1
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
2
|
Lorentzen J, Olesen HG, Hansen AG, Thiel S, Birkelund S, Andersen CBF, Andersen GR. Trypanosoma brucei Invariant Surface gp65 Inhibits the Alternative Pathway of Complement by Accelerating C3b Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:862-873. [PMID: 37466368 DOI: 10.4049/jimmunol.2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.
Collapse
Affiliation(s)
- Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Heidi G Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
3
|
Ruiz-Molina N, Parsons J, Decker EL, Reski R. Structural modelling of human complement FHR1 and two of its synthetic derivatives provides insight into their in-vivo functions. Comput Struct Biotechnol J 2023; 21:1473-1486. [PMID: 36851916 PMCID: PMC9957715 DOI: 10.1016/j.csbj.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Human complement is the first line of defence against invading pathogens and is involved in tissue homeostasis. Complement-targeted therapies to treat several diseases caused by a dysregulated complement are highly desirable. Despite huge efforts invested in their development, only very few are currently available, and a deeper understanding of the numerous interactions and complement regulation mechanisms is indispensable. Two important complement regulators are human Factor H (FH) and Factor H-related protein 1 (FHR1). MFHR1 and MFHR13, two promising therapeutic candidates based on these regulators, combine the dimerization and C5-regulatory domains of FHR1 with the central C3-regulatory and cell surface-recognition domains of FH. Here, we used AlphaFold2 to model the structure of these two synthetic regulators. Moreover, we used AlphaFold-Multimer (AFM) to study possible interactions of C3 fragments and membrane attack complex (MAC) components C5, C7 and C9 in complex with FHR1, MFHR1, MFHR13 as well as the best-known MAC regulators vitronectin (Vn), clusterin and CD59, whose experimental structures remain undetermined. AFM successfully predicted the binding interfaces of FHR1 and the synthetic regulators with C3 fragments and suggested binding to C3. The models revealed structural differences in binding to these ligands through different interfaces. Additionally, AFM predictions of Vn, clusterin or CD59 with C7 or C9 agreed with previously published experimental results. Because the role of FHR1 as MAC regulator has been controversial, we analysed possible interactions with C5, C7 and C9. AFM predicted interactions of FHR1 with proteins of the terminal complement complex (TCC) as indicated by experimental observations, and located the interfaces in FHR11-2 and FHR14-5. According to AFM prediction, FHR1 might partially block the C3b binding site in C5, inhibiting C5 activation, and block C5b-7 complex formation and C9 polymerization, with similar mechanisms of action as clusterin and vitronectin. Here, we generate hypotheses and give the basis for the design of rational approaches to understand the molecular mechanism of MAC inhibition, which will facilitate the development of further complement therapeutics.
Collapse
Affiliation(s)
- Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Biggs RM, Makou E, Lauder S, Herbert AP, Barlow PN, Katti SK. An Evaluation of the Complement-Regulating Activities of Human Complement Factor H (FH) Variants Associated With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:30. [DOI: 10.1167/iovs.63.12.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robyn M. Biggs
- Gemini Therapeutics, Inc., Cambridge, Massachusetts, United States
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott Lauder
- Gemini Therapeutics, Inc., Cambridge, Massachusetts, United States
| | - Andrew P. Herbert
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul N. Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Suresh K. Katti
- Gemini Therapeutics, Inc., Cambridge, Massachusetts, United States
| |
Collapse
|
5
|
Alic L, Binder CJ, Papac-Milicevic N. The OSE complotype and its clinical potential. Front Immunol 2022; 13:1010893. [PMID: 36248824 PMCID: PMC9561429 DOI: 10.3389/fimmu.2022.1010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular death, aging, and tissue damage trigger inflammation that leads to enzymatic and non-enzymatic lipid peroxidation of polyunsaturated fatty acids present on cellular membranes and lipoproteins. This results in the generation of highly reactive degradation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), that covalently modify free amino groups of proteins and lipids in their vicinity. These newly generated neoepitopes represent a unique set of damage-associated molecular patterns (DAMPs) associated with oxidative stress termed oxidation-specific epitopes (OSEs). OSEs are enriched on oxidized lipoproteins, microvesicles, and dying cells, and can trigger sterile inflammation. Therefore, prompt recognition and removal of OSEs is required to maintain the homeostatic balance. This is partially achieved by various humoral components of the innate immune system, such as natural IgM antibodies, pentraxins and complement components that not only bind OSEs but in some cases modulate their pro-inflammatory potential. Natural IgM antibodies are potent complement activators, and 30% of them recognize OSEs such as oxidized phosphocholine (OxPC-), 4-HNE-, and MDA-epitopes. Furthermore, OxPC-epitopes can bind the complement-activating pentraxin C-reactive protein, while MDA-epitopes are bound by C1q, C3a, complement factor H (CFH), and complement factor H-related proteins 1, 3, 5 (FHR-1, FHR-3, FHR-5). In addition, CFH and FHR-3 are recruited to 2-(ω-carboxyethyl)pyrrole (CEP), and full-length CFH also possesses the ability to attenuate 4-HNE-induced oxidative stress. Consequently, alterations in the innate humoral defense against OSEs predispose to the development of diseases associated with oxidative stress, as shown for the prototypical OSE, MDA-epitopes. In this mini-review, we focus on the mechanisms of the accumulation of OSEs, the pathophysiological consequences, and the interactions between different OSEs and complement components. Additionally, we will discuss the clinical potential of genetic variants in OSE-recognizing complement proteins – the OSE complotype - in the risk estimation of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nikolina Papac-Milicevic,
| |
Collapse
|
6
|
Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol Immunol 2022; 151:166-182. [PMID: 36162225 DOI: 10.1016/j.molimm.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
After years of disappointing clinical results, the tide has finally changed and complement targeted-therapies have become a validated and accepted treatment option for several diseases. These accomplishments have revitalized the field and brought renewed attention to the prospects that complement therapeutics can offer. Streamlining diagnostics and therapeutics is imperative in this new era of clinical use of complement therapeutics. However, the incredible success in therapeutics has not been accompanied by the development of novel standardized tools for complement testing. Complement biomarkers can assist in the risk assessment and diagnosis of diseases as well as the prediction of disease progression and treatment response. Recently, a group of complement proteins has been suggested to be highly relevant in various complement-associated disorders, namely the human factor H (FH) protein family. This family of closely related proteins consists of FH, FH-like protein 1, and five factor H-related proteins, and they have been linked to eye, kidney, infectious, vascular, and autoimmune diseases as well as cancer. The goal of this review is to provide a comprehensive overview of the available data on circulating levels of FH and its related proteins in different pathologies. In addition, we examined the current literature to determine the clinical utility of measuring levels of the FH protein family in health and disease. Finally, we discuss future steps that are needed to make their clinical translation a reality.
