1
|
Hammond TC, Purbhoo MA, Kadel S, Ritz J, Nikiforow S, Daley H, Shaw K, van Besien K, Gomez-Arteaga A, Stevens D, Ortuzar W, Michelet X, Smith R, Moskowitz D, Masakayan R, Yigit B, Boi S, Soh KT, Chamberland J, Song X, Qin Y, Mishchenko I, Kirby M, Nasonenko V, Buffa A, Buell JS, Chand D, van Dijk M, Stebbing J, Exley MA. A phase 1/2 clinical trial of invariant natural killer T cell therapy in moderate-severe acute respiratory distress syndrome. Nat Commun 2024; 15:974. [PMID: 38321023 PMCID: PMC10847411 DOI: 10.1038/s41467-024-44905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a unique T cell population, lend themselves for use as adoptive therapy due to diverse roles in orchestrating immune responses. Originally developed for use in cancer, agenT-797 is a donor-unrestricted allogeneic ex vivo expanded iNKT cell therapy. We conducted an open-label study in virally induced acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome-2 virus (trial registration NCT04582201). Here we show that agenT-797 rescues exhausted T cells and rapidly activates both innate and adaptive immunity. In 21 ventilated patients including 5 individuals receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO), there are no dose-limiting toxicities. We observe an anti-inflammatory systemic cytokine response and infused iNKT cells are persistent during follow-up, inducing only transient donor-specific antibodies. Clinical signals of associated survival and prevention of secondary infections are evident. Cellular therapy using off-the-shelf iNKT cells is safe, can be rapidly scaled and is associated with an anti-inflammatory response. The safety and therapeutic potential of iNKT cells across diseases including infections and cancer, warrants randomized-controlled trials.
Collapse
Affiliation(s)
- Terese C Hammond
- Pulmonary Critical Care Sleep Medicine, Providence Saint John's Health Center, Santa Monica, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Jerome Ritz
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Kit Shaw
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Qin
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | - Alexa Buffa
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | | | | |
Collapse
|
2
|
Abstract
COVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.
Collapse
Affiliation(s)
- Kristen Orumaa
- Department of Clinical Microbiology and Department of Immunology, Trinity Translational Medicine Institute, St James's Hospital, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Clinical Microbiology and Department of Immunology, Trinity Translational Medicine Institute, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
3
|
Ishay Y, Potruch A, Schwartz A, Berg M, Jamil K, Agus S, Ilan Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed Pharmacother 2021; 143:112228. [PMID: 34649354 PMCID: PMC8455249 DOI: 10.1016/j.biopha.2021.112228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Assaf Potruch
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Asaf Schwartz
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Marc Berg
- Altus Care powered by Oberon Sciences, Denmark, Israel; Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, USA.
| | - Khurram Jamil
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Samuel Agus
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
4
|
Maurice NJ, Taber AK, Prlic M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:455-462. [PMID: 33468558 DOI: 10.4049/jimmunol.2000937] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Immunology, University of Washington, Seattle, WA 98109; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
5
|
Kostopoulos IV, Orologas-Stavrou N, Rousakis P, Panteli C, Ntanasis-Stathopoulos I, Charitaki I, Korompoki E, Gavriatopoulou M, Kastritis E, Trougakos IP, Dimopoulos MA, Tsitsilonis OE, Terpos E. Recovery of Innate Immune Cells and Persisting Alterations in Adaptive Immunity in the Peripheral Blood of Convalescent Plasma Donors at Eight Months Post SARS-CoV-2 Infection. Microorganisms 2021; 9:546. [PMID: 33800807 PMCID: PMC8000115 DOI: 10.3390/microorganisms9030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Persisting alterations and unique immune signatures have been previously detected in the peripheral blood of convalescent plasma (CP) donors at approximately two months after initial SARS-CoV-2 infection. This article presents the results on the sequential analysis of 47 CP donors at a median time of eight months (range 7.5-8.5 months) post infection, as assessed by flow cytometry. Interestingly, our results show a significant variation of the relevant immune subset composition among CP donors. Regarding innate immunity, both non-classical monocytes, and CD11b- granulocytes had fully recovered at eight months post COVID-19 infection. Intermediate monocytes and natural killer (NK) cells had already been restored at the two-month evaluation and remained stable. Regarding adaptive immunity, the COVID-19-related skewed Th1 and Th2 cell polarization remained at the same levels as in two months. However, low levels of total B cells were detected even after eight months from infection. A persisting reduction of CD8+ Tregs and changes in the NKT cell compartment were also remarkable. CP donors present with a unique immune landscape at eight months post COVID-19 infection, which is characterized by the notable restoration of the components of innate immunity along with a persisting imprint of SARS-CoV-2 in cells of the adaptive immunity.
Collapse
Affiliation(s)
- Ioannis V. Kostopoulos
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Nikolaos Orologas-Stavrou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Pantelis Rousakis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Chrysanthi Panteli
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Ioanna Charitaki
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Eleni Korompoki
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Ioannis P. Trougakos
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| | - Ourania E. Tsitsilonis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.V.K.); (N.O.-S.); (P.R.); (C.P.); (I.P.T.); (O.E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (I.C.); (E.K.); (M.G.); (E.K.); (M.-A.D.)
| |
Collapse
|
6
|
Kang YW, Park S, Lee KJ, Moon D, Kim YM, Lee SW. Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis. Immune Netw 2021; 21:e1. [PMID: 33728094 PMCID: PMC7937512 DOI: 10.4110/in.2021.21.e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a significant health concern worldwide. Undoubtedly, a better understanding of the innate and adaptive immune responses against SARS-CoV-2 and its relationship with the coronavirus disease 2019 (COVID-19) pathogenesis will be the sole basis for developing and applying therapeutics. This review will summarize the published results that relate to innate immune responses against infections with human coronaviruses including SARS-CoV-1 and SARS-CoV-2 in both humans and animal models. The topics encompass the innate immune sensing of the virus to the dysregulation of various innate immune cells during infection and disease progression.
