1
|
Li Y, Yu X, Shi J, Zhao J, Li L. The role of aryl hydrocarbon receptors in nutrient metabolism and immune regulation at the maternal-fetal interface. Placenta 2024; 154:9-17. [PMID: 38830294 DOI: 10.1016/j.placenta.2024.05.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
The maternal-fetal interface is composed of the placenta, which is affiliated with the fetus, and the maternal decidua. During pregnancy, the placenta is mainly responsible for nutrient transport and immune tolerance maintenance, which plays a key role in fetal growth and development and pregnancy maintenance. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exists in various cell types at the maternal-fetal interface and is involved in multiple cellular processes. Recent studies have highlighted the role of AhR in regulating various physiological processes, including glucose and lipid metabolism, as well as tryptophan metabolism and immune responses, within non-pregnant tissues. This review shifts focus towards understanding how AhR modulation impacts metabolism and immune regulation at the maternal-fetal interface. This may implicate the development of pregnancy-related complications and the potential target of the AhR pathway for therapeutic strategies against poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, Shandong, 250021, China
| | - Xiaojun Yu
- School of Public Health Kunming Medical University, Kunming, 650500, China
| | - Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100083, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100083, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100083, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100083, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine 2024; 107:105301. [PMID: 39178747 PMCID: PMC11388279 DOI: 10.1016/j.ebiom.2024.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing evidence indicates that immunotherapy is hindered by a hostile tumor microenvironment (TME) featured with deprivation of critical nutrients and pooling of immunosuppressive metabolites. Tumor cells and immunosuppressive cells outcompete immune effector cells for essential nutrients. Meanwhile, a wide range of tumor cell-derived toxic metabolites exerts negative impacts on anti-tumor immune response, diminishing the efficacy of immunotherapy. Nanomedicine with excellent targetability offers a novel approach to improving cancer immunotherapy via metabolically reprogramming the immunosuppressive TME. Herein, we review recent strategies of enhancing immunotherapeutic effects through rewiring tumor metabolism via nanomedicine. Attention is drawn on immunometabolic tactics for immune cells and stromal cells in the TME via nanomedicine. Additionally, we discuss future directions of developing metabolism-regulating nanomedicine for precise and efficacious cancer immunotherapy.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinan Bai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang Y, Zhao X, Li Z, Wang W, Jiang Y, Zhang H, Liu X, Ren Y, Xu X, Hu X. Decidual natural killer cells dysfunction is caused by IDO downregulation in dMDSCs with Toxoplasma gondii infection. Commun Biol 2024; 7:669. [PMID: 38822095 PMCID: PMC11143278 DOI: 10.1038/s42003-024-06365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in maintaining maternal-fetal tolerance by expressing some immune-suppressive molecules, such as indoleamine 2,3-dioxygenase (IDO). Toxoplasma gondii (T. gondii) infection can break the immune microenvironment of maternal-fetal interface, resulting in adverse pregnancy outcomes. However, whether T. gondii affects IDO expression in dMDSCs and the molecular mechanism of its effect are still unclear. Here we show, the mRNA level of IDO is increased but the protein level decreased in infected dMDSCs. Mechanistically, the upregulation of transcriptional levels of IDO in dMDSCs is regulated through STAT3/p52-RelB pathway and the decrease of IDO expression is due to its degradation caused by increased SOCS3 after T. gondii infection. In vivo, the adverse pregnancy outcomes of IDO-/- infected mice are more severe than those of wide-type infected mice and obviously improved after exogenous kynurenine treatment. Also, the reduction of IDO in dMDSCs induced by T. gondii infection results in the downregulation of TGF-β and IL-10 expression in dNK cells regulated through Kyn/AhR/SP1 signal pathway, eventually leading to the dysfunction of dNK cells and contributing the occurrence of adverse pregnancy outcomes. This study reveals a novel molecular mechanism in adverse pregnancy outcome induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyue Zhao
- Department of Clinical Psychology, Yantai Affiliated hospital of Binzhou Medial University, Yantai, 264100, Shandong, PR China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Wenxiao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
4
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
5
|
Vasquez Ayala A, Hsu CY, Oles RE, Matsuo K, Loomis LR, Buzun E, Carrillo Terrazas M, Gerner RR, Lu HH, Kim S, Zhang Z, Park JH, Rivaud P, Thomson M, Lu LF, Min B, Chu H. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J Exp Med 2024; 221:e20230063. [PMID: 38085267 PMCID: PMC10716256 DOI: 10.1084/jem.20230063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.
Collapse
Affiliation(s)
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Renee E. Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhiko Matsuo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-osaka, Japan
| | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | - Romana R. Gerner
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Hsueh-Han Lu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jong Hwee Park
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Paul Rivaud
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, CA, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
6
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
7
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
8
|
Murillo N, Lasso P, Urueña C, Pardo-Rodriguez D, Ballesteros-Ramírez R, Betancourt G, Rojas L, Cala MP, Fiorentino S. Petiveria alliacea Reduces Tumor Burden and Metastasis and Regulates the Peripheral Immune Response in a Murine Myeloid Leukemia Model. Int J Mol Sci 2023; 24:12972. [PMID: 37629156 PMCID: PMC10454792 DOI: 10.3390/ijms241612972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The poor response, adverse effects and drug resistance to treatment of acute myeloid leukemia (AML) have led to searching for safer and more effective therapeutic alternatives. We previously demonstrated that the alcoholic extract of Petiveria alliacea (Esperanza) has a significant in vitro antitumor effect on other tumor cells and also the ability to regulate energy metabolism. We evaluated the effect of the Esperanza extract in vitro and in vivo in a murine model of AML with DA-3/ER-GM cells. First, a chemical characterization of the extract was conducted through liquid and gas chromatography coupled with mass spectrometry. In vitro findings showed that the extract modulates tumor metabolism by decreasing glucose uptake and increasing reactive oxygen species, which leads to a reduction in cell proliferation. Then, to evaluate the effect of the extract in vivo, we standardized the mouse model by injecting DA-3/ER-GM cells intravenously. The animals treated with the extract showed a lower percentage of circulating blasts, higher values of hemoglobin, hematocrit, and platelets, less infiltration of blasts in the spleen, and greater production of cytokines compared to the control group. These results suggest that the antitumor activity of this extract on DA-3/ER-GM cells can be attributed to the decrease in glycolytic metabolism, its activity as a mitocan, and the possible immunomodulatory effect by reducing tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Natalia Murillo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá 111711, Colombia; (D.P.-R.); (M.P.C.)