Collapse
|
7
|
Pedersen H, Jensen RK, Hansen AG, Petersen SV, Thiel S, Laursen NS, Andersen GR. Structure-Guided Engineering of a Complement Component C3-Binding Nanobody Improves Specificity and Adds Cofactor Activity. Front Immunol 2022; 13:872536. [PMID: 35935935 PMCID: PMC9352930 DOI: 10.3389/fimmu.2022.872536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 01/13/2023] Open
Abstract
The complement system is a part of the innate immune system, where it labels intruding pathogens as well as dying host cells for clearance. If complement regulation is compromised, the system may contribute to pathogenesis. The proteolytic fragment C3b of complement component C3, is the pivot point of the complement system and provides a scaffold for the assembly of the alternative pathway C3 convertase that greatly amplifies the initial complement activation. This makes C3b an attractive therapeutic target. We previously described a nanobody, hC3Nb1 binding to C3 and its degradation products. Here we show, that extending the N-terminus of hC3Nb1 by a Glu-Trp-Glu motif renders the resulting EWE-hC3Nb1 (EWE) nanobody specific for C3 degradation products. By fusing EWE to N-terminal CCP domains from complement Factor H (FH), we generated the fusion proteins EWEnH and EWEµH. In contrast to EWE, these fusion proteins supported Factor I (FI)-mediated cleavage of human and rat C3b. The EWE, EWEµH, and EWEnH proteins bound C3b and iC3b with low nanomolar dissociation constants and exerted strong inhibition of alternative pathway-mediated deposition of complement. Interestingly, EWEnH remained soluble above 20 mg/mL. Combined with the observed reactivity with both human and rat C3b as well as the ability to support FI-mediated cleavage of C3b, this features EWEnH as a promising candidate for in vivo studies in rodent models of complement driven pathogenesis.
Collapse
Affiliation(s)
- Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nick Stub Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Gregers Rom Andersen,
| |
Collapse
|
8
|
Vadászi H, Kiss B, Micsonai A, Schlosser G, Szaniszló T, Kovács RÁ, Györffy BA, Kékesi KA, Goto Y, Uzonyi B, Liliom K, Kardos J. Competitive inhibition of the classical complement pathway using exogenous single-chain C1q recognition proteins. J Biol Chem 2022; 298:102113. [PMID: 35690144 PMCID: PMC9270254 DOI: 10.1016/j.jbc.2022.102113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Complement component 1q (C1q) is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway (CP). In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs which comprised the globular interaction recognition parts of mouse C1q (gC1q) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an E. coli expression system, and their structure and capabilities to bind known CP activators were validated by mass spectrometry, analytical size exclusion chromatography, analytical ultracentrifugation, circular dichroism spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA ELTE Lendu¨let Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Réka Á Kovács
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Barbara Uzonyi
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
9
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
10
|
Kárpáti É, Kremlitzka M, Sándor N, Hajnal D, Schneider AE, Józsi M. Complement Factor H Family Proteins Modulate Monocyte and Neutrophil Granulocyte Functions. Front Immunol 2021; 12:660852. [PMID: 34671340 PMCID: PMC8521052 DOI: 10.3389/fimmu.2021.660852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Besides being a key effector arm of innate immunity, a plethora of non-canonical functions of complement has recently been emerging. Factor H (FH), the main regulator of the alternative pathway of complement activation, has been reported to bind to various immune cells and regulate their functions, beyond its role in modulating complement activation. In this study we investigated the effect of FH, its alternative splice product FH-like protein 1 (FHL-1), the FH-related (FHR) proteins FHR-1 and FHR-5, and the recently developed artificial complement inhibitor mini-FH, on two key innate immune cells, monocytes and neutrophilic granulocytes. We found that, similar to FH, the other factor H family proteins FHL-1, FHR-1 and FHR-5, as well as the recombinant mini-FH, are able to bind to both monocytes and neutrophils. As a functional outcome, immobilized FH and FHR-1 inhibited PMA-induced NET formation, but increased the adherence and IL-8 production of neutrophils. FHL-1 increased only the adherence of the cells, while FHR-5 was ineffective in altering these functions. The adherence of monocytes was increased on FH, recombinant mini-FH and FHL-1 covered surfaces and, except for FHL-1, the same molecules also enhanced secretion of the inflammatory cytokines IL-1β and TNFα. When monocytes were stimulated with LPS in the presence of immobilized FH family proteins, FH, FHL-1 and mini-FH enhanced whereas FHR-1 and FHR-5 decreased the secretion of TNFα; FHL-1 and mini-FH also enhanced IL-10 release compared to the effect of LPS alone. Our results reveal heterogeneous effects of FH and FH family members on monocytes and neutrophils, altering key features involved in pathogen killing, and also demonstrate that FH-based complement inhibitors, such as mini-FH, may have effects beyond their function of inhibiting complement activation. Thus, our data provide new insight into the non-canonical functions of FH, FHL-1, FHR-1 and FHR-5 that might be exploited during protection against infections and in vaccine development.
Collapse
Affiliation(s)
- Éva Kárpáti
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mariann Kremlitzka
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hajnal
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea E Schneider
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Kerr H, Herbert AP, Makou E, Abramczyk D, Malik TH, Lomax-Browne H, Yang Y, Pappworth IY, Denton H, Richards A, Marchbank KJ, Pickering MC, Barlow PN. Murine Factor H Co-Produced in Yeast With Protein Disulfide Isomerase Ameliorated C3 Dysregulation in Factor H-Deficient Mice. Front Immunol 2021; 12:681098. [PMID: 34054871 PMCID: PMC8149785 DOI: 10.3389/fimmu.2021.681098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.