Collapse
Affiliation(s)
- Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Young-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
7
|
Anderson CK, Reilly SP, Brossay L. The Invariant NKT Cell Response Has Differential Signaling Requirements during Antigen-Dependent and Antigen-Independent Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:132-140. [PMID: 33229442 DOI: 10.4049/jimmunol.2000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells are an innate-like population characterized by their recognition of glycolipid Ags and rapid cytokine production upon activation. Unlike conventional T cells, which require TCR ligation, iNKT cells can also be stimulated independently of their TCR. This feature allows iNKT cells to respond even in the absence of glycolipid Ags, for example, during viral infections. Although the TCR-dependent and -independent activation of iNKT cells have been relatively well established, the exact contributions of IL-12, IL-18, and TLRs remain unclear for these two activation pathways. To definitively investigate how these components affect the direct and indirect stimulation of iNKT cells, we used mice deficient for either MyD88 or the IL-12Rβ2 in the T cell lineage. Using these tools, we demonstrate that IL-12, IL-18, and TLRs are completely dispensable for the TCR activation pathway when a strong agonist is used. In contrast, during murine CMV infection, when the TCR is not engaged, IL-12 signaling is essential, and TLR signaling is expendable. Importantly, to our knowledge, we discovered an intrinsic requirement for IL-18 signaling by splenic iNKT cells but not liver iNKT cells, suggesting that there might be diversity, even within the NKT1 population.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| |
Collapse
|
8
|
Rozot V, Nemes E, Geldenhuys H, Musvosvi M, Toefy A, Rantangee F, Makhethe L, Erasmus M, Bilek N, Mabwe S, Finak G, Fulp W, Ginsberg AM, Hokey DA, Shey M, Gurunathan S, DiazGranados C, Bekker LG, Hatherill M, Scriba TJ. Multidimensional analyses reveal modulation of adaptive and innate immune subsets by tuberculosis vaccines. Commun Biol 2020; 3:563. [PMID: 33037320 PMCID: PMC7547090 DOI: 10.1038/s42003-020-01288-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
We characterize the breadth, function and phenotype of innate and adaptive cellular responses in a prevention of Mycobacterium tuberculosis infection trial. Responses are measured by whole blood intracellular cytokine staining at baseline and 70 days after vaccination with H4:IC31 (subunit vaccine containing Ag85B and TB10.4), Bacille Calmette-Guerin (BCG, a live attenuated vaccine) or placebo (n = ~30 per group). H4:IC31 vaccination induces Ag85B and TB10.4-specific CD4 T cells, and an unexpected NKTlike subset, that expresses IFN-γ, TNF and/or IL-2. BCG revaccination increases frequencies of CD4 T cell subsets that either express Th1 cytokines or IL-22, and modestly increases IFNγ-producing NK cells. In vitro BCG re-stimulation also triggers responses by donor-unrestricted T cells, which may contribute to host responses against mycobacteria. BCG, which demonstrated efficacy against sustained Mycobacterium tuberculosis infection, modulates multiple immune cell subsets, in particular conventional Th1 and Th22 cells, which should be investigated in discovery studies of correlates of protection.
Collapse
Affiliation(s)
- Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Asma Toefy
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Frances Rantangee
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lebohang Makhethe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Greg Finak
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, USA
| | - William Fulp
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, USA
| | | | | | - Muki Shey
- Aeras South Africa Endpoint Assay Laboratory, Cape Town, South Africa
| | | | | | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, Ehrmann S, Ferreira M, Daix T, Jeannet R, François B, Dequin PF, Si-Tahar M, Baranek T, Paget C. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J Exp Med 2020; 217:152073. [PMID: 32886755 PMCID: PMC7472174 DOI: 10.1084/jem.20200872] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19-driven ARDS are poorly understood. Here, in blood and airways of severe COVID-19 patients, we serially analyzed unconventional T cells, a heterogeneous class of T lymphocytes (MAIT, γδT, and iNKT cells) with potent antimicrobial and regulatory functions. Circulating unconventional T cells of COVID-19 patients presented with a profound and persistent phenotypic alteration. In the airways, highly activated unconventional T cells were detected, suggesting a potential contribution in the regulation of local inflammation. Finally, expression of the CD69 activation marker on blood iNKT and MAIT cells of COVID-19 patients on admission was predictive of clinical course and disease severity. Thus, COVID-19 patients present with an altered unconventional T cell biology, and further investigations will be required to precisely assess their functions during SARS-CoV-2-driven ARDS.