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Giselle Betancourt
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá 111711, Colombia; (D.P.-R.); (M.P.C.)
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (N.M.); (P.L.); (C.U.); (R.B.-R.); (G.B.); (L.R.)
| |
Collapse
|
9
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
10
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
11
|
Helm EY, Zhou L. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Front Immunol 2023; 14:1056267. [PMID: 37056785 PMCID: PMC10089284 DOI: 10.3389/fimmu.2023.1056267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor and facilitates immune cell environmental sensing through its activation by cellular, dietary, and microbial metabolites, as well as environmental toxins. Although expressed in various cell types, Ahr in innate lymphoid cells (ILCs) and their adaptive T cell counterparts regulates essential aspects of their development and function. As opposed to T cells, ILCs exclusively rely on germ-line encoded receptors for activation, but often share expression of core transcription factors and produce shared effector molecules with their T cell counterparts. As such, core modules of transcriptional regulation are both shared and diverge between ILCs and T cells. In this review, we highlight the most recent findings regarding Ahr’s transcriptional regulation of both ILCs and T cells. Furthermore, we focus on insights elucidating the shared and distinct mechanisms by which Ahr regulates both innate and adaptive lymphocytes.
Collapse
|
12
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
13
|
Dai S, Qu L, Li J, Zhang Y, Jiang L, Wei H, Guo M, Chen X, Chen Y. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor. Nat Commun 2022; 13:6234. [PMID: 36266304 PMCID: PMC9585082 DOI: 10.1038/s41467-022-33858-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a member of the basic helix-loop-helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors, plays important roles in regulating xenobiotic metabolism, cellular differentiation, stem cell maintenance, as well as immunity. More recently, AHR has gained significant interest as a drug target for the development of novel cancer immunotherapy drugs. Detailed understanding of AHR-ligand binding has been hampered for decades by the lack of a three-dimensional structure of the AHR PAS-B domain. Here, we present multiple crystal structures of the Drosophila AHR PAS-B domain, including its apo, ligand-bound, and AHR nuclear translocator (ARNT) PAS-B-bound forms. Together with biochemical and cellular assays, our data reveal structural features of the AHR PAS-B domain, provide insights into the mechanism of AHR ligand binding, and provide the structural basis for the future development of AHR-targeted therapeutics.
Collapse
Affiliation(s)
- Shuyan Dai
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Lingzhi Qu
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Jun Li
- grid.461579.8Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001 China
| | - Ye Zhang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Longying Jiang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Hudie Wei
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Ming Guo
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Xiaojuan Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yongheng Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| |
Collapse
|
14
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
15
|
Zeng J, Peng J, Jiang H, Deng P, Li K, Long D, Wang K. Establishment of an early diagnosis model of colon cancerous bowel obstruction based on 1H NMR. PLoS One 2022; 17:e0266730. [PMID: 35972924 PMCID: PMC9380946 DOI: 10.1371/journal.pone.0266730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To prospectively establish an early diagnosis model of acute colon cancerous bowel obstruction by applying nuclear magnetic resonance hydrogen spectroscopy(1H NMR) technology based metabolomics methods, combined with machine learning. Methods In this study, serum samples of 71 patients with acute bowel obstruction requiring emergency surgery who were admitted to the Emergency Department of Sichuan Provincial People’s Hospital from December 2018 to November 2020 were collected within 2 hours after admission, and NMR spectroscopy data was taken after pretreatment. After postoperative pathological confirmation, they were divided into colon cancerous bowel obstruction (CBO) group and adhesive bowel obstruction (ABO) control group. Used MestReNova software to extract the two sets of spectra bins, and used the MetaboAnalyst5.0 website to perform partial least square discrimination (PLS-DA), combining the human metabolome database (HMDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to find possible different Metabolites and related metabolic pathways. Results 22 patients were classified as CBO group and 30 were classified as ABO control group. Compared with ABO group, the level of Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicyluric acid, Ferulic acid, Kynurenic acid, CDP, Mandelic acid, NADPH, FAD, Phenylpyruvate, Allyl isothiocyanate, and Vanillylmandelic acid increased in the CBO group; while the lecel of L-Tryptophan and Bilirubin decreased. There were significant differences between two groups in the tryptophan metabolism, tyrosine metabolism, glutathione metabolism, phenylalanine metabolism and synthesis pathways of phenylalanine, tyrosine and tryptophan (all P<0.05). Tryptophan metabolism pathway had the greatest impact (Impact = 0.19). The early diagnosis model of colon cancerous bowel was established based on the levels of six metabolites: Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicylic acid, Ferulic acid and Kynurenic acid (R2 = 0.995, Q2 = 0.931, RMSE = 0.239, AUC = 0.962). Conclusion This study firstly used serum to determine the difference in metabolome between patients with colon cancerous bowel obstruction and those with adhesive bowel obstruction. The study found that the metabolic information carried by the serum was sufficient to discriminate the two groups of patients and provided the theoretical supporting for the future using of the more convenient sample for the differential diagnosis of patients with colon cancerous bowel obstruction. Quantitative experiments on a large number of samples were still needed in the future.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Jin Peng
- Department of Histology Embryology and Neurobiology, Sichuan University West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan, P.R. China
- * E-mail:
| | - Hua Jiang
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kexun Li
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Daolin Long
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Kai Wang
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
16
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
17
|
Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C. Polycyclic Aromatic Hydrocarbons Affect Rheumatoid Arthritis Pathogenesis via Aryl Hydrocarbon Receptor. Front Immunol 2022; 13:797815. [PMID: 35392076 PMCID: PMC8981517 DOI: 10.3389/fimmu.2022.797815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies have indicated that several factors could affect RA, such as mutations in susceptibility genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally critical. In this review, we summarize the recent progress in understanding the mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the challenges and perspectives on AHR application in the future.
