1
|
Sandmeier FC, Olson K, Martin A, Urban T. Memory responses to ovalbumin-immunization in Mojave desert tortoises. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105322. [PMID: 39880345 DOI: 10.1016/j.dci.2025.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
We immunized three groups of Mojave desert tortoises (Gopherus agassizii): a group immunized twice, a group immunized once, and a group sham-immunized. We used the antigen, ovalbumin (OVA), with Freund's adjuvant to elicit antibody responses similar to those induced by extracellular bacteria. All tortoises have relatively high levels of B1 lymphocytes and natural antibodies (NAbs), and the goal of this study was to quantify B2 lymphocyte activity (antibody production and potential proliferation) that occurs in primary and secondary immunizations against this constitutive, first line of humoral defense. Specifically, we were testing for two types of induced, immunological memory. These included an elevated long-term increase in OVA-specific induced antibodies as well as for features of B2 memory cells, such as increased numbers of circulating OVA-specific cells, increased antibody production and avidity, and proliferation in the presence of OVA. Secondary responses were faster, but without any increases in antibody titer or avidity. Both groups had long-term elevation in antibodies. Over all three groups, we found no effect of the immunization (pre-vs-post) or the number of immunizations (0, 1, 2) on the number of OVA-stimulated B cells. We found an effect of immunization, but not number of immunizations, on the amount of antibody secreted by B lymphocytes. This suggests a high constitutive level of circulating B1 lymphocytes that can be stimulated by immunization. We did not find evidence of B2 memory lymphocytes because cells could not be stimulated to proliferate. Control animals confirmed that NAbs increased due to B1 lymphocyte priming with adjuvant.
Collapse
Affiliation(s)
- Franziska C Sandmeier
- Biology Department, University of Colorado - Pueblo, 2200 Bonforte Ave., Pueblo, CO, 81001, USA.
| | - Kiara Olson
- Biology Department, University of Colorado - Pueblo, 2200 Bonforte Ave., Pueblo, CO, 81001, USA
| | - Angelina Martin
- Biology Department, University of Colorado - Pueblo, 2200 Bonforte Ave., Pueblo, CO, 81001, USA
| | - Taylor Urban
- Biology Department, University of Colorado - Pueblo, 2200 Bonforte Ave., Pueblo, CO, 81001, USA
| |
Collapse
|
2
|
Wu L, Chai Y, Gao A, Lin Y, Han J, Li L, Li C, Ye J. IL-21 signaling promotes IgM + B cell proliferation and antibody production via JAK/STAT3 and AKT pathways in early vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025:105325. [PMID: 39870186 DOI: 10.1016/j.dci.2025.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
IL-21 is a type I cytokine that is produced by activated CD4+ T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM+ B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved. Through intraperitoneal injection of recombinant OnIL-21 (rOnIL-21), we observed that IL-21 exerted significant effects on Nile tilapia IgM+ B cells, including the promotion of IgM+ B cell proliferation, induction of IgM secretion, and up-regulation of inflammatory cytokines. These findings suggest that OnIL-21 enhances the ability of IgM+ B cells in humoral immunity. Furthermore, when IgM+ B cells were stimulated with rOnIL-21 in vitro, we observed a significant up-regulation in antibody secretion ability (sIgM), as well as increased expression of IFN-γ and IL-10. To further understand the regulatory mechanism of OnIL-21, we demonstrated that OnIL-21 binds to its heterodimer receptor complex (OnIL-21R/Onγc) to exert its function. This binding triggers the conserved JAK/STAT3 and AKT pathways, which in turn regulate the expression of genes involved in B cell proliferation, antibody secretion, and cytokine expression. Collectively, our findings establish that IL-21 plays a crucial role in the regulation of humoral immunity in lower vertebrates, and this regulation is mediated through conserved signaling pathways across vertebrates.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China
| | - Yiwen Chai
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuhua Lin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jugan Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Park G, Foster CA, Malone-Perez M, Hasan A, Macias JJ, Frazer JK. Diverse Epithelial Lymphocytes in Zebrafish Revealed Using a Novel Scale Biopsy Method. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1902-1914. [PMID: 39503619 PMCID: PMC11626784 DOI: 10.4049/jimmunol.2300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Zebrafish (Danio rerio) are a compelling model for studying lymphocytes because zebrafish and humans have similar adaptive immune systems, including their lymphocytes. Antibodies that recognize zebrafish proteins are sparse, so many investigators use transgenic, lymphocyte-specific fluorophore-labeled lines. Human and zebrafish lymphocyte types are conserved, but many aspects of zebrafish lymphocyte biology remain uninvestigated, including lymphocytes in peripheral tissues, like epidermis. This study is, to our knowledge, the first study to focus on zebrafish epidermal lymphocytes, using scales. Obtaining zebrafish blood via nonlethal methods is difficult; scales represent a source