Collapse
Affiliation(s)
- Youenn Jouan
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France.,Service de chirurgie cardiaque et de réanimation chirurgicale cardio-vasculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Antoine Guillon
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Loïc Gonzalez
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Yonatan Perez
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Chloé Boisseau
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Stephan Ehrmann
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Marion Ferreira
- Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de pneumologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Thomas Daix
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Robin Jeannet
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Bruno François
- Intensive Care Unit, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale CIC1435, Dupuytren Teaching Hospital, Limoges, France.,Institut national de la santé et de la recherche médicale UMR 1092, University of Limoges, Limoges, France
| | - Pierre-François Dequin
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Mustapha Si-Tahar
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thomas Baranek
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- Institut national de la santé et de la recherche médicale, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
10
|
Ioannidis M, Cerundolo V, Salio M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Front Immunol 2020; 11:1556. [PMID: 32903532 PMCID: PMC7438542 DOI: 10.3389/fimmu.2020.01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.
Collapse
Affiliation(s)
- Melina Ioannidis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Nagai J, Balestrieri B, Fanning LB, Kyin T, Cirka H, Lin J, Idzko M, Zech A, Kim EY, Brennan PJ, Boyce JA. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest 2019; 129:5169-5186. [PMID: 31638598 PMCID: PMC6877315 DOI: 10.1172/jci129761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023] Open
Abstract
Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT1R) are widely used to treat asthma and allergic rhinitis, with variable response rates. Alveolar macrophages express UDP-specific P2Y6 receptors that can be blocked by off-target effects of CysLT1R antagonists. Sensitizing intranasal doses of an extract from the house dust mite Dermatophagoides farinae (Df) sharply increased the levels of UDP detected in bronchoalveolar lavage fluid of mice. Conditional deletion of P2Y6 receptors before sensitization exacerbated eosinophilic lung inflammation and type 2 cytokine production in response to subsequent Df challenge. P2Y6 receptor signaling was necessary for dectin-2-dependent production of protective IL-12p40 and Th1 chemokines by alveolar macrophages, leading to activation of NK cells to generate IFN-γ. Administration of CysLT1R antagonists during sensitization blocked UDP-elicited potentiation of IL-12p40 production by macrophages in vitro, suppressed the Df-induced production of IL-12p40 and IFN-γ in vivo, and suppressed type 2 inflammation only in P2Y6-deficient mice. Thus, P2Y6 receptor signaling drives an innate macrophage/IL-12/NK cell/IFN-γ axis that prevents inappropriate allergic type 2 immune responses on respiratory allergen exposure and counteracts the Th2 priming effect of CysLT1R signaling at sensitization. Targeting P2Y6 signaling might prove to be a potential additional treatment strategy for allergy.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Laura B. Fanning
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Timothy Kyin
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Haley Cirka
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Junrui Lin
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Edy Y. Kim
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pulmonary Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick J. Brennan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zhai Y, Li G, Jiang T, Zhang W. CAR-armed cell therapy for gliomas. Am J Cancer Res 2019; 9:2554-2566. [PMID: 31911846 PMCID: PMC6943349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-armed cell therapy has developed rapidly in recent years, especially in the treatment of leukemia. However, the treatment methods for solid tumors represented by glioma have not achieved the ideal therapeutic effect. This situation necessitates learning from chimeric antigen receptor T cell (CAR-T) treatment in other malignancies and discovering the differences between gliomas and other solid tumors. The current design idea is to enhance the targeting, regulatory effects, and adaptation of CAR-armed cells. This review traced not only clinical trials, but also several animal experiments, which might promote the development of CAR-T treatment in glioma. Furthermore, we have discussed the obstacles to CAR-T in the treatment of glioma and the current possible solutions.
Collapse
Affiliation(s)
- You Zhai
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijing, China
- China National Clinical Research Center for Neurological DiseasesBeijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| |
Collapse
|
13
|
Survey of cellular immune responses to human cytomegalovirus infection in the microenvironment of the uterine-placental interface. Med Microbiol Immunol 2019; 208:475-485. [PMID: 31065796 DOI: 10.1007/s00430-019-00613-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, yet there are no established treatments for preventing maternal-fetal transmission. During first trimester, HCMV replicates in basal decidua that functions as a reservoir for virus and source of transmission to the attached placenta and fetal hemiallograft but also contains immune cells, including natural killer cells, macrophages, and T cell subsets, that respond to pathogens, protecting the placenta and fetus. However, the specific cellular and cytokine responses to infection are unknown, nor are the immune correlates of protection that guide development of therapeutic strategies. Here we survey immune cell phenotypes in intact explants of basal decidua infected with a clinical pathogenic HCMV strain ex vivo and identify specific changes occurring in response to infection in the tissue environment. Using 4-color immunofluorescence microscopy, we found that at 3 days postinfection, virus replicates in decidual stromal cells and epithelial cells of endometrial glands. Infected cells and effector memory CD8+ T cells (TEM) in contact with them make IFN-γ. CD8+ TEM cells produce granulysin and cluster at sites of infection in decidua and the epithelium of endometrial glands. Quantification indicated expansion of two immune cell subtypes-CD8+ TEM cells and, to a lesser extent, iNKT cells. Approximately 20% of immune cells were found in pairs in both control and infected decidua, suggesting frequent cross-talk in the microenvironment of decidua. Our findings indicate a complex immune microenvironment in basal decidua and suggest CD8+ TEM cells play a role in early responses to decidual infection in seropositive women.