Collapse
Affiliation(s)
- Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine (TCM) Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers (Basel) 2022; 14:1013. [PMID: 35205760 PMCID: PMC8870468 DOI: 10.3390/cancers14041013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising novel therapeutic strategy for cancer treatment. In a relevant percentage of patients, however, clinical benefits are lower than expected, pushing researchers to deeply analyze the immune responses against tumors and find more reliable and efficient tools to predict the individual response to therapy. Novel tissue engineering strategies can be adopted to realize in vitro fully humanized matrix-based models, as a compromise between standard two-dimensional (2D) cell cultures and animal tests, which are costly and hardly usable in personalized medicine. In this review, we describe the main mechanisms allowing cancer cells to escape the immune surveillance, which may play a significant role in the failure of immunotherapies. In particular, we discuss the role of the tumor microenvironment (TME) in the establishment of a milieu that greatly favors cancer malignant progression and impact on the interactions with immune cells. Then, we present an overview of the recent in vitro engineered preclinical three-dimensional (3D) models that have been adopted to resemble the interplays between cancer and immune cells and for testing current therapies and immunotherapeutic approaches. Specifically, we focus on 3D hydrogel-based tools based on different types of polymers, discussing the suitability of each of them in reproducing the TME key features based on their intrinsic or tunable characteristics. Finally, we introduce the possibility to combine the 3D models with technological fluid dynamics platforms, reproducing the dynamic complex interactions between tumor cells and immune effectors migrated in situ via the systemic circulation, pointing out the challenges that still have to be overcome for setting more predictive preclinical assays.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | | | - Silvia Scaglione
- React4life SRL, 16121 Genova, Italy; (M.M.); (S.S.)
- National Research Council of Italy, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), 16149 Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
- IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| |
Collapse
|
19
|
Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Front Immunol 2022; 13:807271. [PMID: 35173722 PMCID: PMC8841724 DOI: 10.3389/fimmu.2022.807271] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolism of tryptophan (Trp), an essential amino acid, represent a major metabolic pathway that both promotes tumor cell intrinsic malignant properties as well as restricts antitumour immunity, thus emerging as a drug development target for cancer immunotherapy. Three cytosolic enzymes, namely indoleamine 2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan 2,3-dioxygenase (TDO2), catalyzes the first-rate limiting step of the degradation of Trp to kynurenine (Kyn) and modulates immunity toward immunosuppression mainly through the aryl hydrocarbon receptor (AhR) activation in numerous types of cancer. By restoring antitumor immune responses and synergizing with other immunotherapies, the encouraging preclinical data of IDO1 inhibitors has dramatically failed to translate into clinical success when combined with immune checkpoints inhibitors, reigniting the debate of combinatorial approach. In this review, we i) provide comprehensive evidences on immunomodulatory role of the Trp catabolism metabolites that highlight this pathway as relevant target in immuno-oncology, ii)ii) discuss underwhelming results from clinical trials investigating efficacy of IDO1 inhibitors and underlying mechanisms that might have contributed to this failure, and finally, iii) discuss the current state-of-art surrounding alternative approaches of innovative antitumor immunotherapies that target molecules of Trp catabolism as well as challenges and perspectives in the era of immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | | | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Wang J, Mijiti Y, Chen Y, Liu Z. Aryl hydrocarbon receptor is a prognostic biomarker and is correlated with immune responses in cervical cancer. Bioengineered 2021; 12:11922-11935. [PMID: 34784845 PMCID: PMC8810191 DOI: 10.1080/21655979.2021.2006953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) plays an important role in tumor development. However, its function in cervical cancer has not been fully elucidated. We evaluated the ten genes that are predicted to associate with AHR protein interaction. The comprehensive scores were: CYP1A1, ARNT2, HSP90AA1, ARNT, AIP, PTGES3, HSP90AB1, CYP1B1, ESR1, MAF, respectively. In addition, we showed that levels of AHR and its related genes were correlated with the immune infiltration and expression of immuno-regulators (immunoinhibitors, immunostimulators, MHC molecules) levels in cervical cancer. High expression of AHR, CYP1A1, HSP90AA1, and HSP90AB1 and low expression of ESR1 were negatively correlated with the prognoses of cervical cancer patients. The Cox multivariate regression showed that high expression of AHR (HR = 1.874, 95% CI = 1.069–3.285, P= 0.028) and CYP1A1 (HR = 1.822, 95%CI = 1.077–3.080, P= 0.025) were risk factors for prognosis in patients with cervical cancer. IHC results indicated that AHR and CYP1A1 were widely expressed in cervical cancer. These findings suggest that AHR and CYP1A1 may serve as prognostic biomarkers for determining prognosis and immune infiltration in cervical cancer.
Collapse
Affiliation(s)
- Jiasui Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yilidana Mijiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yalin Chen
- The Sixth Division Hospital of Xinjiang Production and Construction Corps, China
| | - Zaoling Liu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Abd El-Fattah EE, Abdelhamid AM. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung. Toxicology 2021; 463:152994. [PMID: 34678320 DOI: 10.1016/j.tox.2021.152994] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023]
Abstract
Overexposure to carcinogenic precursor, benzo[a]pyrene [BaP], modulates the lung immune microenvironment. The present review seeks to elucidate novel pathways behind the tumor effect of BaP in the lungs, emphasizing immunomodulatory mediators and immune cells. In this review, BaP reprograms lung immune microenvironment through modulating transforming growth factor-beta (TGF-β), programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), Interleukin 12 (IL-12), indoleamine 2,3 dioxygenase (IDO), forkhead box protein P3 (FOXP3) and interferon-gamma (IFN-γ) levels. Moreover, BaP modulated lung immune cellular architecture such as dendritic cells, T cells, Tregs, macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). All mentioned changes in immune architecture and mediators lead to the induction of lung cancer.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
22
|
El-Ashmawy NE, Salem ML, Abd El-Fattah EE, Khedr EG. Targeting CD166 + lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021; 429:115699. [PMID: 34437932 DOI: 10.1016/j.taap.2021.115699] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Cancer stem cells (CSC) are the most common causes of lung cancer relapse and mouse resistance to chemotherapy. CD166 was identified as CSC marker for lung cancer. Our study aimed to detect the effect of dendritic cell vaccine loaded with tumor cell lysate (TCL-DCV) on percentage of CD166+ CSC in lung of mice exposed to Benzo(a)Pyrene (BP). METHODS Female albino mice were divided into 5 groups (22 mice per group): normal control (NC), lung cancer control (LCC) (50 mg/kg BP orally, twice weekly for four weeks), dendritic cell (DC), TCL-DCV and cisplatin. Cisplatin (6 mg/kg, intraperitoneal) was given in two doses (18th and 20th week). 1 × 106 cells of each of DC and TCL-DCV was given subcutaneously as cisplatin. At the end of experiment (22 weeks), lung tissue was used for evaluation of cytotoxic T lymphocyte antigen-4 (Ctla-4), transforming growth factor-β (Tgf-β), forkhead box protein P3 (Foxp3), programmed death ligand 1 (Pd-l1) and interleukin 12 (Il-12) gene expression using quantitative RT-PCR. The percentage of CD83+, CD8+ and CD166+ cells in lung tissue were measured using flow cytometry. RESULTS The results revealed that TCL-DCV reversed the tumorigenic effect of BP in the lung as evidenced by histopathological examination. Compared to cisplatin, dendritic cell vaccination (TCL-DCV) significantly decreased percentage of CD166+ CSC. This anticancer stemness effect was attributed to the immune-stimulatory effect as indicated by increased percentage of CD83+ and CD8+ cells, upregulation of Il-12, and downregulation of Tgf-β, Ctla-4, Pd-l1 and Foxp3 gene expression compared to LCC group. CONCLUSIONS TCL-DCV ameliorated cancer stemness through modulating tumor immune archetypes which make it a potent therapeutic alternative to chemotherapy resistant cases.