to longitudinally sample live fish. We developed a novel biopsy technique, collecting scales to analyze epithelial lymphocytes from several transgenic lines. We imaged scales via confocal microscopy and demonstrated multiple lymphocyte types in scales/epidermis, quantifying them flow cytometrically. We profiled gene expression of scale, thymic, and kidney-marrow (analogous to mammalian bone marrow) lymphocytes from the same animals, revealing B- and T-lineage signatures. Single-cell quantitative real-time PCR and RNA sequencing show not only canonical B and T cells but also novel lymphocyte populations not described previously. To validate longitudinal scale biopsies, we serially sampled scales from fish treated with dexamethasone, demonstrating epidermal lymphocyte responses. To analyze cells functionally, we employed a bead-ingestion assay, showing that thymic, marrow, and epidermal lymphocytes have phagocytic activity. In summary, we establish a novel, nonlethal technique to obtain zebrafish lymphocytes, providing the first quantification, expression profiling, and functional data from zebrafish epidermal lymphocytes.
Collapse
Affiliation(s)
- Gilseung Park
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Clay A. Foster
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
| | - Megan Malone-Perez
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
| | - Ameera Hasan
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jose Juan Macias
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| | - J. Kimble Frazer
- Depts. of Cell Biology, University of Oklahoma Health Sciences Center, OK, USA
- Depts. of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, OK, USA
- Depts. of Microbiology & Immunology, University of Oklahoma Health Sciences Center, OK, USA
| |
Collapse
|
4
|
Jenberie S, Sandve SR, To TH, Kent MP, Rimstad E, Jørgensen JB, Jensen I. Transcriptionally distinct B cell profiles in systemic immune tissues and peritoneal cavity of Atlantic salmon ( Salmo salar) infected with salmonid alphavirus subtype 3. Front Immunol 2024; 15:1504836. [PMID: 39691715 PMCID: PMC11649679 DOI: 10.3389/fimmu.2024.1504836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Teleost B cells producing neutralizing antibodies contribute to protection against salmonid alphavirus (SAV) infection, the etiological agent of pancreas disease, thereby reducing mortality and disease severity. Our previous studies show differences in B cell responses between the systemic immune tissues (head kidney (HK) and spleen) and the peritoneal cavity (PerC) after intraperitoneal SAV3 infection in Atlantic salmon (Salmo salar) where the response in PerC dominates at the late time points. By employing the same infection model, we aimed to further characterize these B cells. Immunophenotyping of teleost B cells is challenging due to limited availability of markers; however, RNA-seq opens an opportunity to explore differences in transcriptomic responses of these cells. Our analysis identified 334, 259 and 613 differentially expressed genes (DEGs) in Atlantic salmon IgM+IgD+ B cells from HK, spleen, and PerC, respectively, at 6 weeks post SAV3 infection. Of these, only 34 were common to all the three immune sites. Additionally, out of the top 100 genes with the highest fold change in expression, only four genes were common across B cells from the three sites. Functional enrichment analyses of DEGs using KEGG and GO databases demonstrated differences in enriched innate immune signaling and the cytokine-cytokine interaction pathways in B cells across the sites, with varying numbers of genes involved. Overall, these findings show the presence of transcriptionally distinct B cell subsets with innate immune functions in HK, spleen and PerC of SAV3-infected Atlantic salmon. Further, our data provide new insights into the immunoregulatory role of fish B cells through the differential expression of various cytokine ligands and receptors and will be a useful resource for further studies into B cell immune compartments.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Peter Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Mo Z, Lin H, Lai X, Dan P, Wu H, Luo X, Dan X, Li Y. The predominant role of IgM in grouper (Epinephelus coioides) mucosal defense against ectoparasitic protozoan infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110023. [PMID: 39547269 DOI: 10.1016/j.fsi.2024.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The skin mucosa of fish is exposed to significant challenges from infectious disease agents due to continuous exposure to the aqueous environment. Interestingly, bony fish have evolved to express a unique IgT, which is absent in terrestrials, that appears to play a predominant role in the mucosal-associated lymphoid tissue of the rainbow trout. Nevertheless, in other IgT-producing fish, it is unclear whether IgM or IgT is primarily responsible for protection against infections of cutaneous tissue. Here, we show that grouper IgM appears quickly within the skin following challenge by the marine parasite, Crytopcaryon irritans. These IgM-class antibodies may arise from local proliferating antibody secreting cells or may infiltrate tissue from the serum in dimer polymer form. Based on details of IgM functional responses, we conclude that grouper IgM plays a predominant role in defense against C. irritans.