Collapse
|
14
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
15
|
Liu J, Gallo RM, Khan MA, Iyer AK, Kratzke IM, Brutkiewicz RR. JNK2 modulates the CD1d-dependent and -independent activation of iNKT cells. Eur J Immunol 2018; 49:255-265. [PMID: 30467836 DOI: 10.1002/eji.201847755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti-tumor, and anti-microbial immune responses, and are activated by glycolipids presented by the MHC class I-like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)-dependent iNKT cell activation is not well-known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d-mediated Ag presentation in APCs, but also contributes to CD1d-independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d-independent, but IL-12-dependent manner, we found the virus-induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild-type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL-12 receptors. As with a VV infection, an IL-12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d-mediated Ag presentation and contributes to IL-12-induced iNKT cell activation and loss during viral infections.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,College of Applied Medical Sciences, Al-Qassim University, Buraidah, Saudi Arabia
| | - Abhirami K Iyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ian M Kratzke
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Tripathi P, Sedimbi SK, Singh AK, Löfbom L, Issazadeh-Navikas S, Weiss S, Förster I, Karlsson MCI, Yrlid U, Kadri N, Cardell SL. Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses. Eur J Immunol 2018; 49:443-453. [PMID: 30427069 PMCID: PMC6587840 DOI: 10.1002/eji.201847647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L− dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L− dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nadir Kadri
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
18
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
19
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kasmapour B, Kubsch T, Rand U, Eiz-Vesper B, Messerle M, Vondran FWR, Wiegmann B, Haverich A, Cicin-Sain L. Myeloid Dendritic Cells Repress Human Cytomegalovirus Gene Expression and Spread by Releasing Interferon-Unrelated Soluble Antiviral Factors. J Virol 2018; 92:e01138-17. [PMID: 29046460 PMCID: PMC5730771 DOI: 10.1128/jvi.01138-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is a betaherpesvirus that latently infects most adult humans worldwide and is a major cause of morbidity and mortality in immunocompromised hosts. Latent human CMV (HCMV) is believed to reside in precursors of myeloid-lineage leukocytes and monocytes, which give rise to macrophages and dendritic cells (DC). We report here that human monocyte-derived DC (mo-DC) suppress HCMV infection in coculture with infected fibroblast target cells in a manner dependent on the effector-to-target ratio. Intriguingly, optimal activation of mo-DC was achieved under coculture conditions and not by direct infection with HCMV, implying that mo-DC may recognize unique molecular patterns on, or within, infected fibroblasts. We show that HCMV is controlled by secreted factors that act by priming defenses in target cells rather than by direct viral neutralization, but we excluded a role for interferons (IFNs) in this control. The expression of lytic viral genes in infected cells and the progression of infection were significantly slowed, but this effect was reversible, indicating that the control of infection depended on the transient induction of antiviral effector molecules in target cells. Using immediate early or late-phase reporter HCMVs, we show that soluble factors secreted in the cocultures suppress HCMV replication at both stages of the infection and that their antiviral effects are robust and comparable in numerous batches of mo-DC as well as in primary fibroblasts and stromal cells.IMPORTANCE Human cytomegalovirus is a widespread opportunistic pathogen that can cause severe disease and complications in vulnerable individuals. This includes newborn children, HIV AIDS patients, and transplant recipients. Although the majority of healthy humans carry this virus throughout their lives without symptoms, it is not exactly clear which tissues in the body are the main reservoirs of latent virus infection or how the delicate balance between the virus and the immune system is maintained over an individual's lifetime. Here, for the first time, we provide evidence for a novel mechanism of direct virus control by a subset of human innate immune cells called dendritic cells, which are regarded as a major site of virus latency and reactivation. Our findings may have important implications in HCMV disease prevention as well as in development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bahram Kasmapour
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tobias Kubsch
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulfert Rand
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Luka Cicin-Sain
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
21
|
Smith E, Croca S, Waddington KE, Sofat R, Griffin M, Nicolaides A, Isenberg DA, Torra IP, Rahman A, Jury EC. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque. Sci Immunol 2016; 1:1/6/eaah4081. [PMID: 28783690 DOI: 10.1126/sciimmunol.aah4081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 11/02/2022]
Abstract
Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients.