Collapse
Affiliation(s)
- N E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - E E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt..
| | - E G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
24
|
El-Ashmawy N, Salem M, Abd El-Fattah E, Khedr E. Targeting CD166+ lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021. [DOI: https://doi.org/10.1016/j.taap.2021.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Zhou X, Yu L, Zhou M, Hou P, Yi L, Mi M. Dihydromyricetin ameliorates liver fibrosis via inhibition of hepatic stellate cells by inducing autophagy and natural killer cell-mediated killing effect. Nutr Metab (Lond) 2021; 18:64. [PMID: 34147124 PMCID: PMC8214786 DOI: 10.1186/s12986-021-00589-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background This study investigated the mechanisms underlying the preventive effect of dihydromyricetin (DHM) against liver fibrosis involving hepatic stellate cells (HSCs) and hepatic natural killer (NK) cells. Methods A carbon tetrachloride (CCl4)-induced liver fibrosis model was established in C57BL/6 mice to study the antifibrotic effect of DHM based on serum biochemical parameters, histological and immunofluorescence stainings, and the expression of several fibrosis-related markers. Based on the immunoregulatory role of DHM, the effect of DHM on NK cell activation ex vivo was evaluated by flow cytometry. Then, we investigated whether DHM-induced autophagy was involved in HSCs inactivation using enzyme-linked immunosorbent assays, transmission electron microscopy, and western blot analysis. Thereafter, the role of DHM in NK cell-mediated killing was studied by in vitro coculture of NK cells and HSCs, with subsequent analysis by flow cytometry. Finally, the mechanism by which DHM regulates NK cells was studied by western blot analysis. Results DHM ameliorated liver fibrosis in C57BL/6 mice, as characterized by decreased serum alanine transaminase and aspartate transaminase levels, decreased expressions of collagen I alpha 1 (CoL-1α1), collagen I alpha 2 (CoL-1α2), tissue inhibitor of metalloproteinases 1 (TIMP-1), α-smooth muscle actin (α-SMA) and desmin, as well as increased expression of matrix metalloproteinase 1 (MMP1). Interestingly, HSCs activation was significantly inhibited by DHM in vivo and in vitro. As expected, DHM also upregulated autophagy-related indicators in liver from CCl4-treated mice. DHM also prevented TGF-β1-induced activation of HSCs in vitro by initiating autophagic flux. In contrast, the autophagy inhibitor 3-methyladenine markedly abolished the antifibrotic effect of DHM. Surprisingly, the frequency of activated intrahepatic NK cells was significantly elevated by DHM ex vivo. Furthermore, DHM enhanced NK cell-mediated killing of HSCs by increasing IFN-γ expression, which was abolished by an anti-IFN-γ neutralizing antibody. Mechanistically, DHM-induced IFN-γ expression was through AhR-NF-κB/STAT3 pathway in NK cells. Conclusion These results demonstrated that DHM can ameliorate the progression of liver fibrosis and inhibition of HSCs activation by inducing autophagy and enhancing NK cell-mediated killing through the AhR-NF-κB/STAT3-IFN-γ signaling pathway, providing new insights into the preventive role of DHM in liver fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00589-6.
Collapse
Affiliation(s)
- Xi Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Li Yu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University (Army Medical University), NO. 30th Gao Tan Yan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
27
|
Sun L. Recent advances in the development of AHR antagonists in immuno-oncology. RSC Med Chem 2021; 12:902-914. [PMID: 34223158 DOI: 10.1039/d1md00015b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The arylhydrocarbon receptor (AHR) is a ligand activated transcription factor that controls the expression of a number of immunosuppressive signaling molecules, including the immune checkpoint proteins PD-1/L1 and cytokine IL-10. AHR activation also stimulates the formation and recruitment of tolerogenic dendritic cells, tumor associated macrophages, and regulatory T cells in the tumor microenvironment, which restrains antitumoral immune response. Overexpression of AHR has been observed in a number of different types of cancer and suggested to contribute to immune dysfunction and cancer progression. One prominent endogenous ligand of AHR is the oncometabolite kynurenine, a product of tryptophan metabolism catalyzed by the dioxygenases IDO1 and TDO that are often aberrantly activated in cancer. AHR has gained significant interest as a drug target for the development of novel small molecule cancer immunotherapies, as evidenced by the advancement of two clinical candidates into phase 1 clinical trials in patients with advanced cancer. Discussed in this Review is a brief background of AHR in immuno-oncology and the recent progress in the discovery and development of AHR antagonists.