Collapse
Affiliation(s)
- Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huajian Lin
- Guangdong Animal Disease Prevention and Control Center (Guangdong Animal Health and Quarantine Institute), Guangzhou, 510665, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaochun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Han XQ, Cui ZW, Ma ZY, Wang J, Hu YZ, Li J, Ye JM, Tafalla C, Zhang YA, Zhang XJ. Phagocytic Plasma Cells in Teleost Fish Provide Insights into the Origin and Evolution of B Cells in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:730-742. [PMID: 38984862 DOI: 10.4049/jimmunol.2400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI
| | - Jian-Min Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Khansari AR, Wallbom N, Sundh H, Sandblom E, Tort L, Jönsson E. Sea water acclimation of rainbow trout (Oncorhynchus mykiss) modulates the mucosal transcript immune response induced by Vibrio anguillarum and Aeromonas salmonicida vaccine, and prevents further transcription of stress-immune genes in response to acute stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109733. [PMID: 38944251 DOI: 10.1016/j.fsi.2024.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, β-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1β, il6, tnfα, il10 and tgfβ1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden.
| | - Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| |
Collapse
|
8
|
Ulloa PE, Jilberto F, Lam N, Rincón G, Valenzuela L, Cordova-Alarcón V, Hernández AJ, Dantagnan P, Ravanal MC, Elgueta S, Araneda C. Identification of Single-Nucleotide Polymorphisms in Differentially Expressed Genes Favoring Soybean Meal Tolerance in Higher-Growth Zebrafish (Danio rerio). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:754-765. [PMID: 38958822 DOI: 10.1007/s10126-024-10343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago, 7500975, Chile.
| | - Felipe Jilberto
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Natalia Lam
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | | | - Luis Valenzuela
- INRIA Chile, Avenida Apoquindo 2827, piso 12, Santiago, 7550312, Chile
| | - Valentina Cordova-Alarcón
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Adrián J Hernández
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Maria Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Isla Teja, Avda. Julio Sarrazín s/n, Valdivia, 5090000, Chile
| | - Sebastian Elgueta
- Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastian, Sede Los Leones, Santiago, Chile
| | - Cristian Araneda
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| |
Collapse
|
9
|
Han XQ, Pan YR, Zhong YQ, Tian TT, Liu X, Zhang XJ, Zhang YA. Identification and functional analyses of CD4-1 + cells in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109649. [PMID: 38797336 DOI: 10.1016/j.fsi.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRβ, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Tian-Tian Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Xing J, Hu Y, Liu W, Tang X, Sheng X, Chi H, Zhan W. The interaction between the costimulatory molecules CD80/86 and CD28 contributed to CD4 + T lymphocyte activation in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109482. [PMID: 38458503 DOI: 10.1016/j.fsi.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yujie Hu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenjing Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
11
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Hu C, Zhang N, Hong Y, Tie R, Fan D, Lin A, Chen Y, Xiang LX, Shao JZ. Single-cell RNA sequencing unveils the hidden powers of zebrafish kidney for generating both hematopoiesis and adaptive antiviral immunity. eLife 2024; 13:RP92424. [PMID: 38497789 PMCID: PMC10948150 DOI: 10.7554/elife.92424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.