Collapse
Affiliation(s)
- Heather Kerr
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Herbert
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Dariusz Abramczyk
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Hannah Lomax-Browne
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Yi Yang
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Isabel Y. Pappworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Harriet Denton
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Anna Richards
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Paul N. Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Kozma GT, Mészáros T, Bakos T, Hennies M, Bencze D, Uzonyi B, Győrffy B, Cedrone E, Dobrovolskaia MA, Józsi M, Szebeni J. Mini-Factor H Modulates Complement-Dependent IL-6 and IL-10 Release in an Immune Cell Culture (PBMC) Model: Potential Benefits Against Cytokine Storm. Front Immunol 2021; 12:642860. [PMID: 33995361 PMCID: PMC8113956 DOI: 10.3389/fimmu.2021.642860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1β, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Bakos
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Dániel Bencze
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Győrffy
- Second Department of Bioinformatics and Pediatrics, Semmelweis University, Budapest, Hungary
- Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| |
Collapse
|
13
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
14
|
Merle NS, Leon J, Poillerat V, Grunenwald A, Boudhabhay I, Knockaert S, Robe-Rybkine T, Torset C, Pickering MC, Chauvet S, Fremeaux-Bacchi V, Roumenina LT. Circulating FH Protects Kidneys From Tubular Injury During Systemic Hemolysis. Front Immunol 2020; 11:1772. [PMID: 32849636 PMCID: PMC7426730 DOI: 10.3389/fimmu.2020.01772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intravascular hemolysis of any cause can induce acute kidney injury (AKI). Hemolysis-derived product heme activates the innate immune complement system and contributes to renal damage. Therefore, we explored the role of the master complement regulator Factor H (FH) in the kidney's resistance to hemolysis-mediated AKI. Acute systemic hemolysis was induced in mice lacking liver expression of FH (hepatoFH-/-, ~20% residual FH) and in WT controls, by phenylhydrazine injection. The impaired complement regulation in hepatoFH-/- mice resulted in a delayed but aggravated phenotype of hemolysis-related kidney injuries. Plasma urea as well as markers for tubular (NGAL, Kim-1) and vascular aggression peaked at day 1 in WT mice and normalized at day 2, while they increased more in hepatoFH-/- compared to the WT and still persisted at day 4. These were accompanied by exacerbated tubular dilatation and the appearance of tubular casts in the kidneys of hemolytic hepatoFH-/- mice. Complement activation in hemolytic mice occurred in the circulation and C3b/iC3b was deposited in glomeruli in both strains. Both genotypes presented with positive staining of FH in the glomeruli, but hepatoFH-/- mice had reduced staining in the tubular compartment. Despite the clear phenotype of tubular injury, no complement activation was detected in the tubulointerstitium of the phenylhydrazin-injected mice irrespective of the genotype. Nevertheless, phenylhydrazin triggered overexpression of C5aR1 in tubules, predominantly in hepatoFH-/- mice. Moreover, C5b-9 was deposited only in the glomeruli of the hemolytic hepatoFH-/- mice. Therefore, we hypothesize that C5a, generated in the glomeruli, could be filtered into the tubulointerstitium to activate C5aR1 expressed by tubular cells injured by hemolysis-derived products and will aggravate the tissue injury. Plasma-derived FH is critical for the tubular protection, since pre-treatment of the hemolytic hepatoFH-/- mice with purified FH attenuated the tubular injury. Worsening of acute tubular necrosis in the hepatoFH-/- mice was trigger-dependent, as it was also observed in LPS-induced septic AKI model but not in chemotherapy-induced AKI upon cisplatin injection. In conclusion, plasma FH plays a key role in protecting the kidneys, especially the tubules, against hemolysis-mediated injury. Thus, FH-based molecules might be explored as promising therapeutic agents in a context of AKI.
Collapse
Affiliation(s)
- Nicolas S. Merle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Juliette Leon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Victoria Poillerat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Idris Boudhabhay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Samantha Knockaert
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Tania Robe-Rybkine
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Carine Torset
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Matthew C. Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, United Kingdom
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Assistance Publique – Hôpitaux de Paris, Service de Nephrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Veronique Fremeaux-Bacchi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Assistance Publique – Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
15
|
Haque A, Cortes C, Alam MN, Sreedhar M, Ferreira VP, Pangburn MK. Characterization of Binding Properties of Individual Functional Sites of Human Complement Factor H. Front Immunol 2020; 11:1728. [PMID: 32849614 PMCID: PMC7417313 DOI: 10.3389/fimmu.2020.01728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Factor H exists as a 155,000 dalton, extended protein composed of twenty small domains which is flexible enough that it folds back on itself. Factor H regulates complement activation through its interactions with C3b and polyanions. Three binding sites for C3b and multiple polyanion binding sites have been identified on Factor H. In intact Factor H these sites appear to act synergistically making their individual contributions difficult to distinguish. Recombinantly expressed fragments of human Factor H were examined using surface plasmon resonance (SPR) for interactions with C3, C3b, iC3b, C3c, and C3d. Eleven recombinant proteins of lengths from one to twenty domains were used to show that the three C3b-binding sites exhibit 100-fold different affinities for C3b. The N-terminal site [complement control protein (CCP) domains 1-6] bound C3b with a Kd of 0.08 μM and this interaction was not influenced by the presence or absence of domains 7 and 8. Full length Factor H similarly exhibited a Kd for C3b of 0.1 μM. Unexpectedly, the N-terminal site (CCP 1-6) bound native C3 with a Kd of 0.4 μM. The C-terminal domains (CCP 19-20) exhibited a Kd of 1.7 μM for C3b. We localized a weak third C3b binding site in the CCP 13-15 region with a Kd estimated to be ~15 μM. The C-terminal site (CCP 19-20) bound C3b, iC3b, and C3d equally well with a Kd of 1 to 2 μM. In order to identify and compare regions of Factor H that interact with polyanions a family of 18 overlapping three domain recombinant proteins spanning the entire length of Factor H were expressed and purified. Immobilized heparin was used as a model polyanion and SPR confirmed the presence of heparin binding sites in CCP 6-8 (Kd 1.2 μM) and in CCP 19-20 (4.9 μM) and suggested the existence of a weak third polyanion binding site in the center of Factor H (CCP 11-13). Our results unveil the relative contributions of different regions of Factor H to its regulation of complement, and may contribute to the understanding of how defects in certain Factor H domains lead to disease.
Collapse
Affiliation(s)
- Aftabul Haque
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - M Nurul Alam
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,Department of Biology, College of Arts, Sciences, and Education, Texas A&M University-Texarkana, Texarkana, TX, United States
| | - Maladi Sreedhar
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Michael K Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
16
|
Potentiation of complement regulator factor H protects human endothelial cells from complement attack in aHUS sera. Blood Adv 2020; 3:621-632. [PMID: 30804016 DOI: 10.1182/bloodadvances.2018025692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene encoding for complement regulator factor H (FH) severely disrupt its normal function to protect human cells from unwanted complement activation, resulting in diseases such as atypical hemolytic uremic syndrome (aHUS). aHUS presents with severe hemolytic anemia, thrombocytopenia, and renal disease, leading to end-stage renal failure. Treatment of severe complement-mediated disease, such as aHUS, by inhibiting the terminal complement pathway, has proven to be successful but at the same time fails to preserve the protective role of complement against pathogens. To improve complement regulation on human cells without interfering with antimicrobial activity, we identified an anti-FH monoclonal antibody (mAb) that induced increased FH-mediated protection of primary human endothelial cells from complement, while preserving the complement-mediated killing of bacteria. Moreover, this FH-activating mAb restored complement regulation in sera from aHUS patients carrying various heterozygous mutations in FH known to impair FH function and dysregulate complement activation. Our data suggest that FH normally circulates in a less active conformation and can become more active, allowing enhanced complement regulation on human cells. Antibody-mediated potentiation of FH may serve as a highly effective approach to inhibit unwanted complement activation on human cells in a wide range of hematological diseases while preserving the protective role of complement against pathogens.