Collapse
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
28
|
Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA. Tryptophan metabolism in brain tumors - IDO and beyond. Curr Opin Immunol 2021; 70:57-66. [PMID: 33813026 DOI: 10.1016/j.coi.2021.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolism of the essential amino acid tryptophan is a key metabolic pathway that restricts antitumor immunity and is a drug development target for cancer immunotherapy. Tryptophan metabolism is active in brain tumors including gliomas and promotes a malignant phenotype and contributes to the immunosuppressive tumor microenvironment. In recent years, improved understanding of the regulation and downstream function of tryptophan metabolism has been significantly expanded beyond the initial in vitro observation that the enzyme indoleamine-2,3-dioxygenase 1 (IDO1) promotes the depletion of intracellular tryptophan. Here, we revisit the specific roles of tryptophan metabolites in regulating brain functioning and neuronal integrity as well as in the context of brain tumors. This review summarizes recent developments in identifying key regulators, as well as the cellular and molecular effects of tryptophan metabolism with a particular focus on potential therapeutic targets in glioma.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mirco Friedrich
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Derek A Wainwright
- Departments of Neurological Surgery, Medicine - Division of Hematology/Oncology, and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Verena Panitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
29
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Shin JH, Moreno-Nieves UY, Zhang LH, Chen C, Dixon AL, Linde MH, Mace EM, Sunwoo JB. AHR Regulates NK Cell Migration via ASB2-Mediated Ubiquitination of Filamin A. Front Immunol 2021; 12:624284. [PMID: 33717133 PMCID: PMC7943850 DOI: 10.3389/fimmu.2021.624284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are effector cells of the innate immune system involved in defense against virus-infected and transformed cells. The effector function of NK cells is linked to their ability to migrate to sites of inflammation or damage. Therefore, understanding the factors regulating NK cell migration is of substantial interest. Here, we show that in the absence of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, NK cells have reduced capacity to migrate and infiltrate tumors in vivo. Analysis of differentially expressed genes revealed that ankyrin repeat and SOCS Box containing 2 (Asb2) expression was dramatically decreased in Ahr-/- NK cells and that AhR ligands modulated its expression. Further, AhR directly regulated the promoter region of the Asb2 gene. Similar to what was observed with murine Ahr-/- NK cells, ASB2 knockdown inhibited the migration of human NK cells. Activation of AHR by its agonist FICZ induced ASB2-dependent filamin A degradation in NK cells; conversely, knockdown of endogenous ASB2 inhibited filamin A degradation. Reduction of filamin A increased the migration of primary NK cells and restored the invasion capacity of AHR-deficient NK cells. Our study introduces AHR as a new regulator of NK cell migration, through an AHR-ASB2-filamin A axis and provides insight into a potential therapeutic target for NK cell-based immunotherapies.
Collapse
Affiliation(s)
- June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y. Moreno-Nieves
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Luhua H. Zhang
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Amera L. Dixon
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Miles H. Linde
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - John B. Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
31
|
Salem ML, El-Ashmawy NE, Abd El-Fattah EE, Khedr EG. Immunosuppressive role of Benzo[a]pyrene in induction of lung cancer in mice. Chem Biol Interact 2021; 333:109330. [PMID: 33245929 DOI: 10.1016/j.cbi.2020.109330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
AIM Benzo[a]pyrene [BP] is one of the major carcinogenic precursors of cigarette smoke that primary affects the lung at its first proximity. The goal of the current research was to elucidate new mechanisms underlying the tumorigenic impact of oral BP in the lung of mice, with focus on immunosuppressive effects and cancer stemming properties. METHODS Female albino mice (n = 44) were divided into 2 groups: normal control and BP group. BP was administered orally to mice (50 mg/kg body weight), twice a week for four weeks in succession. At the end of experiment (22 weeks), gene expression were measured for transforming growth factor-β (TGF-β), cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death ligand 1(PD-L1), forkhead box protein P3 (FOXP3) and interleukin 12 (IL-12) and CD83+, CD8+ and CD166+ cell percentage were measured in lung tissue. RESULTS The results indicated the tumorigenic role of BP in the lung which was evidenced by histopathological examination. BP group also showed immunosuppressive role which evidenced by increased expression of lung TGF-β, CTLA-4, PD-L1, FOXP3 genes and decreased expression of lung IL-12 gene compared with normal control group. BP group also showed decreased CD83+ cells, CD8+ cells and increased number of CD166+ cells. CONCLUSION Our findings indicated that BP has immunosuppressive role in lung cancer besides increasing the percentage of cancer stem like cells.
Collapse
Affiliation(s)
- Mohamed L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Manasoura, Dakahleya, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
33
|
Modulation of Immune Infiltration of Ovarian Cancer Tumor Microenvironment by Specific Subpopulations of Fibroblasts. Cancers (Basel) 2020; 12:cancers12113184. [PMID: 33138184 PMCID: PMC7692816 DOI: 10.3390/cancers12113184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.
Collapse
|
34
|
Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infect Immun 2020; 88:IAI.00882-19. [PMID: 31964743 DOI: 10.1128/iai.00882-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of the most interesting markers of IA risk was then validated in a replication population, including 474 subjects (94 IA and 380 non-IA patients). Functional experiments were also performed to confirm the biological relevance of the most interesting markers. The meta-analysis of both populations showed that carriers of the ARNT2 rs1374213G, CX3CR1 rs7631529A, and CX3CR1 rs9823718G alleles (where the RefSeq identifier appears as a subscript) had a significantly increased risk of developing IA according to a log-additive model (P value from the meta-analysis [P Meta] = 9.8 · 10-5, P Meta = 1.5 · 10-4, and P Meta =7.9 · 10-5, respectively). Haplotype analysis also confirmed the association of the CX3CR1 haplotype with AG CGG with an increased risk of IA (P = 4.0 · 10-4). Mechanistically, we observed that monocyte-derived macrophages (MDM) from subjects carrying the ARNTR2 rs1374213G allele or the GG genotype showed a significantly impaired fungicidal activity but that MDM from carriers of the ARNT2 rs1374213G and CX3CR1 rs9823718G or CX3CR1 rs7631529A alleles had deregulated immune responses to Aspergillus conidia. These results, together with those from expression quantitative trait locus (eQTL) data browsers showing a strong correlation of the CX3CR1 rs9823718G allele with lower levels of CX3CR1 mRNA in whole peripheral blood (P = 2.46 · 10-7) and primary monocytes (P = 4.31 · 10-7), highlight the role of the ARNT2 and CX3CR1 loci in modulating and predicting IA risk and provide new insights into the host immune mechanisms involved in IA development.