Collapse
Affiliation(s)
- Chongbin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Nan Zhang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yun Hong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Dongdong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Aifu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Ye Chen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
- Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Li-xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Jian-zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
13
|
Xu X, Foley E. Vibrio cholerae arrests intestinal epithelial proliferation through T6SS-dependent activation of the bone morphogenetic protein pathway. Cell Rep 2024; 43:113750. [PMID: 38340318 DOI: 10.1016/j.celrep.2024.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
To maintain an effective barrier, intestinal progenitor cells must divide at a rate that matches the loss of dead and dying cells. Otherwise, epithelial breaches expose the host to systemic infection by gut-resident microbes. Unlike most pathogens, Vibrio cholerae blocks tissue repair by arresting progenitor proliferation in the Drosophila model. At present, we do not understand how V. cholerae circumvents such a critical antibacterial defense. We find that V. cholerae blocks epithelial repair by activating the growth inhibitor bone morphogenetic protein (BMP) pathway in progenitors. Specifically, we show that interactions between V. cholerae and gut commensals initiate BMP signaling via host innate immune defenses. Notably, we find that V. cholerae also activates BMP and arrests proliferation in zebrafish intestines, indicating an evolutionarily conserved link between infection and failure in tissue repair. Our study highlights how enteric pathogens engage host immune and growth regulatory pathways to disrupt intestinal epithelial repair.
Collapse
Affiliation(s)
- Xinyue Xu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
14
|
Jiao A, Zhang C, Wang X, Sun L, Liu H, Su Y, Lei L, Li W, Ding R, Ding C, Dou M, Tian P, Sun C, Yang X, Zhang L, Zhang B. Single-cell sequencing reveals the evolution of immune molecules across multiple vertebrate species. J Adv Res 2024; 55:73-87. [PMID: 36871615 PMCID: PMC10770119 DOI: 10.1016/j.jare.2023.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Both innate and adaptive immune system undergo evolution from low to high vertebrates. Due to the limitation of conventional approaches in identifying broader spectrum of immune cells and molecules from various vertebrates, it remains unclear how immune molecules evolve among vertebrates. OBJECTIVES Here, we utilized carry out comparative transcriptome analysis in various immune cells across seven vertebrate species. METHODS Single-cell RNA sequencing (scRNA-seq). RESULTS We uncovered both conserved and species-specific profiling of gene expression in innate and adaptive immunity. Macrophages exhibited highly-diversified genes and developed sophisticated molecular signaling networks along with evolution, indicating effective and versatile functions in higher species. In contrast, B cells conservatively evolved with less differentially-expressed genes in analyzed species. Interestingly, T cells represented a dominant immune cell populations in all species and unique T cell populations were identified in zebrafish and pig. We also revealed compensatory TCR cascade components utilized by different species. Inter-species comparison of core gene programs demonstrated mouse species has the highest similarity in immune transcriptomes to human. CONCLUSIONS Therefore, our comparative study reveals gene transcription characteristics across multiple vertebrate species during the evolution of immune system, providing insights for species-specific immunity as well as the translation of animal studies to human physiology and disease.
Collapse
Affiliation(s)
- Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Chenguang Ding
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Dou
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Puxun Tian
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
15
|
Pan YR, Wu CS, Zhong YQ, Zhang YA, Zhang XJ. An Atlas of Grass Carp IgM+ B Cells in Homeostasis and Bacterial Infection Helps to Reveal the Unique Heterogeneity of B Cells in Early Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:964-980. [PMID: 37578390 DOI: 10.4049/jimmunol.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igμ genes (Igμ1, Igμ2, and/or Igμ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igμ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Collapse
Affiliation(s)
- Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
16
|
Hu CB, Huang C, Wang J, Hong Y, Fan DD, Chen Y, Lin AF, Xiang LX, Shao JZ. PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell-Initiated Adaptive Immunity in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:816-835. [PMID: 37486225 DOI: 10.4049/jimmunol.2300217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.
