1
|
Li D, Ma Y, Miao Y, Liu S, Bi Y, Ji Y, Wu Q, Zhou C, Ma Y. Peritoneal B1 and B2 cells respond differently to LPS and IL-21 stimulation. Mol Immunol 2024; 170:46-56. [PMID: 38615627 DOI: 10.1016/j.molimm.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanfen Ma
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yinsha Miao
- Blood Transfusion Department, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, China
| | - Sasa Liu
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Bi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qifei Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Can Zhou
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
2
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Carey A, Nguyen K, Kandikonda P, Kruglov V, Bradley C, Dahlquist KJV, Cholensky S, Swanson W, Badovinac VP, Griffith TS, Camell CD. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep 2024; 43:113967. [PMID: 38492219 PMCID: PMC11014686 DOI: 10.1016/j.celrep.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Non-canonical lipolysis induced by inflammatory cytokines or Toll-like receptor ligands is required for the regulation of inflammation during endotoxemia and sepsis. Canonical lipolysis induced by catecholamines declines during aging due to factors including an expansion of lymphocytes, pro-inflammatory macrophage polarization, and an increase in chronic low-grade inflammation; however, the extent to which the non-canonical pathway of lipolysis is active and impacted by immune cells during aging remains unclear. Therefore, we aimed to define the extent to which immune cells from old mice influence non-canonical lipolysis during sepsis. We identified age-associated impairments of non-canonical lipolysis and an accumulation of dysfunctional B1 B cells in the visceral white adipose tissue (vWAT) of old mice. Lifelong deficiency of B cells results in restored non-canonical lipolysis and reductions in pro-inflammatory macrophage populations. Our study suggests that targeting the B cell-macrophage signaling axis may resolve metabolic dysfunction in aged vWAT and attenuate septic severity in older individuals.
Collapse
Affiliation(s)
- Anna Carey
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katie Nguyen
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pranathi Kandikonda
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Kruglov
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire Bradley
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Korbyn J V Dahlquist
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Cholensky
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney Swanson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Thomas S Griffith
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Christina D Camell
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Tellier J, Tarasova I, Nie J, Smillie CS, Fedele PL, Cao WHJ, Groom JR, Belz GT, Bhattacharya D, Smyth GK, Nutt SL. Unraveling the diversity and functions of tissue-resident plasma cells. Nat Immunol 2024; 25:330-342. [PMID: 38172260 DOI: 10.1038/s41590-023-01712-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Antibody-secreting plasma cells (PCs) are generated in secondary lymphoid organs but are reported to reside in an emerging range of anatomical sites. Analysis of the transcriptome of different tissue-resident (Tr)PC populations revealed that they each have their own transcriptional signature indicative of functional adaptation to the host tissue environment. In contrast to expectation, all TrPCs were extremely long-lived, regardless of their organ of residence, with longevity influenced by intrinsic factors like the immunoglobulin isotype. Analysis at single-cell resolution revealed that the bone marrow is unique in housing a compendium of PCs generated all over the body that retain aspects of the transcriptional program indicative of their tissue of origin. This study reveals that extreme longevity is an intrinsic property of TrPCs whose transcriptome is imprinted by signals received both at the site of induction and within the tissue of residence.
Collapse
Affiliation(s)
- Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ilariya Tarasova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Junli Nie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Pasquale L Fedele
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Haematology Department, Monash Health, Clayton, Victoria, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Wang H J Cao
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
6
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
7
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
8
|
Zogorean R, Wirtz S. The yin and yang of B cells in a constant state of battle: intestinal inflammation and inflammatory bowel disease. Front Immunol 2023; 14:1260266. [PMID: 37849749 PMCID: PMC10577428 DOI: 10.3389/fimmu.2023.1260266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting people worldwide, the origin of IBD is still undefined, arising as a consequence of the interaction between genes, environment, and microbiota. Although the root cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic microbial taxa are connected with the establishment and clinical course of IBD. The composition of the microbiota is shaped by plasma cell IgA secretion and binding, while cytokines such as IL10 or IFN-γ are important fine-tuners of the immune response in the gastrointestinal environment. B cells may also influence the course of inflammation by promoting either an anti-inflammatory or a pro-inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an anti-inflammatory factor in intestinal inflammation. Moreover, we specify the context of IgA and IgG as players that can potentially participate in mucosal inflammation. Finally, we discuss the role of B cells in mouse infection models where IL10, IgA, or IgG contribute to the outcome of the infection.
Collapse
Affiliation(s)
- Roxana Zogorean
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| |
Collapse
|
9
|
Kumar G, Axtell RC. Dual Role of B Cells in Multiple Sclerosis. Int J Mol Sci 2023; 24:2336. [PMID: 36768658 PMCID: PMC9916779 DOI: 10.3390/ijms24032336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
B cells have emerged as an important immune cell type that can be targeted for therapy in multiple sclerosis (MS). Depleting B cells with anti-CD20 antibodies is effective in treating MS. Yet, atacicept treatment, which blocks B-cell Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL), two cytokines important for B cell development and function, paradoxically increases disease activity in MS patients. The reason behind the failure of atacicept is not well understood. The stark differences in clinical outcomes with these therapies demonstrate that B cells have both inflammatory and anti-inflammatory functions in MS. In this review, we summarize the importance of B cells in MS and discuss the different B cell subsets that perform inflammatory and anti-inflammatory functions and how therapies modulate B cell functions in MS patients. Additionally, we discuss the potential anti-inflammatory functions of BAFF and APRIL on MS disease.
Collapse
Affiliation(s)
| | - Robert C. Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
11
|
Lomakin YA, Zvyagin IV, Ovchinnikova LA, Kabilov MR, Staroverov DB, Mikelov A, Tupikin AE, Zakharova MY, Bykova NA, Mukhina VS, Favorov AV, Ivanova M, Simaniv T, Rubtsov YP, Chudakov DM, Zakharova MN, Illarioshkin SN, Belogurov AA, Gabibov AG. Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation. Front Immunol 2022; 13:803229. [PMID: 36052064 PMCID: PMC9425031 DOI: 10.3389/fimmu.2022.803229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundB lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS.MethodsWe performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs.ResultsThe tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors.ConclusionsImpaired maturation of regulatory B cells is associated with MS progression.