Collapse
|
35
|
De Trez C, Stijlemans B, Bockstal V, Cnops J, Korf H, Van Snick J, Caljon G, Muraille E, Humphreys IR, Boon L, Van Ginderachter JA, Magez S. A Critical Blimp-1-Dependent IL-10 Regulatory Pathway in T Cells Protects From a Lethal Pro-inflammatory Cytokine Storm During Acute Experimental Trypanosoma brucei Infection. Front Immunol 2020; 11:1085. [PMID: 32655552 PMCID: PMC7325990 DOI: 10.3389/fimmu.2020.01085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/05/2020] [Indexed: 01/12/2023] Open
Abstract
In many infectious diseases, the immune response operates as a double-edged sword. While required for protective immunity, infection-induced inflammation can be detrimental if it is not properly controlled, causing collateral body damage and potentially leading to death. It is in this context that the potent anti-inflammatory cytokine interleukin-10 (IL-10) is required to dampen the pro-inflammatory immune response that hallmarks trypanosomosis. Effective control of this infection requires not just the action of antibodies specific for the parasite's variable surface glycoprotein (VSG) coat antigens, but also a pro-inflammatory immune response mediated mainly by IFNγ, TNF, and NO. However, strict control of inflammation is mandatory, as IL-10-deficient mice succumb from an unrestrained cytokine storm within 10 days of a Trypanosome brucei infection. The relevant cellular source of IL-10 and the associated molecular mechanisms implicated in its trypanosomosis associated production are poorly understood. Using an IL-10 reporter mouse strain (Vert-X), we demonstrate here that NK cells, CD8+ T cells and CD4+ T cells as well as B cells and plasma cells constitute potential cellular sources of IL-10 within the spleen and liver during acute infection. The IL-10 wave follows peak pro-inflammatory cytokine production, which accompanied the control of peak parasitemia. Similar results were observed following conventional experimental needle infection and physiological infections via T. brucei-infected tsetse flies. Our results show that conditional T cell-specific ablation of the IL-10 regulating Prdm1 gene (encoding for the Blimp-1 transcription factor), leads to an uncontrolled trypanosome-induced pro-inflammatory syndrome like the one observed in infected IL-10-deficient mice. This result indicates that the biological role of IL-10-derived from non-T cells, including NK cells, is of minor importance when considering host survival. The cytokine IL-27 that is also considered to be an IL-10 regulator, did not affect IL-10 production during infection. Together, these data suggest that T. brucei activates a Blimp-1-dependent IL-10 regulatory pathway in T cells that acts as a critical anti-inflammatory rheostat, mandatory for host survival during the acute phase of parasitemia.
Collapse
Affiliation(s)
- Carl De Trez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Benoit Stijlemans
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Centre for Inflammation Research, Brussels, Belgium
| | - Viki Bockstal
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jennifer Cnops
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jacques Van Snick
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Cancer Research, Brussels Branch, Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Jo A Van Ginderachter
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Ghent University Global, Incheon, South Korea
| |
Collapse
|
36
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
37
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
38
|
Piper CJM, Rosser EC, Oleinika K, Nistala K, Krausgruber T, Rendeiro AF, Banos A, Drozdov I, Villa M, Thomson S, Xanthou G, Bock C, Stockinger B, Mauri C. Aryl Hydrocarbon Receptor Contributes to the Transcriptional Program of IL-10-Producing Regulatory B Cells. Cell Rep 2019; 29:1878-1892.e7. [PMID: 31722204 PMCID: PMC6856759 DOI: 10.1016/j.celrep.2019.10.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) play a critical role in the control of autoimmunity and inflammation. IL-10 production is the hallmark for the identification of Bregs. However, the molecular determinants that regulate the transcription of IL-10 and control the Breg developmental program remain unknown. Here, we demonstrate that aryl hydrocarbon receptor (AhR) regulates the differentiation and function of IL-10-producing CD19+CD21hiCD24hiBregs and limits their differentiation into B cells that contribute to inflammation. Chromatin profiling and transcriptome analyses show that loss of AhR in B cells reduces expression of IL-10 by skewing the differentiation of CD19+CD21hiCD24hiB cells into a pro-inflammatory program, under Breg-inducing conditions. B cell AhR-deficient mice develop exacerbated arthritis, show significant reductions in IL-10-producing Bregs and regulatory T cells, and show an increase in T helper (Th) 1 and Th17 cells compared with B cell AhR-sufficient mice. Thus, we identify AhR as a relevant contributor to the transcriptional regulation of Breg differentiation.
Collapse
Affiliation(s)
- Christopher J M Piper
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Elizabeth C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, UK; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; Versus Arthritis Centre for Adolescent Rheumatology at University College London, University College London Hospitals and Great Ormond Street Hospital, London, UK
| | - Kristine Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Kiran Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André F Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aggelos Banos
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Matteo Villa
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Scott Thomson
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Georgina Xanthou
- Cellular Immunology Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | | | - Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, UK.
| |
Collapse
|
39
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J 2019; 286:4160-4175. [PMID: 31365790 PMCID: PMC6899673 DOI: 10.1111/febs.15028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Zuoren Yu
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Jun Mi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Hongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
40
|
Wang XS, Cao F, Zhang Y, Pan HF. Therapeutic potential of aryl hydrocarbon receptor in autoimmunity. Inflammopharmacology 2019; 28:63-81. [PMID: 31617124 DOI: 10.1007/s10787-019-00651-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Aryl hydrocarbon receptor (AhR), a type of transcriptional factor, is widely expressed in immune cells. The activation of AhR signaling pathway depends on its ligands, which exist in environment and can also be produced by metabolism. Normal expressions of AhR and AhR-mediated signaling may be essential for immune responses, and effects of AhR signaling on the development and function of innate and adaptive immune cells have also been revealed in previous studies. Recent studies also indicate that aberrant AhR signaling may be related to autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune uveitis (AU), autoimmune diabetes, Behcet's disease (BD) and myasthenia gravis (MG). Moreover, administration of AhR ligands or drugs has been proven effective for improving pathological outcomes in some autoimmune diseases or models. In this review, we summarize the effects of AhR on several innate and adaptive immune cells associated with autoimmunity, and the mechanism on how AhR participates in autoimmune diseases. In addition, we also discuss therapeutic potential and application prospect of AhR in autoimmune diseases, so as to provide valuable information for exploring novel and effective approaches to autoimmune disease treatments.