Collapse
Affiliation(s)
- Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Wang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Hong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ye Chen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
17
|
Li K, Wei X, Jiao X, Deng W, Li J, Liang W, Zhang Y, Yang J. Glutamine Metabolism Underlies the Functional Similarity of T Cells between Nile Tilapia and Tetrapod. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201164. [PMID: 36890649 PMCID: PMC10131875 DOI: 10.1002/advs.202201164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
As the lowest organisms possessing T cells, fish are instrumental for understanding T cell evolution and immune defense in early vertebrates. This study established in Nile tilapia models suggests that T cells play a critical role in resisting Edwardsiella piscicida infection via cytotoxicity and are essential for IgM+ B cell response. CD3 and CD28 monoclonal antibody crosslinking reveals that full activation of tilapia T cells requires the first and secondary signals, while Ca2+ -NFAT, MAPK/ERK, NF-κB, and mTORC1 pathways and IgM+ B cells collectively regulate T cell activation. Thus, despite the large evolutionary distance, tilapia and mammals such as mice and humans exhibit similar T cell functions. Furthermore, it is speculated that transcriptional networks and metabolic reprogramming, especially c-Myc-mediated glutamine metabolism triggered by mTORC1 and MAPK/ERK pathways, underlie the functional similarity of T cells between tilapia and mammals. Notably, tilapia, frogs, chickens, and mice utilize the same mechanisms to facilitate glutaminolysis-regulated T cell responses, and restoration of the glutaminolysis pathway using tilapia components rescues the immunodeficiency of human Jurkat T cells. Thus, this study provides a comprehensive picture of T cell immunity in tilapia, sheds novel perspectives for understanding T cell evolution, and offers potential avenues for intervening in human immunodeficiency.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wenhai Deng
- School of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| |
Collapse
|
18
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
19
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
20
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. The role of Syk phosphorylation in Fc receptor mediated mIgM + B lymphocyte phagocytosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:462-471. [PMID: 36162778 DOI: 10.1016/j.fsi.2022.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, and it mediates downstream signaling of FcR-mediated immune responses. Our previous work revealed that the expression of Syk was significantly up-regulated in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda, which suggested Syk might be involved in Ig-opsonized phagocytosis. In this paper, phospho-Syk (pSyk) inhibitor was used to investigate the potential role of phosphorylated Syk in FcR-mediated phagocytosis of IgM+ B cells. Indirect immunofluorescence assay (IFA) and Western blotting showed that the level of phosphorylated Syk in the mIgM+ B lymphocytes treated with pSyk inhibitor was significantly lower compared to the control group after stimulation with flounder antiserum. Flow cytometry analysis showed that after 3 h incubation with antiserum-opsonized E. tarda, the phagocytosis rates of mIgM+ B lymphocytes from peripheral blood, spleen and head kidney pre-treated with pSyk inhibitor were 48.1%, 40.1% and 43.6% respectively, which were significantly lower than that of the control groups with 58.7%, 53.2% and 57.4%, respectively. And likewise, after pSyk inhibitor treatment, the proportions of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels in peripheral blood, spleen and head kidney decreased to 15.2%, 12.0% and 12.1% from the control level of 26.5%, 25.9% and 26.3%, respectively. Moreover, the expression of three genes affected by pSyk, including phospholipase Cγ1 (PLCγ1), phospholipase Cγ2 (PLCγ2) and phosphatidylinositol 3 kinase (PI3K) were found to be significantly down-regulated in pSyk inhibitor-treated mIgM+ B lymphocytes post phagocytosis. These results suggest that pSyk plays a key role in FcR-mediated phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which promotes further understanding of the regulatory role of pSyk in teleost B cells phagocytosis.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
21
|