Collapse
Affiliation(s)
- Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Dmitriy B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Artem Mikelov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadezda A. Bykova
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vera S. Mukhina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander V. Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Maria Ivanova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Taras Simaniv
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria N. Zakharova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| |
Collapse
|
12
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
The effect of inulin-type fructans on the intestinal immune function of antibiotic-treated mice. Appl Microbiol Biotechnol 2022; 106:3265-3278. [PMID: 35376973 DOI: 10.1007/s00253-022-11896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to evaluate the effect of supplementation with inulin-type fructans (ITFs) on the intestinal immune function in the context of dysbiosis resulting from antibiotic cocktail (ABx) treatment. BALB/c mice (8-9 weeks of age) were treated with an ABx for 3 weeks and then allowed to recover spontaneously or with ITF supplementation (5%) for 4 weeks. Our results showed that ABx treatment can induce gut microbiota dysbiosis and intestinal inflammation in mice. After 4 weeks of recovery, ITF supplementation restored the composition of the intestinal microbial community. However, compared with spontaneous recovery, ITF supplementation delayed inflammation recovery in the intestine and upregulated diamine oxidase (DAO) activity and increased lipopolysaccharide (LPS) content in serum. In addition, ITF supplementation delayed the regulatory T (Treg) cell and B cell recovery in the lamina propria (LP). Furthermore, compared with spontaneous recovery, ITF supplementation inhibited the relative expression of certain proinflammatory genes, such as for inducible nitric oxide synthase (iNOS) and tumour necrosis factor α (Tnf-α), in the colon, but it reduced the secretion of the anti-inflammatory mediator transforming growth factor β1 (TGF-β1) in serum, reduced the secretion of secretory immunoglobulin A (SIgA) in the colon and promoted the secretion of the proinflammatory cytokine interleukin (IL)-17A. In conclusion, these data supported the hypothesis that the influence of ITFs on the host's intestinal status is not always beneficial in the context of ABx-induced biological disorder. However, the significance of these findings needs to be determined by advanced studies KEY POINTS: • ITFs did not promote the recovery of microbial community composition. • ITFs delayed the recovery of ABx-induced colonic inflammation. • ITFs reduced the secretion of TGF-β1 and SIgA. • ITFs delayed the recovery of Treg and B cells in the LP.
Collapse
|
14
|
Liu J, Lai X, Bao Y, Xie W, Li Z, Chen J, Li G, Wang T, Huang W, Ma Y, Shi J, Zhao E, Xiang AP, Liu Q, Chen X. Intraperitoneally Delivered Mesenchymal Stem Cells Alleviate Experimental Colitis Through THBS1-Mediated Induction of IL-10-Competent Regulatory B Cells. Front Immunol 2022; 13:853894. [PMID: 35371051 PMCID: PMC8971528 DOI: 10.3389/fimmu.2022.853894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating inflammatory bowel disease (IBD), and intraperitoneal delivery of MSCs have become a more effective route for IBD treatment. However, the underlying mechanisms are still poorly understood. Here, we found that intraperitoneally delivered MSCs significantly alleviated experimental colitis. Depletion of peritoneal B cells, but not macrophages, clearly impaired the therapeutic effects of MSCs. Intraperitoneally delivered MSCs improved IBD likely by boosting the IL-10-producing B cells in the peritoneal cavity, and a single intraperitoneal injection of MSCs could significantly prevent disease severity in a recurrent mouse colitis model, with lower proinflammation cytokines and high level of IL-10. The gene expression profile revealed that thrombospondin-1 (THBS1) was dramatically upregulated in MSCs after coculture with peritoneal lavage fluid from colitis mice. Knockout of THBS1 expression in MSCs abolished their therapeutic effects in colitis and the induction of IL-10-producing B cells. Mechanistically, THBS1 modulates the activation of transforming growth factor-β (TGF-β), which combines with TGF-β receptors on B cells and contributes to IL-10 production. Blocking the interaction between THBS1 and latent TGF-β or inhibiting TGF-β receptors (TGF-βR) significantly reversed the THBS1-mediated induction of IL-10-producing B cells and the therapeutic effects on colitis. Collectively, our study revealed that intraperitoneally delivered MSCs secreted THBS1 to boost IL-10+Bregs and control the progression and recurrence of colitis, providing new insight for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Erming Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| |
Collapse
|
15
|
Dang VD, Stefanski AL, Lino AC, Dörner T. B- and Plasma Cell Subsets in Autoimmune Diseases: Translational Perspectives. J Invest Dermatol 2021; 142:811-822. [PMID: 34955289 DOI: 10.1016/j.jid.2021.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
B lymphocytes play a central role in immunity owing to their unique antibody-producing capacity that provides protection against certain infections and during vaccination. In autoimmune diseases, B cells can gain pathogenic relevance through autoantibody production, antigen presentation, and proinflammatory cytokine secretion. Recent data indicate that B and plasma cells can function as regulators through the production of immunoregulatory cytokines and/or employing checkpoint molecules. In this study, we review the key findings that define subsets of B and plasma cells with pathogenic and protective functions in autoimmunity. In addition to harsh B-cell depletion, we discuss the strategies that have the potential to reinstall the balance of pathogenic and protective B cells with the potential of more specific and personalized therapies.
Collapse
Affiliation(s)
- Van Duc Dang
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ana-Luisa Stefanski
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Tousif S, Wang Y, Jackson J, Hough KP, Strenkowski JG, Athar M, Thannickal VJ, McCusker RH, Ponnazhagan S, Deshane JS. Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer. Front Immunol 2021; 12:747780. [PMID: 34867973 PMCID: PMC8640488 DOI: 10.3389/fimmu.2021.747780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.
Collapse
Affiliation(s)
- Sultan Tousif
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John G Strenkowski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Yang SY, Long J, Huang MX, Luo PY, Bian ZH, Xu YF, Wang CB, Yang SH, Li L, Selmi C, Gershwin ME, Zhao ZB, Lian ZX. Characterization of Organ-Specific Regulatory B Cells Using Single-Cell RNA Sequencing. Front Immunol 2021; 12:711980. [PMID: 34594327 PMCID: PMC8476928 DOI: 10.3389/fimmu.2021.711980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Regulatory B cells (Breg) are considered as immunosuppressive cells. Different subsets of Breg cells have been identified both in human beings and in mice. However, there is a lack of unique markers to identify Breg cells, and the heterogeneity of Breg cells in different organs needs to be further illuminated. In this study, we performed high-throughput single-cell RNA sequencing (scRNA-seq) and single-cell B-cell receptor sequencing (scBCR-seq) of B cells from the murine spleen, liver, mesenteric lymph nodes, bone marrow, and peritoneal cavity to better define the phenotype of these cells. Breg cells were identified based on the expression of immunosuppressive genes and IL-10-producing B (B10) cell-related genes, to define B10 and non-B10 subsets in Breg cells based on the score of the B10 gene signatures. Moreover, we characterized 19 common genes significantly expressed in Breg cells, including Fcrl5, Zbtb20, Ccdc28b, Cd9, and Ptpn22, and further analyzed the transcription factor activity in defined Breg cells. Last, a BCR analysis was used to determine the clonally expanded clusters and the relationship of Breg cells across different organs. We demonstrated that Atf3 may potentially modulate the function of Breg cells as a transcription factor and that seven organ-specific subsets of Breg cells are found. Depending on gene expression and functional modules, non-B10 Breg cells exhibited activated the TGF-β pathway, thus suggesting that non-B10 Breg cells have specific immunosuppressive properties different from conventional B10 cells. In conclusion, our work provides new insights into Breg cells and illustrates their transcriptional profiles and BCR repertoire in different organs under physiological conditions.