Collapse
Affiliation(s)
- Xiao-Song Wang
- The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yi Zhang
- Reproductive Medicine Center, Anhui Women and Child Health Care Hospital, 15 Yimin Street, Hefei, Anhui, 230011, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
41
|
Abruzzo PM, Matté A, Bolotta A, Federti E, Ghezzo A, Guarnieri T, Marini M, Posar A, Siciliano A, De Franceschi L, Visconti P. Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder. J Transl Med 2019; 17:332. [PMID: 31578139 PMCID: PMC6775664 DOI: 10.1186/s12967-019-2076-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been established that children with Autism Spectrum Disorders (ASD) are affected by oxidative stress, the origin of which is still under investigation. In the present work, we evaluated inflammatory and pro-oxidant soluble signature in non-syndromic ASD and age-matched typically developing (TD) control children. METHODS We analyzed leukocyte gene expression of inflammatory cytokines and inflammation/oxidative-stress related molecules in 21 ASD and 20 TD children. Moreover, in another-comparable-group of non-syndromic ASD (N = 22) and TD (N = 21) children, we analyzed for the first time the protein expression of the four members of the antioxidant enzyme family of peroxiredoxins (Prx) in both erythrocyte membranes and in plasma. RESULTS The gene expression of IL6 and of HSP70i, a stress protein, was increased in ASD children. Moreover, gene expression of many inflammatory cytokines and inflammation/oxidative stress-related proteins correlated with clinical features, and appeared to be linked by a complex network of inter-correlations involving the Aryl Hydrocarbon Receptor signaling pathway. In addition, when the study of inter-correlations within the expression pattern of these molecules was extended to include the healthy subjects, the intrinsic physiological relationships of the inflammatory/oxidative stress network emerged. Plasma levels of Prx2 and Prx5 were remarkably increased in ASD compared to healthy controls, while no significant differences were found in red cell Prx levels. CONCLUSIONS Previous findings reported elevated inflammatory cytokines in the plasma of ASD children, without clearly pointing to the presence of neuro-inflammation. On the other hand, the finding of microglia activation in autoptic specimens was clearly suggesting the presence of neuro-inflammation in ASD. Given the role of peroxiredoxins in the protection of brain cells against oxidative stress, the whole of our results, using peripheral data collected in living patients, support the involvement of neuro-inflammation in ASD, and generate a rational for neuro-inflammation as a possible therapeutic target and for plasma Prx5 as a novel indicator of ASD severity.
Collapse
Affiliation(s)
- P M Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro, 66, 20148, Milan, Italy
| | - A Matté
- Department of Medicine, University of Verona Medical School, Verona, Italy
| | - A Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro, 66, 20148, Milan, Italy
| | - E Federti
- Department of Medicine, University of Verona Medical School, Verona, Italy
| | - A Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy
| | - T Guarnieri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - M Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy. .,IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro, 66, 20148, Milan, Italy.
| | - A Posar
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy.,Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3, 40139, Bologna, Italy
| | - A Siciliano
- Department of Medicine, University of Verona Medical School, Verona, Italy
| | - L De Franceschi
- Department of Medicine, University of Verona Medical School, Verona, Italy
| | - P Visconti
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3, 40139, Bologna, Italy
| |
Collapse
|
42
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. THE FEBS JOURNAL 2019. [PMID: 31365790 DOI: 10.1111/febs.15028.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Zuoren Yu
- Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Jun Mi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
43
|
Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J Gastroenterol 2019; 25:3527-3537. [PMID: 31367154 PMCID: PMC6658392 DOI: 10.3748/wjg.v25.i27.3527] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one the leading risk factors for chronic hepatitis, liver fibrosis, cirrhosis and hepatocellular cancer (HCC), which are a major global health problem. A large number of clinical studies have shown that chronic HBV persistent infection causes the dysfunction of innate and adaptive immune response involving monocytes/macrophages, dendritic cells, natural killer (NK) cells, T cells. Among these immune cells, cell subsets with suppressive features have been recognized such as myeloid derived suppressive cells(MDSC), NK-reg, T-reg, which represent a critical regulatory system during liver fibrogenesis or tumourigenesis. However, the mechanisms that link HBV-induced immune dysfunction and HBV-related liver diseases are not understood. In this review we summarize the recent studies on innate and adaptive immune cell dysfunction in chronic HBV infection, liver fibrosis, cirrhosis, and HCC, and further discuss the potential mechanism of HBV-induced immunosuppressive cascade in HBV infection and consequences. It is hoped that this article will help ongoing research about the pathogenesis of HBV-related hepatic fibrosis and HBV-related HCC.
Collapse
Affiliation(s)
- Tian-Yang Li
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yang Yang
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guo Zhou
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zheng-Kun Tu
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
44
|
Branzk N, Gronke K, Diefenbach A. Innate lymphoid cells, mediators of tissue homeostasis, adaptation and disease tolerance. Immunol Rev 2019; 286:86-101. [PMID: 30294961 DOI: 10.1111/imr.12718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILC) are a recently identified group of tissue-resident innate lymphocytes. Available data support the view that ILC or their progenitors are deposited and retained in tissues early during ontogeny. Thereby, ILC become an integral cellular component of tissues and organs. Here, we will review the intriguing relationships between ILC and basic developmental and homeostatic processes within tissues. Studying ILC has already led to the appreciation of the integral roles of immune cells in tissue homeostasis, morphogenesis, metabolism, regeneration, and growth. This area of immunology has not yet been studied in-depth but is likely to reveal important networks contributing to disease tolerance and may be harnessed for future therapeutic approaches.
Collapse
Affiliation(s)
- Nora Branzk
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Konrad Gronke
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
45
|
Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes (Lond) 2019; 43:2407-2421. [PMID: 30944419 PMCID: PMC6892742 DOI: 10.1038/s41366-019-0340-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/24/2018] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
Background/objectives Low-grade chronic inflammation in visceral adipose tissue and the intestines are important drivers of obesity associated insulin resistance. Bioactive compounds derived from plants are an important source of potential novel therapies for the treatment of chronic diseases. In search for new immune based treatments of obesity associated insulin resistance, we screened for tissue relevant anti-inflammatory properties in 20 plant-based extracts. Methods We screened 20 plant-based extracts to assess for preferential production of IL-10 compared to TNFα, specifically targetting metabolic tissues, including the visceral adipose tissue. We assessed the therapeutic potential of the strongest anti-inflammatory compound, indigo, in the C57BL/6J diet-induced obesity mouse model with supplementation for up to 16 weeks by measuring changes in body weight, glucose and insulin tolerance, and gut barrier function. We also utilized flow cytometry, quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and histology to measure changes to immune cells populations and cytokine profiles in the intestine, visceral adipose tissue (VAT), and liver. 16SrRNA sequencing was performed to examine gut microbial differences induced by indigo supplementation. Results We identifed indigo, an aryl hydrocarbon receptor (AhR) ligand agonist, as a potent inducer of IL-10 and IL-22, which protects against high-fat diet (HFD)-induced insulin resistance and fatty liver disease in the diet-induced obesity model. Therapeutic actions were mechanistically linked to decreased inflammatory immune cell tone in the intestine, VAT and liver. Specifically, indigo increased Lactobacillus bacteria and elicited IL-22 production in the gut, which improved intestinal barrier permeability and reduced endotoxemia. These changes were associated with increased IL-10 production by immune cells residing in liver and VAT. Conclusions Indigo is a naturally occurring AhR ligand with anti-inflammatory properties that effectively protects against HFD-induced glucose dysregulation. Compounds derived from indigo or those with similar properties could represent novel therapies for diseases associated with obesity-related metabolic tissue inflammation.