Collapse
Affiliation(s)
- Edward Smith
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Sara Croca
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Kirsty E Waddington
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.,Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Reecha Sofat
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | | | - Andrew Nicolaides
- Vascular Noninvasive Diagnostic Centre, London, U.K.,Department of Vascular Surgery, Imperial College, London, U.K.,Department of Vascular Surgery, Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - David A Isenberg
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Ines Pineda Torra
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Anisur Rahman
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
| |
Collapse
|
22
|
Immunosuppression in liver tumors: opening the portal to effective immunotherapy. Cancer Gene Ther 2016; 24:114-120. [DOI: 10.1038/cgt.2016.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
|
23
|
Littwitz-Salomon E, Dittmer U, Sutter K. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells. Retrovirology 2016; 13:77. [PMID: 27821119 PMCID: PMC5100108 DOI: 10.1186/s12977-016-0311-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulf Dittmer
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
24
|
Ando T, Ito H, Ohtaki H, Kanbe A, Hirata A, Hara A, Seishima M. Role of invariant NKT cells in lipopolysaccharide-induced lethal shock during encephalomyocarditis virus infection. Immunobiology 2016; 222:350-357. [PMID: 27665995 DOI: 10.1016/j.imbio.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/12/2016] [Accepted: 09/17/2016] [Indexed: 12/19/2022]
Abstract
Viral infections can give rise to secondary bacterial infections. In the present study, we examined the role of invariant natural killer T (iNKT) cells in lipopolysaccharide (LPS)-induced lethal shock during encephalomyocarditis virus (EMCV) infection. Wild-type (WT) mice and Jα18 gene knockout (Jα18 KO) mice were inoculated with EMCV, 5days prior to challenging with LPS. The survival rate of Jα18 KO mice subjected to EMCV and LPS was significantly higher than that of WT mice. TNF-α and nitric oxide (NO) production were increased in WT mice, than that in Jα18 KO mice, after the administration of EMCV and LPS. EMCV infection increased the number of iNKT cells and IFN-γ production by iNKT cells in WT mice. Moreover, EMCV infection enhanced the expression of Toll-like receptor 4 (TLR4) in the lung and spleen. IFN-γ also increased the expression of TLR4 in splenocytes. These findings indicated that EMCV infection activated iNKT cells, and IFN-γ secreted from the iNKT cells up-regulated the expression of TLR4 in various tissues. As a result, EMCV-infected mice were susceptible to LPS and easily developed the lethal shock. In conclusion, iNKT cells were involved in the development of LPS-induced lethal shock during EMCV infection.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hirofumi Ohtaki
- Department of Medical Technology, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatori, Osaka 590-0482, Japan
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
25
|
Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics 2016; 68:649-63. [PMID: 27457886 PMCID: PMC5745583 DOI: 10.1007/s00251-016-0944-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Donado
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nelson M LaMarche
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick J Brennan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68:639-48. [PMID: 27368411 DOI: 10.1007/s00251-016-0933-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.
Collapse
|
27
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
28
|
Does cytomegalovirus infection contribute to socioeconomic disparities in all-cause mortality? Mech Ageing Dev 2016; 158:53-61. [PMID: 27268074 DOI: 10.1016/j.mad.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/16/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
Abstract
The social patterning of cytomegalovirus (CMV) and its implication in aging suggest that the virus may partially contribute to socioeconomic disparities in mortality. We used Cox regression and inverse odds ratio weighting to quantify the proportion of the association between socioeconomic status (SES) and all-cause mortality that was attributable to mediation by CMV seropositivity. Data were from the National Health and Nutrition Examination Survey (NHANES) III (1988-1994), with mortality follow-up through December 2011. SES was assessed as household income (income-to-poverty ratio ≤1.30;>1.30 to≤1.85;>1.85 to≤3.50;>3.50) and education (<high school; high school; >high school). We found strong associations between low SES and increased mortality: hazard ratio (HR) 1.80; 95% confidence interval (CI): 1.57, 2.06 comparing the lowest versus highest income groups and HR 1.29; 95% CI: 1.13, 1.48 comparing <high school versus >high school education. 65% of individuals were CMV seropositive, accounting for 6-15% of the SES-mortality associations. Age modified the associations between SES, CMV, and mortality, with CMV more strongly associated with mortality in older individuals. Our findings suggest that cytomegalovirus may partially contribute to persistent socioeconomic disparities in mortality, particularly among older individuals.
Collapse
|
29
|
Slichter CK, McDavid A, Miller HW, Finak G, Seymour BJ, McNevin JP, Diaz G, Czartoski JL, McElrath MJ, Gottardo R, Prlic M. Distinct activation thresholds of human conventional and innate-like memory T cells. JCI Insight 2016; 1. [PMID: 27331143 DOI: 10.1172/jci.insight.86292] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conventional memory CD8+ T cells and mucosal-associated invariant T cells (MAIT cells) are found in blood, liver, and mucosal tissues and have similar effector potential following activation, specifically expression of IFN-γ and granzyme B. To better understand each subset's unique contributions to immunity and pathology, we interrogated inflammation- and TCR-driven activation requirements using human memory CD8+ T and MAIT cells isolated from blood and mucosal tissue biopsies in ex vivo functional assays and single cell gene expression experiments. We found that MAIT cells had a robust IFN-γ and granzyme B response to inflammatory signals but limited responsiveness when stimulated directly via their TCR. Importantly, this is not due to an overall hyporesponsiveness to TCR signals. When delivered together, TCR and inflammatory signals synergize to elicit potent effector function in MAIT cells. This unique control of effector function allows MAIT cells to respond to the same TCR signal in a dichotomous and situation-specific manner. We propose that this could serve to prevent responses to antigen in noninflamed healthy mucosal tissue, while maintaining responsiveness and great sensitivity to inflammation-eliciting infections. We discuss the implications of these findings in context of inflammation-inducing damage to tissues such as BM transplant conditioning or HIV infection.
Collapse
Affiliation(s)
- Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew McDavid
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brenda J Seymour
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John P McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gabriela Diaz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
31
|
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol 2016; 17:728-39. [PMID: 27089380 DOI: 10.1038/ni.3437] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.
Collapse
|
32
|
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 2015; 16:278. [PMID: 26653891 PMCID: PMC4676162 DOI: 10.1186/s13059-015-0844-5] [Citation(s) in RCA: 1747] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/24/2015] [Indexed: 01/31/2023] Open
Abstract
Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST.
Collapse
Affiliation(s)
- Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Andrew McDavid
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Masanao Yajima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Jingyuan Deng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Vivian Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, MIT, Boston, MA, 01239-4307, USA. .,Department of Chemistry, MIT, Boston, MA, 01239-4307, USA. .,Ragon Institute of MGH, MIT, & Harvard, Boston, MA, 02139-3583, USA. .,Broad Institute of MIT & Harvard, Boston, MA, 01242, USA.
