immune responses. To fulfill these multiple roles, T-bet undergoes several posttranslational protein modifications, such as phosphorylation at tyrosine, serine, and threonine residues, and ubiquitination at lysine residues, which affect lineage commitment during Th cell differentiation. This review presents a current overview of the progress made in understanding the roles of various types of T-bet protein modifications in the regulation of cytokine production during Th cell differentiation.
Collapse
|
31
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
32
|
Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O'Shea JJ. Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 2014; 381:279-326. [PMID: 24831346 DOI: 10.1007/82_2014_371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) helper T cells are crucial for autoimmune and infectious diseases; however, the recognition of the many, diverse fates available continues unabated. Precisely what controls specification of helper T cells and preserves phenotypic commitment is currently intensively investigated. In this review, we will discuss the major factors that impact helper T cell fate choice, ranging from cytokines and the microbiome to metabolic control and epigenetic regulation. We will also discuss the technological advances along with the attendant challenges presented by "big data," which allow the understanding of these processes on comprehensive scales.
Collapse
Affiliation(s)
- Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 2013; 13:777-89. [PMID: 24113868 DOI: 10.1038/nri3536] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally described over a decade ago as a T cell transcription factor regulating T helper 1 cell lineage commitment, T-bet is now recognized as having an important role in many cells of the adaptive and innate immune system. T-bet has a fundamental role in coordinating type 1 immune responses by controlling a network of genetic programmes that regulate the development of certain immune cells and the effector functions of others. Many of these transcriptional networks are conserved across innate and adaptive immune cells and these shared mechanisms highlight the biological functions that are regulated by T-bet.
Collapse
Affiliation(s)
- Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
34
|
Won HY, Jang EJ, Lee K, Oh S, Kim HK, Woo HA, Kang SW, Yu DY, Rhee SG, Hwang ES. Ablation of peroxiredoxin II attenuates experimental colitis by increasing FoxO1-induced Foxp3+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4029-37. [PMID: 24048895 DOI: 10.4049/jimmunol.1203247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peroxiredoxin (Prx) II is an intracellular antioxidant molecule that eliminates hydrogen peroxide, employing a high substrate-binding affinity. PrxII deficiency increases the levels of intracellular reactive oxygen species in many types of cells, which may increase reactive oxygen species-mediated inflammation. In this study, we investigated the susceptibility of PrxII knockout (KO) mice to experimentally induced colitis and the effects of PrxII on the immune system. Wild-type mice displayed pronounced weight loss, high mortality, and colon shortening after dextran sulfate sodium administration, whereas colonic inflammation was significantly attenuated in PrxII KO mice. Although macrophages were hyperactivated in PrxII KO mice, the amount of IFN-γ and IL-17 produced by CD4(+) T cells was substantially reduced. Foxp3(+) regulatory T (Treg) cells were elevated, and Foxp3 protein expression was increased in the absence of PrxII in vitro and in vivo. Restoration of PrxII into KO cells suppressed the increased Foxp3 expression. Interestingly, endogenous PrxII was inactivated through hyperoxidation during Treg cell development. Furthermore, PrxII deficiency stabilized FoxO1 expression by reducing mouse double minute 2 homolog expression and subsequently activated FoxO1-mediated Foxp3 gene transcription. PrxII overexpression, in contrast, reduced FoxO1 and Foxp3 expression. More interestingly, adoptive transfer of naive CD4(+) T cells from PrxII KO mice into immune-deficient mice attenuated T cell-induced colitis, with a reduction in mouse double minute 2 homolog expression and an increase in FoxO1 and Foxp3 expression. These results suggest that inactivation of PrxII is important for the stability of FoxO1 protein, which subsequently mediates Foxp3(+) Treg cell development, thereby attenuating colonic inflammation.
Collapse
Affiliation(s)
- Hee Yeon Won
- College of Pharmacy and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|