Wu L, Yang Y, Gao A, Li J, Ye J. Teleost fish IgM+ plasma-like cells possess IgM-secreting, phagocytic, and antigen-presenting capacities. Front Immunol 2022; 13:1016974. [PMID: 36225937 PMCID: PMC9550268 DOI: 10.3389/fimmu.2022.1016974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Plasma cells are terminally differentiated antibody-secreting B lymphocytes that contribute to humoral immunity by producing large numbers of antibodies. Increasing evidence suggests that teleost fish B cells share certain characteristics with mammalian B1 B cells, including antibody-secreting, phagocytic, and antigen-presenting capacities. However, the difference between mature B cells and plasma cells remains unclear. In this study, we found that, based on their light-scattering characteristics, tilapia anterior kidney (AK) leukocytes can be categorized into two IgM+ B-cell subsets: the lymphoid (L) gate and granulocyte–monocyte/macrophage (G-M) subsets. G-M gate cells are more numerous than L-gate cells and have higher mean fluorescence, but lower forward scatter and side scatter. We analyzed the morphological and ultrastructural features of sorted IgM+ cells and found that L-gate IgM+ cells have a high nucleus–cytoplasm ratio and lymphocyte-like morphology, whereas G-M gate IgM+ cells have a small nucleus, more abundant endoplasmic reticulum, and a larger number of mitochondria, and have a plasma cell-like or macrophage-like morphology. To further characterize the cell types, we examined the specific patterns of expression of B-cell- and T-cell-related genes. We found that B-cell-specific genes were expressed by both L-gate and G-M gate IgM+ cells, and that G-M gate IgM+ cells secreted extremely high levels of IgM. However, T-cell-related genes were highly expressed only in L-gate IgM– cells. These results suggest that G-M gate IgM+ cells are similar to plasma-like cells, with high antibody-secreting capacity. Given that G-M gate cells include the granulocyte, monocyte, and macrophage cell types, but not B cells, monocyte/macrophage markers were used to investigate the cell types further. A macrophage receptor with a collagenous structure was frequently observed, and macrophage-expressed gene-1 was highly expressed, in the G-M gate IgM+ cells. Phagocytic capacity, as determined by ingestion of beads or bacteria, was significantly higher in G-M gate IgM+ cells than in L-gate IgM+ cells, as was antigen-processing capacity. Our findings show that tilapia AK leukocytes can be divided into two IgM+ B-cell subsets and that G-M gate IgM+ cells resemble plasma-like cells, having high antibody-secreting, phagocytic, and antigen-presenting capacities. Thus, this study increases our understanding of the functions of teleost fish plasma-like cells.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Along Gao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
- *Correspondence: Jianmin Ye,
| |
Collapse
|
22
|
Negative Regulatory Role of the Spring Viremia of Carp Virus Matrix Protein in the Host Interferon Response by Targeting the MAVS/TRAF3 Signaling Axis. J Virol 2022; 96:e0079122. [PMID: 35913215 PMCID: PMC9400495 DOI: 10.1128/jvi.00791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.
Collapse
|
23
|
Lu TZ, Liu X, Wu CS, Ma ZY, Wang Y, Zhang YA, Zhang XJ. Molecular and Functional Analyses of the Primordial Costimulatory Molecule CD80/86 and Its Receptors CD28 and CD152 (CTLA-4) in a Teleost Fish. Front Immunol 2022; 13:885005. [PMID: 35784316 PMCID: PMC9245511 DOI: 10.3389/fimmu.2022.885005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The moderate activation of T cells in mammals requires the costimulatory molecules, CD80 and CD86, on antigen-presenting cells to interact with their respective T cell receptors, CD28 and CD152 (CTLA-4), to promote costimulatory signals. In contrast, teleost fish (except salmonids) only possess CD80/86 as their sole primordial costimulatory molecule. However, the mechanism, which underlies the interaction between CD80/86 and its receptors CD28 and CD152 still requires elucidation. In this study, we cloned and identified the CD80/86, CD28, and CD152 genes of the grass carp (Ctenopharyngodon idella). The mRNA expression analysis showed that CD80/86, CD28, and CD152 were constitutively expressed in various tissues. Further analysis revealed that CD80/86 was highly expressed in IgM+ B cells. Conversely, CD28 and CD152 were highly expressed in CD4+ and CD8+ T cells. Subcellular localization illustrated that CD80/86, CD28, and CD152 are all located on the cell membrane. A yeast two-hybrid assay exhibited that CD80/86 can bind with both CD28 and CD152. In vivo assay showed that the expression of CD80/86 was rapidly upregulated in Aeromonas hydrophila infected fish compared to the control fish. However, the expression of CD28 and CD152 presented the inverse trend, suggesting that teleost fish may regulate T cell activation through the differential expression of CD28 and CD152. Importantly, we discovered that T cells were more likely to be activated by A. hydrophila after CD152 was blocked by anti-CD152 antibodies. This suggests that the teleost CD152 is an inhibitory receptor of T cell activation, which is similar to the mammalian CD152. Overall, this study begins to define the interaction feature between primordial CD80/86 and its receptors CD28 and CD152 in teleost fish, alongside providing a cross-species understanding of the evolution of the costimulatory signals throughout vertebrates.