Collapse
|
17
|
Mathematical Modelling of Alternative Pathway of Complement System. Bull Math Biol 2020; 82:33. [PMID: 32062771 PMCID: PMC7024062 DOI: 10.1007/s11538-020-00708-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/03/2020] [Indexed: 11/02/2022]
Abstract
The complement system (CS) is an integral part of innate immunity and can be activated via three different pathways. The alternative pathway (AP) has a central role in the function of the CS. The AP of complement system is implicated in several human disease pathologies. In the absence of triggers, the AP exists in a time-invariant resting state (physiological steady state). It is capable of rapid, potent and transient activation response upon challenge with a trigger. Previous models of AP have focused on the activation response. In order to understand the molecular machinery necessary for AP activation and regulation of a physiological steady state, we built parsimonious AP models using experimentally supported kinetic parameters. The models further allowed us to test quantitative roles played by negative and positive regulators of the pathway in order to test hypotheses regarding their mechanisms of action, thus providing more insight into the complex regulation of AP.
Collapse
|
18
|
Chen SF, Wang FM, Li ZY, Yu F, Chen M, Zhao MH. Myeloperoxidase influences the complement regulatory activity of complement factor H. Rheumatology (Oxford) 2019; 57:2213-2224. [PMID: 29471467 DOI: 10.1093/rheumatology/kex529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
Objective The interaction between neutrophils and activation of alternative complement pathway plays a critical role in the pathogenesis of ANCA-associated vasculitis (AAV). MPO, which can be released from ANCA-stimulated neutrophils, was recently demonstrated to be capable of activating the alternative complement pathway. Here we aimed to investigate the interaction between MPO and factor H (FH), a key regulator of the alternative pathway, and its effect on the functional activities of FH. Methods Detection of FH and MPO on neutrophil extracellular traps (NETs) induced by serum from AAV patients and in kidney biopsies of AAV patients was performed by immunostaining. In vitro binding between MPO and FH was examined by ELISA and surface plasmon resonance. The influence of MPO on the complement regulatory activity of FH was further assessed. Results FH deposited and co-localized with MPO in NETs. In kidney biopsies from AAV patients, MPO was closely adjacent to FH in glomerular capillaries. We demonstrated that MPO binds to FH with an apparent nanomolar affinity and identified short consensus repeats 1-4 of FH as the major binding sites. In terms of functional analysis, MPO inhibited the interaction between FH and C3b and the decay-accelerating activity of FH. The fluid phase and surface cofactor activities of FH upon C3b inactivation were inhibited by MPO. Conclusion Our findings indicate that MPO binds to FH and influences the complement regulatory activity of FH. MPO-FH interaction may participate in the pathogenesis of AAV by contributing to activation of the alternative complement pathway.
Collapse
Affiliation(s)
- Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng-Mei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
19
|
Dopler A, Guntau L, Harder MJ, Palmer A, Höchsmann B, Schrezenmeier H, Simmet T, Huber-Lang M, Schmidt CQ. Self versus Nonself Discrimination by the Soluble Complement Regulators Factor H and FHL-1. THE JOURNAL OF IMMUNOLOGY 2019; 202:2082-2094. [DOI: 10.4049/jimmunol.1801545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
|
20
|
Reski R, Bae H, Simonsen HT. Physcomitrella patens, a versatile synthetic biology chassis. PLANT CELL REPORTS 2018; 37:1409-1417. [PMID: 29797047 DOI: 10.1007/s00299-018-2293-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 05/21/2023]
Abstract
During three decades the moss Physcomitrella patens has been developed to a superb green cell factory with the first commercial products on the market. In the past three decades the moss P. patens has been developed from an obscure bryophyte to a model organism in basic biology, biotechnology, and synthetic biology. Some of the key features of this system include a wide range of Omics technologies, precise genome-engineering via homologous recombination with yeast-like efficiency, a certified good-manufacturing-practice production in bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein products, superb product stability from batch-to-batch, and a reliable procedure for cryopreservation of cell lines in a master cell bank. About a dozen human proteins are being produced in P. patens as potential biopharmaceuticals, some of them are not only similar to their animal-produced counterparts, but are real biobetters with superior performance. A moss-made pharmaceutical successfully passed phase 1 clinical trials, a fragrant moss, and a cosmetic moss-product is already on the market, highlighting the economic potential of this synthetic biology chassis. Here, we focus on the features of mosses as versatile cell factories for synthetic biology and their impact on metabolic engineering.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, 79104, Freiburg, Germany.
| | - Hansol Bae
- Mosspiration Biotech IVS, 2970, Hørsholm, Denmark
| | - Henrik Toft Simonsen
- Mosspiration Biotech IVS, 2970, Hørsholm, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
21
|
Hertz CE, Bayarri-Olmos R, Kirketerp-Møller N, van Putten S, Pilely K, Skjoedt MO, Garred P. Chimeric Proteins Containing MAP-1 and Functional Domains of C4b-Binding Protein Reveal Strong Complement Inhibitory Capacities. Front Immunol 2018; 9:1945. [PMID: 30210498 PMCID: PMC6120983 DOI: 10.3389/fimmu.2018.01945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 01/23/2023] Open
Abstract
The complement system is a tightly regulated network of proteins involved in defense against pathogens, inflammatory processes, and coordination of the innate and adaptive immune responses. Dysregulation of the complement cascade is associated with many inflammatory disorders. Thus, inhibition of the complement system has emerged as an option for treatment of a range of different inflammatory diseases. MAP-1 is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway of the complement system, whereas C4b-binding protein (C4BP) regulates both the classical and lectin pathways. In this study we generated chimeric proteins consisting of MAP-1 and the first five domains of human C4BP (C4BP1−5) in order to develop a targeted inhibitor acting at different levels of the complement cascade. Two different constructs were designed and expressed in CHO cells where MAP-1 was fused with C4BP1−5 in either the C- or N-terminus. The functionality of the chimeric proteins was assessed using different in vitro complement activation assays. Both chimeric proteins displayed the characteristic Ca2+-dependent dimerization and binding to PRMs of native MAP-1, as well as the co-factor activity of native C4BP. In ELISA-based complement activation assays they could effectively inhibit the lectin and classical pathways. Notably, MAP-1:C4BP1−5 was five times more effective than rMAP-1 and rC4BP1−5 applied at the same time, emphasizing the advantage of a single inhibitor containing both functional domains. The MAP-1/C4BP chimeras exert unique complement inhibitory properties and represent a novel therapeutic approach targeting both upstream and central complement activation.