Collapse
Affiliation(s)
- Si-Yu Yang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Long
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meng-Xing Huang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pan-Yue Luo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Zhen-Hua Bian
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ya-Fei Xu
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng-Bo Wang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shu-Han Yang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, United States
| | - Zhi-Bin Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
McGettigan SE, Debes GF. Immunoregulation by antibody secreting cells in inflammation, infection, and cancer. Immunol Rev 2021; 303:103-118. [PMID: 34145601 PMCID: PMC8387433 DOI: 10.1111/imr.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) are considered work horses of the humoral immune response for their tireless effort to produce large amounts of antibodies that fulfill an array of functions in host defense, inflammation, and maintenance of homeostasis. While traditionally considered largely senescent cells, surprising recent findings demonstrate that subsets of ASCs downmodulate ongoing immune responses independent of antibody formation. Such regulatory ASCs produce IL-10 or IL-35 and are implicated in maintaining tissue and immune homeostasis. They also serve to suppress pathogenic leukocytes in infection, allergy, and inflammatory diseases that affect tissues, such as the central nervous system and the respiratory tract. Additionally, regulatory ASCs infiltrate various cancer types and restrict effective anti-tumor T cell responses. While incompletely understood, there is significant overlap in factors that control ASC differentiation, IL-10 expression by B cells and the generation of ASCs that secrete both antibodies and IL-10. In this review, we will cover the biology, phenotype, generation, maintenance and function of regulatory ASCs in various tissues under pathological and steady states. An improved understanding of the development of regulatory ASCs and their biological roles will be critical for generating novel ASC-targeted therapies for the treatment of inflammatory diseases, infection, and cancer.
Collapse
Affiliation(s)
- Shannon E. McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Gudrun F. Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
19
|
Jiao J, He S, Wang Y, Lu Y, Gu M, Li D, Tang T, Nie S, Zhang M, Lv B, Li J, Xia N, Cheng X. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res Cardiol 2021; 116:46. [PMID: 34302556 PMCID: PMC8310480 DOI: 10.1007/s00395-021-00886-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023]
Abstract
Overactivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C-C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.
Collapse
Affiliation(s)
- Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shujie He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiu Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muyang Gu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A, Sun J. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis 2021; 12:582. [PMID: 34099635 PMCID: PMC8184914 DOI: 10.1038/s41419-021-03880-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
B10 cells are regulatory B cells capable of producing IL-10 for maintaining immune homeostasis. Dysregulation of B10 cells occurs in autoimmune and inflammatory diseases. Modulation or adoptive transfer of B10 cells is a promising therapeutic strategy. The short-chain fatty acids (SCFAs), the metabolites of microbiota, play a critical role in maintaining immune homeostasis and are the potential drugs for the modulation of B10 cells. It is not clear whether and how SCFAs upregulate the frequency of B10 cells. Here, we found that SCFAs could promote murine and human B10 cell generation in vitro. Upregulation of B10 cells by butyrate or pentanoate was also observed in either healthy mice, mice with dextran sodium sulfate (DSS)-induced colitis, or mice with collagen-induced arthritis. Moreover, SCFA treatment could ameliorate clinical scores of colitis and arthritis. Adoptive transfer of B cells pretreated with butyrate showed more alleviation of DSS-induced colitis than those without butyrate. A further study demonstrates that SCFAs upregulate B10 cells in a manner dependent on their histone deacetylase (HDAC) inhibitory activity and independent of the G-protein-coupled receptor pathway. Transcriptomic analysis indicated that the MAPK signaling pathway was enriched in B10 cells treated with butyrate. A study with inhibitors of ERK, JNK, and p38 MAPK demonstrated that activating p38 MAPK by butyrate is critical for the upregulation of B10 cells. Moreover, HDAC inhibitor has similar effects on B10 cells. Our study sheds light on the mechanism underlying B10 cell differentiation and function and provides a potential therapeutic strategy with SCFAs and HDAC inhibitors for inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Fagui Zou
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Yi Qiu
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China ,grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Yilian Huang
- grid.411847.f0000 0004 1804 4300School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Hang Zou
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Xiao Cheng
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Qingru Niu
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Aoxiang Luo
- grid.411847.f0000 0004 1804 4300School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Jianbo Sun
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| |
Collapse
|
21
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
22
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
24
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
25
|
Simeonova D, Stoyanov D, Leunis JC, Murdjeva M, Maes M. Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: A nomothetic network approach. Nitric Oxide 2020; 106:45-54. [PMID: 33186727 DOI: 10.1016/j.niox.2020.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Major depression is accompanied by increased IgM-mediated autoimmune responses to oxidative specific epitopes (OSEs) and nitric oxide (NO)-adducts. These responses were not examined in bipolar disorder type 1 (BP1) and BP2. IgM responses to malondialdehyde (MDA), phosphatidinylinositol, oleic acid, azelaic acid, and NO-adducts were determined in 35 healthy controls, and 47 major depressed (MDD), 29 BP1, and 25 BP2 patients. We also measured serum peroxides, IgG to oxidized LDL (oxLDL), and IgM/IgA directed to lipopolysaccharides (LPS). IgM responses to OSEs and NO-adducts (OSENO) were significantly higher in MDD and BP1 as compared with controls, and IgM to OSEs higher in MDD than in BP2. Partial Least Squares (PLS) analysis showed that 57.7% of the variance in the clinical phenome of mood disorders was explained by number of episodes, a latent vector extracted from IgM to OSENO, IgG to oxLDL, and peroxides. There were significant specific indirect effects of IgA/IgM to LPS on the clinical phenome, which were mediated by peroxides, IgM OSENO, and IgG oxLDL. Using PLS we have constructed a data-driven nomothetic network which ensembled causome (increased plasma LPS load), adverse outcome pathways (namely neuro-affective toxicity), and clinical phenome features of mood disorders in a data-driven model. Based on those feature sets, cluster analysis discovered a new diagnostic class characterized by increased plasma LPS load, peroxides, autoimmune responses to OSENO, and increased phenome scores. Using the new nomothetic network approach, we constructed a mechanistically transdiagnostic diagnostic class indicating neuro-affective toxicity in 74.3% of the mood disorder patients.