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
33
|
Wingender G, Birkholz AM, Sag D, Farber E, Chitale S, Howell AR, Kronenberg M. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3838-48. [PMID: 26355152 DOI: 10.4049/jimmunol.1500203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022]
Abstract
Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey;
| | - Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey; Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Elisa Farber
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Sampada Chitale
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
34
|
Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:924-33. [PMID: 26078271 PMCID: PMC4506857 DOI: 10.4049/jimmunol.1500070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Petr A Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037;
| |
Collapse
|
35
|
Type I Interferon Released by Myeloid Dendritic Cells Reversibly Impairs Cytomegalovirus Replication by Inhibiting Immediate Early Gene Expression. J Virol 2015. [PMID: 26202227 DOI: 10.1128/jvi.01459-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cytomegalovirus (CMV) is a ubiquitous beta-herpesvirus whose reactivation from latency is a major cause of morbidity and mortality in immunocompromised hosts. Mouse CMV (MCMV) is a well-established model virus to study virus-host interactions. We showed in this study that the CD8-independent antiviral function of myeloid dendritic cells (mDC) is biologically relevant for the inhibition of MCMV replication in vivo and in vitro. In vivo ablation of CD11c(+) DC resulted in higher viral titers and increased susceptibility to MCMV infection in the first 3 days postinfection. We developed in vitro coculture systems in which we cocultivated MCMV-infected endothelial cells or fibroblasts with T cell subsets and/or dendritic cells. While CD8 T cells failed to control MCMV replication, bone marrow-derived mDC reduced viral titers by a factor of up to 10,000. Contact of mDC with the infected endothelial cells was crucial for their antiviral activity. Soluble factors secreted by the mDC blocked MCMV replication at the level of immediate early (IE) gene expression, yet the viral lytic cycle reinitiated once the mDC were removed from the cells. On the other hand, the mDC did not impair MCMV replication in cells deficient for the interferon (IFN) alpha/beta receptor (IFNAR), arguing that type I interferons were critical for viral control by mDC. In light of our recent observation that type I IFN is sufficient for the induction of latency immediately upon infection, our results imply that IFN secreted by mDC may play an important role in the establishment of CMV latency. IMPORTANCE Numerous studies have focused on the infection of DC with cytomegaloviruses and on the establishment of latency within them. However, almost all of these studies have relied on the infection of DC monocultures in vitro, whereas DC are just one among many cell types present in an infection site in vivo. To mimic this aspect of the in vivo situation, we cocultured DC with infected endothelial cells or fibroblasts. Our data suggest that direct contact with virus-infected endothelial cells activates CD11c(+) DC, which leads to reversible suppression of MCMV replication at the level of IE gene expression by a mechanism that depends on type I IFN. The effect matches the formal definition of viral latency. Therefore, our data argue that the interplay of dendritic cells and infected neighboring cells might play an important role in the establishment of viral latency.
Collapse
|
36
|
Chung BK, Priatel JJ, Tan R. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections. Front Immunol 2015; 6:312. [PMID: 26161082 PMCID: PMC4479820 DOI: 10.3389/fimmu.2015.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Collapse
Affiliation(s)
- Brian K. Chung
- NIHR Birmingham Liver Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John J. Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
37
|
Jacomet F, Cayssials E, Basbous S, Levescot A, Piccirilli N, Desmier D, Robin A, Barra A, Giraud C, Guilhot F, Roy L, Herbelin A, Gombert JM. Evidence for eomesodermin-expressing innate-like CD8(+) KIR/NKG2A(+) T cells in human adults and cord blood samples. Eur J Immunol 2015; 45:1926-33. [PMID: 25903796 DOI: 10.1002/eji.201545539] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
Polyclonal CD8(+) T cells, with a marked innate/memory phenotype, high eomesodermin (Eomes) expression, and the capacity to generate IFN-γ rapidly without prior exposure to antigen, have been described in mice. However, even though a pool of human CD8(+) T cells expressing killer Ig-like receptors (KIRs) was recently documented, the existence of a human equivalent of murine innate/memory CD8(+) T cells remains to be established. Here, we provide evidence for a population of KIR/NKG2A(+) CD8(+) T cells in healthy human adults sharing the same features, namely increased Eomes expression, prompt IFN-γ production in response to innate-like stimulation by IL-12+IL-18, and a potent antigen-independent cytotoxic activity along with a preferential terminally differentiated effector memory phenotype. None of the above functional characteristics applied to the KIR/NKG2A(-) fraction of the Eomes(+) CD8(+) T-cell population, thereby underlining the ability of KIR/NKG2A to distinguish between "innate/memory-like" and "conventional/memory" pools of CD8(+) T cells. Remarkably, KIR/NKG2A(+) Eomes(+) CD8(+) T cells with innate-like functions and a memory/terminally differentiated effector memory phenotype were also identified in human cord blood, suggesting that their development did not depend on cognate antigens. Taken together, our results support the conclusion that CD8(+) T cells co-expressing Eomes and KIR/NKG2A may represent a new, functionally distinct "innate/memory-like" subset in humans.