Collapse
Affiliation(s)
- Cecilie E Hertz
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
23
|
Sánchez-Corral P, Pouw RB, López-Trascasa M, Józsi M. Self-Damage Caused by Dysregulation of the Complement Alternative Pathway: Relevance of the Factor H Protein Family. Front Immunol 2018; 9:1607. [PMID: 30050540 PMCID: PMC6052053 DOI: 10.3389/fimmu.2018.01607] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
The alternative pathway is a continuously active surveillance arm of the complement system, and it can also enhance complement activation initiated by the classical and the lectin pathways. Various membrane-bound and plasma regulatory proteins control the activation of the potentially deleterious complement system. Among the regulators, the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway and its powerful amplification loop. FH belongs to a protein family that also includes FH-like protein 1 and five factor H-related (FHR-1 to FHR-5) proteins. Genetic variants and abnormal rearrangements involving the FH protein family have been linked to numerous systemic and organ-specific diseases, including age-related macular degeneration, and the renal pathologies atypical hemolytic uremic syndrome, C3 glomerulopathies, and IgA nephropathy. This review covers the known and recently emerged ligands and interactions of the human FH family proteins associated with disease and discuss the very recent experimental data that suggest FH-antagonistic and complement-activating functions for the FHR proteins.
Collapse
Affiliation(s)
- Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Yang Y, Denton H, Davies OR, Smith-Jackson K, Kerr H, Herbert AP, Barlow PN, Pickering MC, Marchbank KJ. An Engineered Complement Factor H Construct for Treatment of C3 Glomerulopathy. J Am Soc Nephrol 2018; 29:1649-1661. [PMID: 29588430 PMCID: PMC6054357 DOI: 10.1681/asn.2017091006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH1-5^18-20), that was effective in experimental C3G. However, the serum t1/2 of FH1-5^18-20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1-2) at the carboxy or amino terminus of human FH1-5^18-20 to generate two homodimeric mini-FH constructs (FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh-/- mice.Results FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1-2^1-5^18-20 Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1-5^18-20 FH1-5^18-20^R1-2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1-5^18-20, and significantly better retention in the kidney than FH or FH1-5^18-20Conclusions FH1-5^18-20^R1-2 may have utility as a treatment option for C3G or other complement-mediated diseases.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Harriet Denton
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Smith-Jackson
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Heather Kerr
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | - Andrew P Herbert
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | - Paul N Barlow
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | | | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK;
| |
Collapse
|
25
|
Barcellini W, Fattizzo B. Autoimmune hemolytic anemia - progress in emerging treatment options. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1452734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wilma Barcellini
- Hematology Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Bruno Fattizzo
- Hematology Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Infusion Reactions Associated with the Medical Application of Monoclonal Antibodies: The Role of Complement Activation and Possibility of Inhibition by Factor H. Antibodies (Basel) 2018; 7:antib7010014. [PMID: 31544866 PMCID: PMC6698840 DOI: 10.3390/antib7010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022] Open
Abstract
Human application of monoclonal antibodies (mAbs), enzymes, as well as contrast media and many other particulate drugs and agents referred to as “nanomedicines”, can initiate pseudoallergic hypersensitivity reactions, also known as infusion reactions. These may in part be mediated by the activation of the complement system, a major humoral defense system of innate immunity. In this review, we provide a brief outline of complement activation-related pseudoallergy (CARPA) in general, and then focus on the reactions caused by mAb therapy. Because the alternative pathway of complement activation may amplify such adverse reactions, we highlight the potential use of complement factor H as an inhibitor of CARPA.
Collapse
|
27
|
Michelfelder S, Fischer F, Wäldin A, Hörle KV, Pohl M, Parsons J, Reski R, Decker EL, Zipfel PF, Skerka C, Häffner K. The MFHR1 Fusion Protein Is a Novel Synthetic Multitarget Complement Inhibitor with Therapeutic Potential. J Am Soc Nephrol 2018; 29:1141-1153. [PMID: 29335241 DOI: 10.1681/asn.2017070738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1. In vitro, MFHR1 showed cofactor and decay acceleration activity and inhibited C5 convertase activation and C5b-9 assembly, which prevented C3b deposition and reduced C3a/C5a and C5b-9 generation. Furthermore, this fusion protein showed the ability to escape deregulation by FH-related proteins and form multimeric complexes with increased inhibitory activity. In addition to substantially inhibiting alternative and classic pathway activation, MFHR1 blocked hemolysis mediated by serum from a patient with aHUS expressing truncated FH. In FH-/- mice, MFHR1 administration augmented serum C3 levels, reduced abnormal glomerular C3 deposition, and ameliorated C3 glomerulopathy. Taking the unique design of MFHR1 into account, we suggest that the combination of proximal and terminal cascade inhibition together with the ability to form multimeric complexes explain the strong inhibitory capacity of MFHR1, which offers a novel basis for complement therapeutics.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Friedericke Fischer
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Astrid Wäldin
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Kim V Hörle
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, and.,Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany; and
| | | | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Karsten Häffner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine,
| |
Collapse
|
28
|
Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev 2017; 274:152-171. [PMID: 27782321 DOI: 10.1111/imr.12475] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
30
|
Belling JN, Jackman JA, Yorulmaz Avsar S, Park JH, Wang Y, Potroz MG, Ferhan AR, Weiss PS, Cho NJ. Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS NANO 2016; 10:10161-10172. [PMID: 27792317 DOI: 10.1021/acsnano.6b05409] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With mounting evidence that nanomaterials can trigger adverse innate immune responses such as complement activation, there is increasing attention to the development of strategies that mask the complement-activating properties of nanomaterials. The current gold standard to reduce complement activation of nanomaterials is the covalent attachment of polymer coatings on nanomaterial surfaces, even though this strategy provides only moderate protection against complement activation. Akin to protein coronas that form on nanomaterial surfaces in physiological fluids, noncovalent strategies based on protein adsorption would offer a simplified, biomimetic approach to mitigate complement activation. Herein, we demonstrate that precoating graphene-based nanomaterials with purified, natural proteins enables regulatory control of nanomaterial-triggered complement activation. When the graphene-based nanomaterials were coated with complement factor H, nearly complete protection (>90% reduction) against complement activation (a "stealth effect") was achieved. By contrast, coating the nanomaterials with a passivating layer of bovine or human serum albumins achieved moderate protection (∼40% reduction), whereas immunoglobulin G amplified complement activation by several-fold. Taken together, our results demonstrate that surface-bound factor H, as well as serum albumins, can prevent graphene oxide-triggered complement activation, thereby offering a facile approach to inhibit complement activation completely down to naturally occurring levels.