Collapse
Affiliation(s)
- Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | | | - Marianna Murdjeva
- Research Institute, Medical University, Plovdiv, Bulgaria; Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria; Section of Immunological Assessment of Chronic Stress, Technological Center of Emergency Medicine, Plovdiv, Bulgaria
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
26
|
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical presentation can vary from the asymptomatic state to acute respiratory distress syndrome (ARDS) and multi-organ dysfunction. Due to our insufficient understanding of its pathophysiology and lack of effective treatment, the morbidity and mortality of severe COVID-19 patients are high. Patients with COVID-19 develop ARDS fueled by exaggerated neutrophil influx into the lungs and cytokine storm. B-1a cells represent a unique subpopulation of B lymphocytes critical for circulating natural antibodies, innate immunity, and immunoregulation. These cells spontaneously produce natural IgM, interleukin (IL)-10, and granulocyte-monocyte colony stimulating factor (GM-CSF). Natural IgM neutralizes viruses and opsonizes bacteria, IL-10 attenuates the cytokine storm, and GM-CSF induces IgM production by B-1a cells in an autocrine manner. Indeed, B-1a cells have been shown to ameliorate influenza virus infection, sepsis, and pneumonia, all of which are similar to COVID-19. The recent discovery of B-1a cells in humans further reinforces their potentially critical role in the immune response against SARS-CoV-2 and their anticipated translational applications against viral and microbial infections. Given that B-1a cells protect against ARDS via immunoglobulin production and the anti-COVID-19 effects of convalescent plasma treatment, we recommend that studies be conducted to further examine the role of B-1a cells in the pathogenesis of COVID-19 and explore their therapeutic potential to treat COVID-19 patients.
Collapse
|
27
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Dyevoich AM, Disher NS, Haro MA, Haas KM. A TLR4-TRIF-dependent signaling pathway is required for protective natural tumor-reactive IgM production by B1 cells. Cancer Immunol Immunother 2020; 69:2113-2124. [PMID: 32448982 PMCID: PMC7529868 DOI: 10.1007/s00262-020-02607-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous studies demonstrated a toll-like receptor 4 (TLR4) and C-type lectin receptor (CLR; Mincle/MCL) agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits peritoneal tumor growth and ascites development through a mechanism dependent upon B1a cell-produced natural IgM, complement, and phagocytes. In the current study, we investigated the requirement for TLR4 and Fc receptor common γ chain (FcRγ), required for Mincle/MCL signaling, in the MPL/TDCM-elicited response. MPL/TDCM significantly increased macrophages and Ly6Chi monocytes in the peritoneal cavity of both TLR4-/- and FcRγ-/- mice, suggesting redundancy in the signals required for monocyte/macrophage recruitment. However, B1 cell activation, antibody secreting cell differentiation, and tumor-reactive IgM production were defective in TLR4-/-, but not FcRγ-/- mice. TRIF was required for production of IgM reactive against tumor- and mucin-related antigens, but not phosphorylcholine, whereas TLR4 was required for production of both types of reactivities. Consistent with this, B1 cells lacking TLR4 or TRIF did not proliferate or differentiate into tumor-reactive IgM-producing cells in vitro and did not reconstitute MPL/TDCM-dependent protection against peritoneal carcinomatosis in CD19-/- mice. Our results indicate a TLR4/TRIF-dependent pathway is required by B1 cells for MPL/TDCM-elicited production of protective tumor-reactive natural IgM. The dependency on TRIF signaling for tumor-reactive, but not phosphorylcholine-reactive, IgM production reveals unexpected heterogeneity in TLR4-dependent regulation of natural IgM production, thereby highlighting important differences to consider when designing vaccines or therapies targeting these specificities.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Nataya S Disher
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA.
| |
Collapse
|
29
|
Wang AA, Gommerman JL, Rojas OL. Plasma Cells: From Cytokine Production to Regulation in Experimental Autoimmune Encephalomyelitis. J Mol Biol 2020; 433:166655. [PMID: 32976908 DOI: 10.1016/j.jmb.2020.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
Abstract
B cells are a critical arm of the adaptive immune system. After encounter with antigen, B cells are activated and differentiate into plasmablasts (PBs) and plasma cells (PCs). Although their frequency is low, PB/PCs can be found in all lymphoid organs including peripheral lymph nodes and spleen. Upon immunization, depending on the location of where B cells encounter their antigen, PB/PCs subsequently home to and accumuate in the bone marrow and the intestine where they can survive as long-lived plasma cells for years, continually producing antibody. Recent evidence has shown that, in addition to producing antibodies, PB/PCs can also produce cytokines such as IL-17, IL-10, and IL-35. In addition, PB/PCs that produce IL-10 have been shown to play a regulatory role during experimental autoimmune encephalomyelitis, an animal model of neuroinflammation. The purpose of this review is to describe the phenotype and function of regulatory PB/PCs in the context of experimental autoimmune encephalomyelitis and in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Huo JH, Wang XY, Gong L, Gu X. Role of regulatory B cells in autoimmune diseases of the digestive system. Shijie Huaren Xiaohua Zazhi 2020; 28:486-492. [DOI: 10.11569/wcjd.v28.i12.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, regulatory B cells (Breg), a subset of functional B cells, have been reported to participate in the negative regulation of immunity in autoimmune diseases by producing interleukin (IL)-10, IL-35, and transforming growth factor-β. However, a specific surface marker for Breg has not been identified and their potential therapeutic role requires further study. This review discusses the function of Breg in autoimmune diseases of the digestive system, with the purpose of highlighting their regulation of immune responses and their potential as a therapeutic target for the treatment of these diseases.
Collapse
Affiliation(s)
- Jia-Hui Huo
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Xiao-Yun Wang
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Lei Gong
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Xin Gu
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
33
|
Lee FT, Dangi A, Shah S, Burnette M, Yang YG, Kirk AD, Hering BJ, Miller SD, Luo X. Rejection of xenogeneic porcine islets in humanized mice is characterized by graft-infiltrating Th17 cells and activated B cells. Am J Transplant 2020; 20:1538-1550. [PMID: 31883299 PMCID: PMC7286695 DOI: 10.1111/ajt.15763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023]
Abstract
Xenogeneic porcine islet transplantation is a promising potential therapy for type 1 diabetes (T1D). Understanding human immune responses against porcine islets is crucial for the design of optimal immunomodulatory regimens for effective control of xenogeneic rejection of porcine islets in humans. Humanized mice are a valuable tool for studying human immune responses and therefore present an attractive alternative to human subject research. Here, by using a pig-to-humanized mouse model of xenogeneic islet transplantation, we described the human immune response to transplanted porcine islets, a process characterized by dense islet xenograft infiltration of human CD45+ cells comprising activated human B cells, CD4+ CD44+ IL-17+ Th17 cells, and CD68+ macrophages. In addition, we tested an experimental immunomodulatory regimen in promoting long-term islet xenograft survival, a triple therapy consisting of donor splenocytes treated with ethylcarbodiimide (ECDI-SP), and peri-transplant rituximab and rapamycin. We observed that the triple therapy effectively inhibited graft infiltration of T and B cells as well as macrophages, promoted transitional B cells both in the periphery and in the islet xenografts, and provided a superior islet xenograft protection. Our study therefore indicates an advantage of donor ECDI-SP treatment in controlling human immune cells in promoting long-term islet xenograft survival.