Collapse
Affiliation(s)
- Tao-Zhen Lu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yong-An Zhang, ; Xu-Jie Zhang,
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Yong-An Zhang, ; Xu-Jie Zhang,
| |
Collapse
|
24
|
Shao T, Ji JF, Zheng JY, Li C, Zhu LY, Fan DD, Lin AF, Xiang LX, Shao JZ. Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2686-2701. [PMID: 35675955 DOI: 10.4049/jimmunol.2100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Chen Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Lv-Yun Zhu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
25
|
Liu W, Xing J, Tang X, Sheng X, Chi H, Zhan W. Characterization of Co-Stimulatory Ligand CD80/86 and Its Effect as a Molecular Adjuvant on DNA Vaccine Against Vibrio anguillarum in Flounder ( Paralichthys olivaceus). Front Immunol 2022; 13:881753. [PMID: 35619706 PMCID: PMC9127221 DOI: 10.3389/fimmu.2022.881753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
The CD80/86 molecule is one of the important co-stimulatory ligands and involves antigen-specific immune responses by ligating with CD28 and then delivering the required second signal to T-cell activation. In this study, a CD80/86 homolog was identified, and its expression characteristics were studied in flounder (Paralichthys olivaceus). The open reading frame (ORF) of CD80/86 is 906 bp, encoding 301 aa, and the extracellular amino acid sequence encoded two IgV- and IgC-like structural domains; fCD80/86 is highly expressed in head kidney, peripheral blood leukocytes (PBLs), and spleen, and has relatively high expression in muscle. Antibodies specific for CD80/86 were produced, and CD80/86 was colocalized with MHCII+, CD40+, and CD83+ leukocytes but not with IgM+, CD3+, or CD4+ lymphocytes. The cloned CD80/86 in flounder shares conserved structural features with its mammalian counterparts and is mainly distributed on antigen-presenting cells. Based on these data, CD80/86 as an adjuvant to enhance the immune response of DNA vaccine was investigated. A bicistronic DNA vaccine expressing both CD80/86 and the outer membrane protein (OmpK) of Vibrio anguillarum (p-OmpK-CD80/86) was successfully constructed. After immunization, p-OmpK-CD80/86 could induce the upregulation of the proportion of IgM+ and CD4+ cells in flounder, compared to the p-OmpK- or p-CD80/86-immunized group; CD28 genes were significantly induced in the p-CD80/86 and p-OmpK-CD80/86 groups. Compared to the p-OmpK group, the higher expression of CD83, MHCI, CD4, CD8, and IL-2 was detected at the injection site. The relative percent survival (RPS) produced by p-OmpK-CD80/86 is 66.11% following the V. anguillarum challenge, while the RPS of p-OmpK or p-CD80/86 is 46.30% and 5.56%, respectively. The results revealed that CD80/86 is mainly found in antigen-presenting cells, and could help elicit humoral immune responses in teleost through the CD80/86-CD28 signaling pathway involving CD4+ lymphocytes.