Collapse
|
46
|
Differential Sensitivity to Plasmodium yoelii Infection in C57BL/6 Mice Impacts Gut-Liver Axis Homeostasis. Sci Rep 2019; 9:3472. [PMID: 30837607 PMCID: PMC6401097 DOI: 10.1038/s41598-019-40266-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Experimental models of malaria have shown that infection with specific Plasmodium species in certain mouse strains can transiently modulate gut microbiota and cause intestinal shortening, indicating a disruption of gut homeostasis. Importantly, changes in gut homeostasis have not been characterized in the context of mild versus severe malaria. We show that severe Plasmodium infection in mice disrupts homeostasis along the gut-liver axis in multiple ways compared to mild infection. High parasite burden results in a larger influx of immune cells in the lamina propria and mice with high parasitemia display specific metabolomic profiles in the ceca and plasma during infection compared to mice with mild parasitemia. Liver damage was also more pronounced and longer lasting during severe infection, with concomitant changes in bile acids in the gut. Finally, severe Plasmodium infection changes the functional capacity of the microbiota, enhancing bacterial motility and amino acid metabolism in mice with high parasite burden compared to a mild infection. Taken together, Plasmodium infections have diverse effects on host gut homeostasis relative to the severity of infection that may contribute to enteric bacteremia that is associated with malaria.
Collapse
|
47
|
Labadie BW, Bao R, Luke JJ. Reimagining IDO Pathway Inhibition in Cancer Immunotherapy via Downstream Focus on the Tryptophan-Kynurenine-Aryl Hydrocarbon Axis. Clin Cancer Res 2019; 25:1462-1471. [PMID: 30377198 PMCID: PMC6397695 DOI: 10.1158/1078-0432.ccr-18-2882] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
Significant progress has been made in cancer immunotherapy with checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)-programmed death-ligand 1 signaling pathways. Tumors from patients showing sustained treatment response predominately demonstrate a T cell-inflamed tumor microenvironment prior to, or early on, treatment. Not all tumors with this phenotype respond, however, and one mediator of immunosuppression in T cell-inflamed tumors is the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) pathway. Multiple mechanisms of immunosuppression may be mediated by this pathway including depletion of tryptophan, direct immunosuppression of Kyn, and activity of Kyn-bound AhR. Indoleamine 2,3-dioxygenase 1 (IDO1), a principle enzyme in Trp catabolism, is the target of small-molecule inhibitors in clinical development in combination with PD-1 checkpoint inhibitors. Despite promising results in early-phase clinical trials in a range of tumor types, a phase III study of the IDO1-selective inhibitor epacadostat in combination with pembrolizumab showed no difference between the epacadostat-treated group versus placebo in patients with metastatic melanoma. This has led to a diminution of interest in IDO1 inhibitors; however, other approaches to inhibit this pathway continue to be considered. Novel Trp-Kyn-AhR pathway inhibitors, such as Kyn-degrading enzymes, direct AhR antagonists, and tryptophan mimetics are advancing in early-stage or preclinical development. Despite uncertainty surrounding IDO1 inhibition, ample preclinical evidence supports continued development of Trp-Kyn-AhR pathway inhibitors to augment immune-checkpoint and other cancer therapies.
Collapse
Affiliation(s)
- Brian W Labadie
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Riyue Bao
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
- Center for Research Informatics, The University of Chicago, Chicago, Illinois
| | - Jason J Luke
- Department of Medicine, The University of Chicago, Chicago, Illinois.
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
48
|
Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Munoz Gutierrez J, Bangoura B, Dunay IR, Gigley JP. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Front Immunol 2019; 10:196. [PMID: 30873151 PMCID: PMC6403415 DOI: 10.3389/fimmu.2019.00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Apicomplexans are a diverse and complex group of protozoan pathogens including Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., Eimeria spp., and Babesia spp. They infect a wide variety of hosts and are a major health threat to humans and other animals. Innate immunity provides early control and also regulates the development of adaptive immune responses important for controlling these pathogens. Innate immune responses also contribute to immunopathology associated with these infections. Natural killer (NK) cells have been for a long time known to be potent first line effector cells in helping control protozoan infection. They provide control by producing IL-12 dependent IFNγ and killing infected cells and parasites via their cytotoxic response. Results from more recent studies indicate that NK cells could provide additional effector functions such as IL-10 and IL-17 and might have diverse roles in immunity to these pathogens. These early studies based their conclusions on the identification of NK cells to be CD3–, CD49b+, NK1.1+, and/or NKp46+ and the common accepted paradigm at that time that NK cells were one of the only lymphoid derived innate immune cells present. New discoveries have lead to major advances in understanding that NK cells are only one of several populations of innate immune cells of lymphoid origin. Common lymphoid progenitor derived innate immune cells are now known as innate lymphoid cells (ILC) and comprise three different groups, group 1, group 2, and group 3 ILC. They are a functionally heterogeneous and plastic cell population and are important effector cells in disease and tissue homeostasis. Very little is known about each of these different types of ILCs in parasitic infection. Therefore, we will review what is known about NK cells in innate immune responses during different protozoan infections. We will discuss what immune responses attributed to NK cells might be reconsidered as ILC1, 2, or 3 population responses. We will then discuss how different ILCs may impact immunopathology and adaptive immune responses to these parasites.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Juan Munoz Gutierrez
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Berit Bangoura
- Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
49
|
Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 2018; 19:ijms19123851. [PMID: 30513921 PMCID: PMC6321643 DOI: 10.3390/ijms19123851] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Collapse
Affiliation(s)
- Drew R Neavin
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Balmiki Ray
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
50
|
Shinde R, McGaha TL. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol 2018; 39:1005-1020. [PMID: 30409559 DOI: 10.1016/j.it.2018.10.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and transcription factor activated through cognate ligand binding. It is an important factor in immunity and tissue homeostasis, and structurally diverse compounds from the environment, diet, microbiome, and host metabolism can induce AhR activity. Emerging evidence suggests that AhR is a key sensor allowing immune cells to adapt to environmental conditions and changes in AhR activity have been associated with autoimmune disorders and cancer. Furthermore, AhR agonists or antagonists can impact immune disease outcomes identifying AhR as a potentially actionable target for immunotherapy. In this review, we describe known ligands stimulating AhR activity, downstream proinflammatory and suppressive mechanisms potentiated by AhR, and how this understanding is being applied to immunopathology to help control disease outcomes.
Collapse
Affiliation(s)
- Rahul Shinde
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|