Collapse
Affiliation(s)
- Frances T. Lee
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Sahil Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Guang Yang
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bernhard J. Hering
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
34
|
Regulatory B cells in infection, inflammation, and autoimmunity. Cell Immunol 2020; 352:104076. [PMID: 32143836 DOI: 10.1016/j.cellimm.2020.104076] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Regulatory B (Breg) cells are characterized by differential expression of CD5 and CD1d in mouse and CD24 and CD38 in human immune systems. The Breg family also includes LAG-3+CD138hi plasma cells, CD1d CD5 CD21 CD23 cells, Tim1, PD-L1, PD-L2, CD200- expressing B cells, and CD39hiKi67+ cells originating from the transitional, marginal zone or germinal centre of the spleen. Breg cells produce IL10 and IL35 and to cause immunosuppression. These cells respond to TLR2, TLR4, and TLR9 agonists, CD40 ligands, IL12p35 and heat shock proteins. Emerging evidence suggests that TLR signalling component Myd88 impacts the modulation of Breg cell responses and the host's susceptibility to infection. Breg cells are found to reduce relapsing-remitting experimental autoimmune encephalomyelitis. However, the Breg-mediated mechanism used to control T cell-mediated immune responses is still unclear. Here, we review the existing literature to find gaps in the current knowledge and to build a pathway to further research.
Collapse
|
35
|
Ruiz-Alcaraz AJ, Martínez-Banaclocha H, Marín-Sánchez P, Carmona-Martínez V, Iniesta-Albadalejo MA, Tristán-Manzano M, Tapia-Abellán A, García-Peñarrubia P, Machado-Linde F, Pelegrín P, Martínez-Esparza M. Isolation of functional mature peritoneal macrophages from healthy humans. Immunol Cell Biol 2020; 98:114-126. [PMID: 31709677 DOI: 10.1111/imcb.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Macrophages play an important role in the inflammatory response. Their various biological functions are induced by different membrane receptors, including Toll-like receptors, which trigger several intracellular signaling cascades and activate the inflammasomes, which in turn elicit the release of inflammatory mediators such as cytokines. In this study, we present a novel method for the isolation of human mature peritoneal macrophages. This method can be easily implemented by gynecologists who routinely perform laparoscopy for sterilization by tubal ligation or surgically intervene in benign gynecological pathologies. Our method confirms that macrophages are the main peritoneal leukocyte subpopulation isolated from the human peritoneum in homeostasis. We showed that primary human peritoneal macrophages present phagocytic and oxidative activities, and respond to activation of the main proinflammatory pathways such as Toll-like receptors and inflammasomes, resulting in the secretion of different proinflammatory cytokines. Therefore, this method provides a useful tool for characterizing primary human macrophages as control cells for studies of molecular inflammatory pathways in steady-state conditions and for comparing them with those obtained from pathologies involving the peritoneal cavity. Furthermore, it will facilitate advances in the screening of anti-inflammatory compounds in the human system.
Collapse
Affiliation(s)
- Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pilar Marín-Sánchez
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | | | - María Tristán-Manzano
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Ana Tapia-Abellán
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital General Reina Sofía, IMIB-Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| |
Collapse
|
36
|
Debes GF, McGettigan SE. Skin-Associated B Cells in Health and Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 202:1659-1666. [PMID: 30833422 DOI: 10.4049/jimmunol.1801211] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Traditionally, the skin was believed to be devoid of B cells, and studies of the skin immune system have largely focused on other types of leukocytes. Exciting recent data show that B cells localize to the healthy skin of humans and other mammalian species with likely homeostatic functions in host defense, regulation of microbial communities, and wound healing. Distinct skin-associated B cell subsets drive or suppress cutaneous inflammatory responses with important clinical implications. Localized functions of skin-associated B cell subsets during inflammation comprise Ab production, interactions with skin T cells, tertiary lymphoid tissue formation, and production of proinflammatory cytokines but also include immunosuppression by providing IL-10. In this review, we delve into the intriguing new roles of skin-associated B cells in homeostasis and inflammation.
Collapse
Affiliation(s)
- Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Shannon E McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
37
|
Wu H, Su Z, Barnie PA. The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int Immunopharmacol 2019; 78:106111. [PMID: 31881524 DOI: 10.1016/j.intimp.2019.106111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade, studies have identified subset of B cells, which play suppressive functions in additions to the conventional functions of B cells: antigen processing and presentation, activation of T cells and antibody productions. Because of their regulatory function, they were named as B regulatory cells (Bregs). Bregs restrict the severity of autoimmune disorders in animal disease models such as experimental autoimmune myocarditis (EAM), experimental autoimmune encephalitis (EAE), and collagen-induced arthritis (CIA) but can contribute to the development of infection and cancer. In humans, the roles of B regulatory cells in autoimmune diseases have not been clearly established because of the inconsistent findings from many researchers. This is believed to arise from the speculated fact that Bregs lack specific marker, which can be used to identify and characterize them in human diseases. The CD19+CD24hiCD38hiCD1dhiB cells have been associated with the regulatory function. Available evidences highlight the relevance of increasing IL-10-producing B cells in autoimmune diseases and the possibility of serving as new therapeutic targets in inflammatory disorders. This review empanels the functions of Bregs in autoimmune diseases in both human and animal models, and further evaluates the possibility of Bregs as therapeutic targets in inflammatory disorders. Consequently, this might help identify possible research gaps, which need to be clarified as researchers speculate the possibility of targeting some subsets of Bregs in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Laboratory, People's Hospital of Jiangyin, Jiangsu 214400, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Ghana.
| |
Collapse
|
38
|
Chen Y, Wang Y, Shen J. Role of environmental factors in the pathogenesis of Crohn's disease: a critical review. Int J Colorectal Dis 2019; 34:2023-2034. [PMID: 31732875 DOI: 10.1007/s00384-019-03441-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To review role of environmental factors in the pathogenesis of Crohn's disease. METHODS We systematically reviewed trials and systematic reviews using PubMed and Web of science databases. Here, we review the current information on the causative factors and mechanisms of CD, including smoking, exercise, diet, animal protein, breastfeeding, history of childhood infection and vaccination, oral contraceptives, and antibiotics of CD. We also highlight important knowledge gaps that need to be filled in order to advance the field of CD research. RESULTS Epidemiological studies have indicated the significance of environmental factors in the disease behavior and outcome of Crohn's disease (CD). There are a few recognized environmental factors, such as cigarette smoking, exercise, dietary habits, and breastfeeding, which are associated with the pathogenesis of CD. These factors are hypothesized to change the epithelial barrier function, which disturbs both the innate and adaptive immune systems and the intestinal flora. However, the effect of several risk factors, such as appendectomy and pharmaceutical use, differs across several studies, indicating the need for more rigorous research. Furthermore, few studies have examined effective interventions based on environmental factors that can improve disease outcomes. Recent studies have indicated that the pathogenesis of CD is related to environmental and genetic factors. CONCLUSION We review the current information on the causative factors and mechanisms of CD, including smoking, exercise, diet, animal protein, breastfeeding, history of childhood infection and vaccination, oral contraceptives, and antibiotics of CD. However, further studies are needed to understand knowledge gaps in the field of CD.