Collapse
Affiliation(s)
- Florence Jacomet
- INSERM UMR S935, Poitiers and Villejuif, France.,Service d'Immunologie et Inflammation, Poitiers, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Emilie Cayssials
- INSERM UMR S935, Poitiers and Villejuif, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Sara Basbous
- INSERM UMR S935, Poitiers and Villejuif, France.,Université de Poitiers, Poitiers, France
| | - Anaïs Levescot
- INSERM UMR S935, Poitiers and Villejuif, France.,Université Paris-Sud 11, Orsay, France.,INSERM 1082, Poitiers, France
| | | | - Deborah Desmier
- INSERM UMR S935, Poitiers and Villejuif, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Aurélie Robin
- CHU de Poitiers, Poitiers, France.,INSERM 1082, Poitiers, France
| | - Anne Barra
- INSERM UMR S935, Poitiers and Villejuif, France.,Service d'Immunologie et Inflammation, Poitiers, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Christine Giraud
- INSERM UMR S935, Poitiers and Villejuif, France.,CHU de Poitiers, Poitiers, France.,Etablissement Français du Sang Centre-Atlantique, Site de Poitiers, Poitiers, France
| | - François Guilhot
- CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France.,Centre d'investigation clinique INSERM-1402, Poitiers, France.,Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | - Lydia Roy
- CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France.,Centre d'investigation clinique INSERM-1402, Poitiers, France.,Service d'Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | - André Herbelin
- CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France.,INSERM 1082, Poitiers, France
| | - Jean-Marc Gombert
- INSERM UMR S935, Poitiers and Villejuif, France.,Service d'Immunologie et Inflammation, Poitiers, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France
| |
Collapse
|
38
|
Cocita C, Guiton R, Bessou G, Chasson L, Boyron M, Crozat K, Dalod M. Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. PLoS Pathog 2015; 11:e1004897. [PMID: 25954804 PMCID: PMC4425567 DOI: 10.1371/journal.ppat.1004897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections. Type I interferons (IFN-I) are innate cytokines crucial for vertebrate antiviral defenses. IFN-I exert antiviral effector functions and orchestrate antiviral immunity. IFN-I are induced early after infection, upon sensing of viral particles or infected cells by immune receptors. Intracellular Toll-like receptors (TLR) are selectively expressed in specialized immune cell types such as plasmacytoid dendritic cells (pDC), enabling them to copiously produce IFN-I upon detection of engulfed viral nucleic acids. pDC or intracellular TLR have been reported to be crucial for resistance to experimental infections with many viruses in mice but dispensable for resistance to natural infections in humans. Our aim was to investigate this puzzling difference. Mice deficient for TLR activity mounted strong IFN-I responses despite producing very low IFN-I levels and controlled the infection by a moderate dose of murine cytomegalovirus much better than mice deficient for IFN-I responses. Deficient TLR responses could be compensated by direct recognition of infected cells by natural killer cells. Hence, we identified experimental conditions in mice mimicking the lack of requirement of TLR functions for antiviral defense observed in humans. We used these experimental models to advance our basic understanding of antiviral immunity in a way that might help improve treatments for patients.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Gene Expression Profiling
- Gene Expression Regulation
- Herpesviridae Infections/blood
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Host-Pathogen Interactions
- Immunity, Innate
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/metabolism
- Immunologic Deficiency Syndromes/virology
- Interferon Type I/blood
- Interferon Type I/metabolism
- Interleukin-12/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Mutant Strains
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Myeloid Differentiation Factor 88/deficiency
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/metabolism
- NK Cell Lectin-Like Receptor Subfamily A/deficiency
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Primary Immunodeficiency Diseases
- Receptor, Interferon alpha-beta/agonists
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Spleen/immunology
- Spleen/metabolism
- Spleen/virology
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Clément Cocita
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Rachel Guiton
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Gilles Bessou
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marilyn Boyron
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Karine Crozat
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marc Dalod
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|
39
|
Abstract
Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anticancer therapeutics. Indeed, the identification of strong iNKT-cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids that have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article, we discuss these latest findings and summarize the major discoveries in iNKT-cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
40
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
41
|
Reduced MCMV Δm157 viral clearance in the absence of TSAd. Sci Rep 2015; 5:9219. [PMID: 25783199 PMCID: PMC4363830 DOI: 10.1038/srep09219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
The T cell specific adapter protein (TSAd) is expressed in activated T cells and NK cells. While TSAd is beginning to emerge as a critical regulator of Lck and Itk activity in T cells, its role in NK cells has not yet been explored. Here we have examined susceptibility to virus infections in a murine model using various viral infection models. We report that TSAd-deficient mice display reduced clearance of murine cytomegalovirus (MCMV) that lack the viral MHC class I homologue m157, which is critical for Ly49H-mediated NK cell recognition of infected cells. In this infection model, NK cells contribute in the early stages of the disease, whereas CD8+ T cells are critical for viral clearance. We found that mice infected with MCMV Δm157 displayed reduced viral clearance in the spleen as well as reduced proliferation in spleen NK cells and CD8+ T cells in the absence of TSAd. Though no other immunophenotype was detected in the infection models tested, these data suggests that in the absence of the Ly49H ligand activation, NK cell and CD8+ T cell responses may be compromised in TSAd-deficient mice.