Collapse
Affiliation(s)
- Jason N Belling
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Michael G Potroz
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
31
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica 2016; 100:1388-95. [PMID: 26521297 DOI: 10.3324/haematol.2015.128538] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia.
Collapse
Affiliation(s)
- Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, the Netherlands Department of Hematology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
33
|
Durey MAD, Sinha A, Togarsimalemath SK, Bagga A. Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol 2016; 12:563-78. [PMID: 27452363 DOI: 10.1038/nrneph.2016.99] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atypical haemolytic uraemic syndrome (aHUS), an important cause of acute kidney injury, is characterized by dysregulation of the complement pathway, frequent need for dialysis, and progression to end-stage renal disease. Autoantibodies against complement factor H (FH), the main plasma regulatory protein of the alternative pathway of the complement system, account for a considerable proportion of children with aHUS. The autoantibodies are usually associated with the occurrence of a homozygous deletion in the genes encoding the FH-related proteins FHR1 and FHR3. High levels of autoantibodies, noted at the onset of disease and during relapses, induce functional deficiency of FH, whereas their decline, in response to plasma exchanges and/or immunosuppressive therapy, is associated with disease remission. Management with plasma exchange and immunosuppression is remarkably effective in inducing and maintaining remission in aHUS associated with FH autoantibodies, whereas terminal complement blockade with eculizumab is considered the most effective therapy in other forms of aHUS. Anti-FH autoantibodies are also detected in a small proportion of patients with C3 glomerulopathies, which are characterized by chronic glomerular injury mediated by activation of the alternative complement pathway and predominant C3 deposits on renal histology.
Collapse
Affiliation(s)
- Marie-Agnes Dragon Durey
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 15 rue de l'ecole de medecine, 75006 Paris, France.,Université Paris Descartes, Paris, France.,Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, APHP, 20 rue Leblanc, 75015 Paris, France
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Shambhuprasad Kotresh Togarsimalemath
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 15 rue de l'ecole de medecine, 75006 Paris, France.,Université Paris Descartes, Paris, France
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
34
|
Risitano AM, Marotta S. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future. Semin Immunol 2016; 28:223-40. [PMID: 27346521 DOI: 10.1016/j.smim.2016.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias, trying to identify the most promising approaches for each individual disease.
Collapse
Affiliation(s)
- Antonio M Risitano
- Hematology, Department of Clinical Medicine and Surgery; Federico II University, Naples, Italy.
| | - Serena Marotta
- Hematology, Department of Clinical Medicine and Surgery; Federico II University, Naples, Italy
| |
Collapse
|
35
|
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 2016; 221:1046-57. [PMID: 27353192 DOI: 10.1016/j.imbio.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023]
Abstract
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors.
Collapse
|
36
|
Ricklin D, Lambris JD. New milestones ahead in complement-targeted therapy. Semin Immunol 2016; 28:208-22. [PMID: 27321574 PMCID: PMC5404743 DOI: 10.1016/j.smim.2016.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
The complement system is a powerful effector arm of innate immunity that typically confers protection from microbial intruders and accumulating debris. In many clinical situations, however, the defensive functions of complement can turn against host cells and induce or exacerbate immune, inflammatory, and degenerative conditions. Although the value of inhibiting complement in a therapeutic context has long been recognized, bringing complement-targeted drugs into clinical use has proved challenging. This important milestone was finally reached a decade ago, yet the clinical availability of complement inhibitors has remained limited. Still, the positive long-term experience with complement drugs and their proven effectiveness in various diseases has reinvigorated interest and confidence in this approach. Indeed, a broad variety of clinical candidates that act at almost any level of the complement activation cascade are currently in clinical development, with several of them being evaluated in phase 2 and phase 3 trials. With antibody-related drugs dominating the panel of clinical candidates, the emergence of novel small-molecule, peptide, protein, and oligonucleotide-based inhibitors offers new options for drug targeting and administration. Whereas all the currently approved and many of the proposed indications for complement-targeted inhibitors belong to the rare disease spectrum, these drugs are increasingly being evaluated for more prevalent conditions. Fortunately, the growing experience from preclinical and clinical use of therapeutic complement inhibitors has enabled a more evidence-based assessment of suitable targets and rewarding indications as well as related technical and safety considerations. This review highlights recent concepts and developments in complement-targeted drug discovery, provides an overview of current and emerging treatment options, and discusses the new milestones ahead on the way to the next generation of clinically available complement therapeutics.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
37
|
Probing the solution structure of Factor H using hydroxyl radical protein footprinting and cross-linking. Biochem J 2016; 473:1805-19. [PMID: 27099340 DOI: 10.1042/bcj20160225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
Abstract
The control protein Factor H (FH) is a crucial regulator of the innate immune complement system, where it is active on host cell membranes and in the fluid phase. Mutations impairing the binding capacity of FH lead to severe autoimmune diseases. Here, we studied the solution structure of full-length FH, in its free state and bound to the C3b complement protein. To do so, we used two powerful techniques, hydroxyl radical protein footprinting (HRPF) and chemical cross-linking coupled with mass spectrometry (MS), to probe the structural rearrangements and to identify protein interfaces. The footprint of C3b on the FH surface matches existing crystal structures of C3b complexed with the N- and C-terminal fragments of FH. In addition, we revealed the position of the central portion of FH in the protein complex. Moreover, cross-linking studies confirmed the involvement of the C-terminus in the dimerization of FH.
Collapse
|
38
|
Forneris F, Wu J, Xue X, Ricklin D, Lin Z, Sfyroera G, Tzekou A, Volokhina E, Granneman JC, Hauhart R, Bertram P, Liszewski MK, Atkinson JP, Lambris JD, Gros P. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J 2016; 35:1133-49. [PMID: 27013439 PMCID: PMC4868954 DOI: 10.15252/embj.201593673] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/29/2016] [Indexed: 01/17/2023] Open
Abstract
Regulators of complement activation (RCA) inhibit complement‐induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i–iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b‐binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease‐related mutations and immune evasion.