Collapse
Affiliation(s)
- Yueying Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Yining Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|
39
|
Yuan CH, Li X, Luo L, Wang YP, Zhang DL, Zhou KL, Zhang XL, Pan Q. Mannose-capped lipoarabinomannan-induced B10 cells decrease severity of dextran sodium sulphate-induced inflammatory bowel disease in mice. Scand J Immunol 2019; 91:e12843. [PMID: 31657484 PMCID: PMC7050505 DOI: 10.1111/sji.12843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, non‐specific, inflammatory gastrointestinal disease that mainly consists of Crohn's disease and ulcerative colitis. However, the aetiology and pathogenesis of IBD are still unclear. B10 (IL‐10 producing regulatory B) cells, a subset of regulatory B cells, are known to contribute to intestinal homeostasis and the aberrant frequency of B10 cells is associated with IBD. We have recently reported that B10 cells can be induced by ManLAM (mannose‐capped lipoarabinomannan), a major cell‐wall lipoglycan of M tb (Mycobacterium tuberculosis). In the current study, the ManLAM‐induced B10 cells were adoptively transferred into IL(interleukin)‐10−/− mice and the roles of ManLAM‐induced B10 cells were investigated in DSS (dextran sodium sulphate)‐induced IBD model. ManLAM‐induced B10 cells decrease colitis severity in the mice. The B10 cells downregulate Th1 polarization in spleen and MLNs (mesenteric lymph nodes) of DSS‐treated mice. These results suggest that IL‐10 production by ManLAM‐treated B cells contributes to keeping the balance between CD4+ T cell subsets and protect mice from DSS‐induced IBD.
Collapse
Affiliation(s)
- Chun-Hui Yuan
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Liang Luo
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ya-Ping Wang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dong-Li Zhang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | | | - Xiao-Lian Zhang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qin Pan
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
40
|
Mohammed AD, Khan MAW, Chatzistamou I, Chamseddine D, Williams-Kang K, Perry M, Enos R, Murphy A, Gomez G, Aladhami A, Oskeritzian CA, Jolly A, Chang Y, He S, Pan Z, Kubinak JL. Gut Antibody Deficiency in a Mouse Model of CVID Results in Spontaneous Development of a Gluten-Sensitive Enteropathy. Front Immunol 2019; 10:2484. [PMID: 31708923 PMCID: PMC6820504 DOI: 10.3389/fimmu.2019.02484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies are heritable disorders of immune function. CD19 is a B cell co-receptor important for B cell development, and CD19 deficiency is a known genetic risk factor for a rare form of primary immunodeficiency known as “common variable immunodeficiency” (CVID); an antibody deficiency resulting in low levels of serum IgG and IgA. Enteropathies are commonly observed in CVID patients but the underlying reason for this is undefined. Here, we utilize CD19−/− mice as a model of CVID to test the hypothesis that antibody deficiency negatively impacts gut physiology under steady-state conditions. As anticipated, immune phenotyping experiments demonstrate that CD19−/− mice develop a severe B cell deficiency in gut-associated lymphoid tissues that result in significant reductions to antibody concentrations in the gut lumen. Antibody deficiency was associated with defective anti-commensal IgA responses and the outgrowth of anaerobic bacteria in the gut. Expansion of anaerobic bacteria coincides with the development of a chronic inflammatory condition in the gut of CD19−/− mice that results in an intestinal malabsorption characterized by defects in lipid metabolism and transport. Administration of the antibiotic metronidazole to target anaerobic members of the microbiota rescues mice from disease indicating that intestinal malabsorption is a microbiota-dependent phenomenon. Finally, intestinal malabsorption in CD19−/− mice is a gluten-sensitive enteropathy as exposure to a gluten-free diet also significantly reduces disease severity in CD19−/− mice. Collectively, these results support an effect of antibody deficiency on steady-state gut physiology that compliment emerging data from human studies linking IgA deficiency with non-infectious complications associated with CVID. They also demonstrate that CD19−/− mice are a useful model for studying the role of B cell deficiency and gut dysbiosis on gluten-sensitive enteropathies; a rapidly emerging group of diseases in humans with an unknown etiology.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States.,School of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Md A Wadud Khan
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Douja Chamseddine
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Katie Williams-Kang
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Mason Perry
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Reilly Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, United States
| | - Ahmed Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy Jolly
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Yan Chang
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Shuqian He
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
41
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
42
|
Alhabbab RY, Nova-Lamperti E, Aravena O, Burton HM, Lechler RI, Dorling A, Lombardi G. Regulatory B cells: Development, phenotypes, functions, and role in transplantation. Immunol Rev 2019; 292:164-179. [DOI: 10.1111/imr.12800] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Rowa Y. Alhabbab
- Infectious Disease Unit and Division of Applied Medical Sciences King Fahad Centre for medical research King Abdulaziz University Jeddah Saudi Arabia
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory Department of Clinical Biochemistry and Immunology Pharmacy Faculty Universidad de Concepción Concepción Chile
| | - Octavio Aravena
- Programa Disciplinario de Immunología Instituto de Ciencias Biomédicas Facultad de Medicina Universidad de Chile Santiago Chile
| | - Hannah M. Burton
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Anthony Dorling
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| |
Collapse
|
43
|
Fillatreau S. Regulatory functions of B cells and regulatory plasma cells. Biomed J 2019; 42:233-242. [PMID: 31627865 PMCID: PMC6818159 DOI: 10.1016/j.bj.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
B cells critically contribute to health through the production of antibodies that provide a vital line of defence against infectious agents. In addition, B cells are known to play an integrative role in immunity, acting as crucial antigen-presenting cells for T cells, and being an important source of cytokines that can target multiple cell types including stromal cells, innate cells, and adaptive lymphocytes. This review focuses on the role of B cells as negative regulators of immunity through the production of interleukin-10 (IL-10) in autoimmune, infectious, and malignant diseases. It discusses the phenotypes of the B cell subsets most competent to produce IL-10 in vitro and to exert suppressive functions in vivo upon adoptive transfer in recipient mice, the signals and transcription factors regulating IL-10 expression in B cells, and the recent identification of plasmocytes, including short-lived plasmablasts and long-lived plasma cells, as an important source of IL-10 in secondary lymphoid organs and inflamed tissues in vivo during mouse and human diseases. With our increasing knowledge of this non-canonical B cell function a coherent framework starts emerging that will help monitoring and targeting this B cell function in health and disease.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; Faculty of Medicine, Paris Descartes University, Paris-Sorbonne University, Paris, France; AP-HP Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
44
|