Collapse
|
42
|
Hendricks DW, Min-Oo G, Lanier LL. Sweet Is the Memory of Past Troubles: NK Cells Remember. Curr Top Microbiol Immunol 2015; 395:147-71. [PMID: 26099194 DOI: 10.1007/82_2015_447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells are important in host defense against tumors and microbial pathogens. Recent studies indicate that NK cells share many features with the adaptive immune system, and like B cells and T cells, NK cells can acquire immunological memory. Here, we review evidence for NK cell memory and the molecules involved in the generation and maintenance of these self-renewing NK cells that provide enhanced protection of the host.
Collapse
Affiliation(s)
- Deborah W Hendricks
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA
| | - Gundula Min-Oo
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA.
| |
Collapse
|
43
|
Kronenberg M, Lantz O. Mucosal-Resident T Lymphocytes with Invariant Antigen Receptors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Huygens A, Dauby N, Vermijlen D, Marchant A. Immunity to cytomegalovirus in early life. Front Immunol 2014; 5:552. [PMID: 25400639 PMCID: PMC4214201 DOI: 10.3389/fimmu.2014.00552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
Cytomegalovirus (CMV) is the most common congenital infection and is the leading non-genetic cause of neurological defects. CMV infection in early life is also associated with intense and prolonged viral excretion, indicating limited control of viral replication. This review summarizes our current understanding of the innate and adaptive immune responses to CMV infection during fetal life and infancy. It illustrates the fact that studies of congenital CMV infection have provided a proof of principle that the human fetus can develop anti-viral innate and adaptive immune responses, indicating that such responses should be inducible by vaccination in early life. The review also emphasizes the fact that our understanding of the mechanisms involved in symptomatic congenital CMV infection remains limited.
Collapse
Affiliation(s)
- Ariane Huygens
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - David Vermijlen
- Faculty of Pharmacy, Université Libre de Bruxelles , Brussels , Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
45
|
CD8 T cells in innate immune responses: using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection. mBio 2014; 5:e01978-14. [PMID: 25336459 PMCID: PMC4212840 DOI: 10.1128/mbio.01978-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.
Collapse
|
46
|
Alexandre YO, Cocita CD, Ghilas S, Dalod M. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 2014; 5:378. [PMID: 25120535 PMCID: PMC4114203 DOI: 10.3389/fmicb.2014.00378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with murine cytomegalovirus (MCMV) recapitulates many physiopathological characteristics of human CMV infection and enables studying the interactions between a virus and its natural host. Dendritic cells (DC) are mononuclear phagocytes linking innate and adaptive immunity which are both necessary for MCMV control. DC are critical for the induction of cellular immunity because they are uniquely efficient for the activation of naïve T cells during their first encounter with a pathogen. DC are equipped with a variety of innate immune recognition receptors (I2R2) allowing them to detect pathogens or infections and to engulf molecules, microorganisms or cellular debris. The combinatorial engagement of I2R2 during infections controls DC maturation and shapes their response in terms of cytokine production, activation of natural killer (NK) cells and functional polarization of T cells. Several DC subsets exist which express different arrays of I2R2 and are specialized in distinct functions. The study of MCMV infection helped deciphering the physiological roles of DC subsets and their molecular regulation. It allowed the identification and first in vivo studies of mouse plasmacytoid DC which produce high level of interferons-α/β early after infection. Despite its ability to infect DC and dampen their functions, MCMV induces very robust, efficient and long-lasting CD8 T cell responses. Their priming may rely on the unique ability of uninfected XCR1+ DC to cross-present engulfed viral antigens and thus to counter MCMV interference with antigen presentation. A balance appears to have been reached during co-evolution, allowing controlled replication of the virus for horizontal spread without pathological consequences for the immunocompetent host. We will discuss the role of the interplay between the virus and DC in setting this balance, and how advancing this knowledge further could help develop better vaccines against other intracellular infectious agents.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Clément D Cocita
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Sonia Ghilas
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| |
Collapse
|
47
|
Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA. Antigen-dependent versus -independent activation of invariant NKT cells during infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:5490-8. [PMID: 24813205 DOI: 10.4049/jimmunol.1400722] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD1d-reactive invariant NKT cells (iNKT) play a vital role in determining the characteristics of immune responses to infectious agents. Previous reports suggest that iNKT cell activation during infection can be: 1) solely driven by cytokines from innate immune cells, 2) require microbial Ag, or 3) require self-Ag. In this study, we examined the role of Ag receptor stimulation in iNKT cells during several bacterial and viral infections. To test for Ag receptor signaling, Nur77(gfp) BAC transgenic mice, which upregulate GFP in response to Ag receptor but not inflammatory signals, were analyzed. iNKT cells in the reporter mice infected with mouse CMV produced IFN-γ but did not upregulate GFP, consistent with their reported CD1d-independent activation. However, two bacteria known to produce lipid Ags for iNKT cells induced GFP expression and cytokine production. In contrast, although Salmonella typhimurium was proposed to induce the presentation of a self-lipid, iNKT cells produced IFN-γ but did not upregulate GFP postinfection in vivo. Even in CD1d-deficient hosts, iNKT cells were still able to produce IFN-γ after S. typhimurium infection. Furthermore, although it has been proposed that endogenous lipid presentation is a result of TLR stimulation of APCs, injection of different TLR agonists led to iNKT cell IFN-γ but not increased GFP expression. These data indicate that robust iNKT cell responses to bacteria, as well as viruses, can be obtained in the absence of antigenic stimulation.
Collapse
Affiliation(s)
- Keli L Holzapfel
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Aaron J Tyznik
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|