Collapse
Affiliation(s)
- Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science Utrecht University, Utrecht, The Netherlands
| | - Jin Wu
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science Utrecht University, Utrecht, The Netherlands
| | - Xiaoguang Xue
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science Utrecht University, Utrecht, The Netherlands
| | - Daniel Ricklin
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuoer Lin
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Georgia Sfyroera
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Apostolia Tzekou
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Volokhina
- Department of Pediatric Nephrology (830), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joke Cm Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science Utrecht University, Utrecht, The Netherlands
| | - Richard Hauhart
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Bertram
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - M Kathryn Liszewski
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Abstract
Biological therapeutics (biologics) that target autoimmune responses and inflammatory injury pathways have a marked beneficial impact on the management of many chronic diseases, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, and ankylosing spondylitis. Accumulating data suggest that a growing number of renal diseases result from autoimmune injury - including lupus nephritis, IgA nephropathy, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, autoimmune (formerly idiopathic) membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and C3 nephropathy - and one can speculate that biologics might also be applicable to these diseases. As many autoimmune renal diseases are relatively uncommon, with long natural histories and diverse outcomes, clinical trials that aim to validate potentially useful biologics are difficult to design and/or perform. Some excellent consortia are undertaking cohort studies and clinical trials, but more multicentre international collaborations are needed to advance the introduction of new biologics to patients with autoimmune renal disorders. This Review discusses the key molecules that direct injurious inflammation and the biologics that are available to modulate them. The opportunities and challenges for the introduction of relevant biologics into treatment protocols for autoimmune renal diseases are also discussed.
Collapse
|
40
|
Schmidt CQ, Harder MJ, Nichols EM, Hebecker M, Anliker M, Höchsmann B, Simmet T, Csincsi ÁI, Uzonyi B, Pappworth IY, Ricklin D, Lambris JD, Schrezenmeier H, Józsi M, Marchbank KJ. Selectivity of C3-opsonin targeted complement inhibitors: A distinct advantage in the protection of erythrocytes from paroxysmal nocturnal hemoglobinuria patients. Immunobiology 2016; 221:503-11. [PMID: 26792457 DOI: 10.1016/j.imbio.2015.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated cell lysis due to deficiency of GPI-anchored complement regulators. Blockage of the lytic pathway by eculizumab is the only available therapy for PNH patients and shows remarkable benefits, but regularly yields PNH erythrocytes opsonized with fragments of complement protein C3, rendering such erythrocytes prone to extravascular hemolysis. This effect is associated with insufficient responsiveness seen in a subgroup of PNH patients. Novel C3-opsonin targeted complement inhibitors act earlier in the cascade, at the level of activated C3 and are engineered from parts of the natural complement regulator Factor H (FH) or complement receptor 2 (CR2). This inhibitor class comprises three variants of "miniFH" and the clinically developed "FH-CR2" fusion-protein (TT30). We show that the approach of FH-CR2 to target C3-opsonins was more efficient in preventing complement activation induced by foreign surfaces, whereas the miniFH variants were substantially more active in controlling complement on PNH erythrocytes. Subtle differences were noted in the ability of each version of miniFH to protect human PNH cells. Importantly, miniFH and FH-CR2 interfered only minimally with complement-mediated serum killing of bacteria when compared to untargeted inhibition of all complement pathways by eculizumab. Thus, the molecular design of each C3-opsonin targeted complement inhibitor determines its potency in respect to the nature of the activator/surface providing potential functionality in PNH.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Eva-Maria Nichols
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Hebecker
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Markus Anliker
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Britta Höchsmann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ádám I Csincsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Isabel Y Pappworth
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm and German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kevin J Marchbank
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Mészáros T, Csincsi ÁI, Uzonyi B, Hebecker M, Fülöp TG, Erdei A, Szebeni J, Józsi M. Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:1023-1031. [PMID: 26733258 DOI: 10.1016/j.nano.2015.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED Hypersensitivity reactions to particulate drugs can partly be caused by complement activation and represent a major complication during intravenous application of nanomedicines. Several liposomal and micellar drugs and carriers, and therapeutic antibodies, were shown to activate complement and induce complement activation-related pseudoallergy (CARPA) in model animals. To explore the possible use of the natural complement inhibitor factor H (FH) against CARPA, we examined the effect of FH on complement activation induced by CARPAgenic drugs. Exogenous FH inhibited complement activation induced by the antifungal liposomal Amphotericin-B (AmBisome), the widely used solvent of anticancer drugs Cremophor EL, and the anticancer monoclonal antibody rituximab in vitro. An engineered form of FH (mini-FH) was more potent inhibitor of Ambisome-, Cremophor EL- and rituximab-induced complement activation than FH. The FH-related protein CFHR1 had no inhibitory effect. Our data suggest that FH or its derivatives may be considered in the pharmacological prevention of CARPA. FROM THE CLINICAL EDITOR Although liposomes and micelles are already in use in the clinical setting as drug carriers, there remains the potential problem of hypersensitivity due to complement activation. In this article, the authors investigated the use of complement inhibitor factor H (FH) on complement activation and showed good efficacy. The results would therefore suggest the potential application of complement inhibitor in the future.
Collapse
Affiliation(s)
- Tamás Mészáros
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Ádám I Csincsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Mario Hebecker
- Junior Research Group for Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Tamás G Fülöp
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary; Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
42
|
Harder MJ, Anliker M, Höchsmann B, Simmet T, Huber-Lang M, Schrezenmeier H, Ricklin D, Lambris JD, Barlow PN, Schmidt CQ. Comparative Analysis of Novel Complement-Targeted Inhibitors, MiniFH, and the Natural Regulators Factor H and Factor H-like Protein 1 Reveal Functional Determinants of Complement Regulation. THE JOURNAL OF IMMUNOLOGY 2015; 196:866-76. [PMID: 26643478 DOI: 10.4049/jimmunol.1501919] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
The serum proteins factor H (FH), consisting of 20 complement control protein modules (CCPs), and its splice product FH-like protein 1 (FHL-1; consisting of CCPs 1-7) are major regulators of the alternative pathway (AP) of complement activation. The engineered version of FH, miniFH, contains only the N- and C-terminal portions of FH linked by an optimized peptide and shows ∼ 10-fold higher ex vivo potency. We explored the hypothesis that regulatory potency is enhanced by unmasking of a ligand-binding site in the C-terminal CCPs 19-20 that is cryptic in full-length native FH. Therefore, we produced an FH variant lacking the central domains 10-15 (FHΔ10-15). To explore how avidity affects regulatory strength, we generated a duplicated version of miniFH, termed midiFH. We compared activities of FHΔ10-15 and midiFH to miniFH, FH, and FHL-1. Relative to FH, FHΔ10-15 exhibited an altered binding profile toward C3 activation products and a 5-fold-enhanced complement regulation on a paroxysmal nocturnal hemoglobinuria patient's erythrocytes. Contrary to dogma, FHL-1 and FH exhibited equal regulatory activity, suggesting that the role of FHL-1 in AP regulation has been underestimated. Unexpectedly, a substantially increased avidity for complement opsonins, as seen in midiFH, did not potentiate the inhibitory potential on host cells. In conclusion, comparisons of engineered and native FH-based regulators have identified features that determine high AP regulatory activity on host cells. Unrestricted availability of FH CCPs 19-20 and an optimal spatial orientation between the N- and C-terminal FH regions are key.