Chen J, Liu H, Li L, Wang H, Li Y, Wang Y, Ding K, Hao S, Shao Y, Li L, Song J, Wang G, Shao Z, Fu R. Abnormal numbers of CD4+ T lymphocytes and abnormal expression of CD4+ T lymphocyte‑secreted cytokines in patients with immune‑related haemocytopenia. Mol Med Rep 2019; 20:3979-3990. [PMID: 31545490 PMCID: PMC6797981 DOI: 10.3892/mmr.2019.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
In the past decade, a group of cases with persisting haemocytopenia were separated from those with idiopathic cytopenia of undetermined significance due to the optimal response of these patients to immunosuppression therapy and due to the detection of autoantibodies in the bone marrow of haemopoietic cells. This condition was termed immune-related haemocytopenia (IRH). However, the quantity of T lymphocytes remained unknown. In the present study, the percentage of CD4+ T-cell subsets and related cytokines was measured using flow cytometry and an enzyme-linked immunosorbent assay. An abnormal number of CD4+ T cell subsets was found, including increased percentages of T helper (Th)2, Th9 and Th17 cells and a decreased number of regulatory T (Treg) cells. In addition, the results showed downregulation in the levels of interleukin (IL)-2, transforming growth factor-β and IL-35, and upregulation in the levels of IL-4, IL-6, IL-17, IL-23 and interferon-γ in patients who did not receive therapy (untreated patients). These levels were significantly associated with the number of peripheral blood cells and were recovered following treatment. In conclusion, an abnormal number of CD4+ T cell subsets and corresponding abnormal levels of regulatory cytokines resulted in the stimulation of B1 lymphocytes to produce autoantibodies in IRH, which may be considered as markers to evaluate disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Jin Chen
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liyan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Honglei Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yihao Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Ding
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shanfeng Hao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuanyuan Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Song
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guojin Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
45
|
Wei B, Deng Y, Huang Y, Gao X, Wu W. IL-10-producing B cells attenuate cardiac inflammation by regulating Th1 and Th17 cells in acute viral myocarditis induced by coxsackie virus B3. Life Sci 2019; 235:116838. [PMID: 31493482 DOI: 10.1016/j.lfs.2019.116838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
AIMS This work aimed to evaluate the regulatory function of IL-10-producing B cells in viral myocarditis (VMC). MAIN METHODS We adoptively transferred purified IL-10-producing B cells to VMC mice via the tail vein. We observed the inflammatory responses and cardiac lesions by histological analysis, examined the proportions of spleen Th1 and T17 cells by flow cytometry and expression levels of related transcription factors (T-bet and RORγt) by reverse transcription polymerase chain reaction (RT-PCR), and calculated the cardiac pathological scores and the mean survival times. KEY FINDINGS IL-10-producing B cells were found to be T cell-dependent in the pathogenesis of VMC. They mainly downregulated T-bet and RORγt mRNA levels to decrease the proportions of Th1 and Th17 cells, thereby restraining the inflammation and damage in the myocardium in B cell-deficient VMC mice. Adoptive transfer of IL-10-producing B cells before VMC induction also normalized the inflammatory responses and prolonged the survival time in wild-type (WT) VMC mice. While the transfer of IL-10-producing B cells on day 3 of VMC alleviated the severity of disease, it did not extend the mean survival time of VMC mice. By contrast, IL-10-producing B cells showed no effect on day 7 of VMC. In conclusion, IL-10-producing B cells downregulate the proportion of Th1 and Th17 cells to alleviate inflammatory damage in the myocardium during VMC before the induction or the early phase of disease. SIGNIFICANCE These findings suggest that IL-10-producing B cells may be a new therapeutic target for modulating the immune response in VMC.
Collapse
Affiliation(s)
- Bin Wei
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Deng
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanlan Huang
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
46
|
IL-10 producing B cells rescue mouse fetuses from inflammation-driven fetal death and are able to modulate T cell immune responses. Sci Rep 2019; 9:9335. [PMID: 31249364 PMCID: PMC6597542 DOI: 10.1038/s41598-019-45860-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022] Open
Abstract
Understanding the mechanisms leading to fetal death following maternal subclinical infections is crucial to develop new therapeutic strategies. Here we addressed the relevance of IL-10 secreting B cells (B10) in the maintenance of the immune balance during gestation. µMT females lacking mature B cells presented normal pregnancies, although their fetuses were smaller and their Treg pool did not expand as in B cell sufficient controls. Pregnant µMT females were more susceptible to LPS despite having less Treg; their fetuses died at doses compatible with pregnancy in WT animals. Adoptive transfer of IL-10 negative B effector cells or B cells from IL-10 deficient mice did not modify this outcome. The transfer of B10 cells or application of recombinant murine IL-10 reduced the fetal loss, associated with a normalization of Treg numbers and cytokine modulation at the feto-maternal interface. B cell-derived IL-10 suppressed the production of IL-17A and IL-6 by T cells and promoted the conversion of naïve cells into Treg. B10 cells are required to restore the immune balance at the feto-maternal interface when perturbed by inflammatory signals. Our data position B cells in a central role in the maintenance of the balance between immunity and tolerance during pregnancy.
Collapse
|
47
|
Chen X, Cai C, Xu D, Liu Q, Zheng S, Liu L, Li G, Zhang X, Li X, Ma Y, Huang L, Chen J, Shi J, Du X, Xia W, Xiang AP, Peng Y. Human Mesenchymal Stem Cell-Treated Regulatory CD23 +CD43 + B Cells Alleviate Intestinal Inflammation. Am J Cancer Res 2019; 9:4633-4647. [PMID: 31367246 PMCID: PMC6643430 DOI: 10.7150/thno.32260] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) have been demonstrated to ameliorate inflammatory bowel disease by their actions on multiple immune cells, especially on regulatory B cells (Breg cells). However, the phenotypes and functions of human MSCs (hMSCs)-treated Breg cell subsets are not yet clear. Methods: Purified B cells were cocultured with MSCs and the phenotypes and immunomodulatory functions of the B cells were analyzed by FACS and proliferation assays in vitro. Also, a trinitrobenzenesulfonic acid-induced mouse colitis model was employed to detect the function of MSC-treated Breg cells in vivo. Results: We demonstrated that coculturing with hMSCs significantly enhanced the immunomodulatory activity of B cells by up-regulating IL-10 expression. We then identified that a novel regulatory B cell population characterized by CD23 and CD43 phenotypic markers could be induced by hMSCs. The CD23+CD43+ Breg cells substantially inhibited the inflammatory cytokine secretion and proliferation of T cells through an IL-10-dependent pathway. More significantly, intraperitoneal injection of hMSCs ameliorated the clinical and histopathological severity in the mouse experimental colitis model, accompanied by an increase in the number of CD23+CD43+ Breg cells. The adoptive transfer of CD23+CD43+ B cells effectively alleviated murine colitis, as compared with the CD23-CD43- B cells. Treatment with CD23+CD43+ B cells, and not hMSCs, substantially improved the symptoms of colitis in B cell-depleted mice. Conclusion: the novel CD23+CD43+ Breg cell subset appears to be involved in the immunomodulatory function of hMSCs and sheds new light on elucidating the therapeutic mechanism of hMSCs for the treatment of inflammation-related diseases.
Collapse
|
48
|
Mishima Y, Oka A, Liu B, Herzog JW, Eun CS, Fan TJ, Bulik-Sullivan E, Carroll IM, Hansen JJ, Chen L, Wilson JE, Fisher NC, Ting JP, Nochi T, Wahl A, Garcia JV, Karp CL, Sartor RB. Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J Clin Invest 2019; 129:3702-3716. [PMID: 31211700 DOI: 10.1172/jci93820] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.
Collapse
Affiliation(s)
- Yoshiyuki Mishima
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Akihiko Oka
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Jeremy W Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - Chang Soo Eun
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Ting-Jia Fan
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology
| | | | - Ian M Carroll
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Nutrition
| | - Jonathan J Hansen
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology
| | - Liang Chen
- Lineberger Comprehensive Cancer Center, Department of Genetics, and
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, Department of Genetics, and
| | | | - Jenny Py Ting
- Lineberger Comprehensive Cancer Center, Department of Genetics, and
| | - Tomonori Nochi
- Department of Medicine, Division of Infectious Diseases, UNC, Chapel Hill, North Carolina, USA.,Mucosal Immunology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Angela Wahl
- Department of Medicine, Division of Infectious Diseases, UNC, Chapel Hill, North Carolina, USA
| | - J Victor Garcia
- Department of Medicine, Division of Infectious Diseases, UNC, Chapel Hill, North Carolina, USA
| | - Christopher L Karp
- Division of Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Research Center, Cincinnati, Ohio, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology
| |
Collapse
|
49
|
B1 cells protect against Schistosoma japonicum-induced liver inflammation and fibrosis by controlling monocyte infiltration. PLoS Negl Trop Dis 2019; 13:e0007474. [PMID: 31194740 PMCID: PMC6592576 DOI: 10.1371/journal.pntd.0007474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 05/19/2019] [Indexed: 12/21/2022] Open
Abstract
During Schistosoma infection, lack of B cells results in more severe granulomas, inflammation, and fibrosis in the liver, but the mechanisms underlying this pathology remain unclear. This study was to clarify the mechanisms underpinning the immunomodulation of B cells in mice infected with Schistosoma japonicum (S. japonicum). We found that B cell deficiency led to aggravated liver pathology, as demonstrated by increases in the size of the egg-associated granulomas, alanine transaminase levels, and collagen deposition. Compared with infected wild-type (WT) mice, infected B cell-deficient (μMT) mice showed increased infiltration of Ly6Chi monocytes and higher levels of proinflammatory cytokines and chemokines. Furthermore, B1 cells were increased significantly in the liver of WT mice following S. japonicum infection. Adoptively transferring B1 cells, but not B2 cells, to μMT mice significantly reduced liver pathology and liver infiltration of Ly6Chi monocytes. Additionally, secretion of IL-10 from hepatic B cells increased significantly in infected WT mice and this IL-10 was mainly derived from B1 cells. Adoptively transferring B1 cells purified from WT mice, but not from IL-10-deficient mice, to μMT mice significantly reduced liver pathology and liver infiltration of Ly6Chi monocytes. These reductions were accompanied by decreases in the expression levels of chemokines and inflammatory cytokines. Taken together, these data indicated that after S. japonicum infection, an increased number of hepatic B1 cells secrete IL-10, which inhibits the expression of chemokines and cytokines and suppresses the infiltration of Ly6Chi monocytes into the liver thereby alleviating liver early inflammation and late fibrosis. Infection with Schistosoma results in strong granulomatous inflammation caused by parasite eggs deposited in the liver. Granuloma is defined as a significant number of immune cell infiltration around the eggs intermixed with hepatocytes, which can protect the host against liver damage. But excessive infiltration and inflammation lead to severe liver injury and fibrosis. Here we found that B1 cells accumulated in the liver after infection and released IL-10 to regulate inflammation. B1 cell-derived IL-10 inhibited the expression of chemokines and then restrained excessive infiltration of Ly6Chi monocytes into the liver thereby alleviating early inflammation and later fibrosis in the liver. Our study provides insight into the immunomodulation of B1 cells in schistosomiasis and an important step towards the development of therapeutic strategies for Schistosoma-induced liver diseases.
Collapse
|
50
|
Luo L, Liu Q, Peng S, Meng Y, Du W, Luo D, Wang Q, Ding J, Dong X, Ma X. The Number of Regulatory B Cells is Increased in Mice with Collagen-induced Arthritis. Open Life Sci 2019; 14:12-18. [PMID: 33817132 PMCID: PMC7874759 DOI: 10.1515/biol-2019-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to investigate changes in regulatory B cells (Bregs) and the expression of related cytokines such as interleukin-10 (IL-10) and transforming growth factor (TGF)-β in a mouse model of collagen-induced arthritis (CIA). A total 20 DBA/1 mice (6-8 weeks old) were randomly divided into control and CIA disease groups. For the CIA disease group, animals were injected intradermally with chicken collagen type II and complete Freund's adjuvant. The calculated arthritis index score of the CIA group was significantly higher than that in control group. Hematoxylin and eosin staining showed tumid synovial cells with irregular arrangement and obvious hyperplasia, with a high degree of inflammatory cell infiltration in CIA model group. Cytometric bead array technology and quantitative RT-PCR indicated that the levels of IL-10 and TGF-β in serum, and synovial cells were significantly increased in the CIA group. The proportion of Bregs in the spleen of the CIA group was significantly increased compared to the control group. In conclusion, our findings demonstrate that the number of Bregs and the expression of TGF-β and IL-10 are enhanced in mice with CIA.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qing Liu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Shanshan Peng
- College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Yan Meng
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Wenjing Du
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Demei Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qian Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Xunan Dong
- The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 West Henan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China
| | - Xiumin Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China.,College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| |
Collapse
|