Collapse
Affiliation(s)
- Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Anliker
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Center of Surgery, University of Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom; and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
43
|
Abstract
Complement is a key component of immunity with crucial inflammatory and opsonic properties; inappropriate activation of complement triggers or exacerbates inflammatory disease. Complement dysregulation is a core feature of some diseases and contributes to pathology in many others. Approved agents have been developed for and are highly effective in some orphan applications, but their progress to use in more common diseases has been slow. Numerous challenges, such as target concentration or high turnover, limit the efficacy of these agents in humans. Numerous novel agents targeting different parts of the complement system in different ways are now emerging from pre-clinical studies and are entering Phase I/II trials; these agents bring the potential for more-effective and more-specific anti-complement therapies in disease. Other agents, both biologic and small molecule, are in Phase II or III trials for both rare and common diseases — administration routes include localized (for example, intravitreal) and systemic routes. There is an urgent need to develop biomarkers and imaging methods that enable monitoring of the effects and efficacy of anti-complement agents.
The complement cascade, a key regulator of innate immunity, is a rich source of potential therapeutic targets for diseases including autoimmune, inflammatory and degenerative disorders. Morgan and Harris discuss the progress made in modulating the complement system and the existing challenges, including dosing, localization of the drug to the target and how to interfere with protein–protein interactions. The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies.
Collapse
|
44
|
Herbert AP, Makou E, Chen ZA, Kerr H, Richards A, Rappsilber J, Barlow PN. Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement. THE JOURNAL OF IMMUNOLOGY 2015; 195:4986-98. [PMID: 26459349 PMCID: PMC4635569 DOI: 10.4049/jimmunol.1501388] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide–treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression.
Collapse
Affiliation(s)
- Andrew P Herbert
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Zhuo A Chen
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Heather Kerr
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom; Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Anna Richards
- Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Juri Rappsilber
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom;
| |
Collapse
|
45
|
Reski R, Parsons J, Decker EL. Moss-made pharmaceuticals: from bench to bedside. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1191-8. [PMID: 26011014 PMCID: PMC4736463 DOI: 10.1111/pbi.12401] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 05/10/2023]
Abstract
Over the past two decades, the moss Physcomitrella patens has been developed from scratch to a model species in basic research and in biotechnology. A fully sequenced genome, outstanding possibilities for precise genome-engineering via homologous recombination (knockout moss), a certified GMP production in moss bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein glycosylation, remarkable batch-to-batch stability and a safe cryopreservation for master cell banking are some of the key features of the moss system. Several human proteins are being produced in this system as potential biopharmaceuticals. Among the products are tumour-directed monoclonal antibodies with enhanced antibody-dependent cytotoxicity (ADCC), vascular endothelial growth factor (VEGF), complement factor H (FH), keratinocyte growth factor (FGF7/KGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), asialo-erythropoietin (asialo-EPO, AEPO), alpha-galactosidase (aGal) and beta-glucocerebrosidase (GBA). Further, an Env-derived multi-epitope HIV protein as a candidate vaccine was produced, and first steps for a metabolic engineering of P. patens have been made. Some of the recombinant biopharmaceuticals from moss bioreactors are not only similar to those produced in mammalian systems such as CHO cells, but are of superior quality (biobetters). The first moss-made pharmaceutical, aGal to treat Morbus Fabry, is in clinical trials.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Nordmaj MA, Munthe-Fog L, Hein E, Skjoedt MO, Garred P. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways. FASEB J 2015; 29:4945-55. [PMID: 26260032 DOI: 10.1096/fj.15-277103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation.
Collapse
Affiliation(s)
- Mie Anemone Nordmaj
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Nichols EM, Barbour TD, Pappworth IY, Wong EKS, Palmer JM, Sheerin NS, Pickering MC, Marchbank KJ. An extended mini-complement factor H molecule ameliorates experimental C3 glomerulopathy. Kidney Int 2015. [PMID: 26221753 PMCID: PMC4650264 DOI: 10.1038/ki.2015.233] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormal regulation of the complement alternative pathway is associated with C3 glomerulopathy. Complement factor H is the main plasma regulator of the alternative pathway and consists of 20 short consensus repeat (SCR) domains. Although recombinant full-length factor H represents a logical treatment for C3 glomerulopathy, its production has proved challenging. We and others have designed recombinant mini-factor H proteins in which ‘non-essential' SCR domains have been removed. Here, we report the in vitro and in vivo effects of a mini-complement factor H protein, FH1–5^18–20, using the unique factor H–deficient (Cfh−/−) mouse model of C3 glomerulopathy. FH1–5^18–20 is comprised of the key complement regulatory domains (SCRs 1–5) linked to the surface recognition domains (SCRs 18–20). Intraperitoneal injection of FH1–5^18–20 in Cfh−/− mice reduced abnormal glomerular C3 deposition, similar to full-length factor H. Systemic effects on plasma alternative pathway control were comparatively modest, in association with a short half-life. Thus, FH1–5^18–20 is a potential therapeutic agent for C3 glomerulopathy and other renal conditions with alternative pathway-mediated tissue injury.
Collapse
Affiliation(s)
- Eva-Maria Nichols
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas D Barbour
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Isabel Y Pappworth
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin K S Wong
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jeremy M Palmer
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Kevin J Marchbank
- Institutes of Cellular and Genetic Medicine, School of Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Risitano AM. Complement inhibition for paroxysmal nocturnal hemoglobinuria: where we stand and where we are going. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1041376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1019] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
50
|
Risitano AM. Current and Future Pharmacologic Complement Inhibitors. Hematol Oncol Clin North Am 2015; 29:561-82. [DOI: 10.1016/j.hoc.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|