Collapse
Affiliation(s)
- Wenjing Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Ma ZY, Liang JX, Li WS, Sun Y, Wu CS, Hu YZ, Li J, Zhang YA, Zhang XJ. Complement C3a Enhances the Phagocytic Activity of B Cells Through C3aR in a Fish. Front Immunol 2022; 13:873982. [PMID: 35386704 PMCID: PMC8977587 DOI: 10.3389/fimmu.2022.873982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is an important part of the immune system of teleost fish. Besides, teleost B cells possess both phagocytic activity and adaptive humoral immune function, unlike mammalian B1 cells with phagocytic activity and B2 cells specific to adaptive humoral immunity. However, the cross talk between complement system and phagocytic B cells in teleost fish still requires elucidation. Here, we show that, unlike tetrapods with a single C3 gene, nine C3 genes were identified from the grass carp (Ctenopharyngodon idella) genome, named C3.1-C3.9. Expression analysis revealed that C3.1 is the dominant C3 molecule in grass carp, for its expression was significantly higher than that of the other C3 molecules both at the mRNA and protein levels. The C3a fragment of C3.1 (C3a.1) was determined after the conserved C3 convertase cleavage site. Structural analysis revealed that C3a.1 consists of four α-helixes, with the C-terminal region forming a long α-helix, which is the potential functional region. Interestingly, we found that the recombinant GST-C3a.1 protein and the C-terminal α-helix peptide of C3a.1 both could significantly enhance the phagocytic activity of IgM+ B cells. Further study revealed that the C3a receptor (C3aR) was highly expressed in grass carp IgM+ B cells, and the phagocytosis-stimulating activity of C3a.1 could be dramatically inhibited by the anti-C3aR antibodies, indicating that C3a.1 performed the stimulating function through C3aR on IgM+ B cells. Taken together, our study not only uncovered the novel phagocytosis-stimulating activity of C3a, but also increased our knowledge of the cross talk between complement system and phagocytic B cells in teleost fish.
Collapse
Affiliation(s)
- Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jia-Xin Liang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wen-Shuo Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Sun
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie MI, United States
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
27
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
|
28
|
Wu J, Nie Y, Ma Y, Hao L, Liu Z, Li Y. Analysis of phagocytosis by mIgM + lymphocytes depending on monoclonal antibodies against IgM of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 123:399-408. [PMID: 35314332 DOI: 10.1016/j.fsi.2022.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The phagocytic actives of B cells in fish have been proven in recent years. In this study, five positive hybridomas secreting monoclonal antibodies (MAbs) against largemouth bass IgM were produced. Indirect immunofluorescence assay (IFA) demonstrated that five MAbs could specifically recognize membrane-bound IgM (mIgM) molecule of largemouth bass. Indirect ELISA and Western blotting analysis showed that all the five MAbs had no cross-reactions with the other two teleost IgMs. Flow cytometry analysis (FCM) revealed that the percentages of largemouth bass mIgM+ lymphocytes in head kidney, peripheral blood and spleen were 51.66 ± 0.608%, 16.5 ± 1.235% and 42.92 ± 1.091%, respectively. In addition, the phagocytosis rates of mIgM + lymphocytes ingesting Nocardia seriolae from head kidney, peripheral blood and spleen were calculated to be 5.413 ± 0.274%, 16.6 ± 0.289% and 26.3 ± 0.296%, respectively. The qPCR results of sorted cells indicated that most inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-12β, IL-34, IL-10), chemokine (CXCL12), chemokines receptors (CXCR2, CXCR4) and genes (FcγRⅠa, NCF1, CFL, ARP2/3, CD45, Syk, MARCKS) related to FcγR-mediated phagocytic signaling pathway in phagocytic mIgM+ lymphocytes were up-regulated significantly (P < 0.05). Taken together, the results suggested that the MAb (MM06H) produced in this paper could be used as a tool to study mIgM+ lymphocytes of largemouth bass, and FcγR may participate in the phagocytosis of mIgM+ lymphocytes, which is helpful to further study the role of mIgM+ lymphocytes in innate immunity.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yifan Nie
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering Department of Aquaculture, Guangzhou, 510225, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
30
|
Chen J, Dong Z, Lei Y, Li L, Gao A, Wu L, Ye J. Vitamin C suppresses toxicological effects in MO/MФ and IgM + B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106100. [PMID: 35091370 DOI: 10.1016/j.aquatox.2022.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu), as an essential micronutrient in human and animal metabolism, easily spreads and excessively accumulates in rearing water, which make it more susceptible to fish farms and threatens the health of aquatic animals. In this issue, the protective effect of vitamin C against oxidative damage caused by copper exposure was studied in monocytes/macrophages (MO/MФ) and IgM+ B cells of Nile tilapia (Oreochromis niloticus), the cell types possessing phagocytic activities. The significant increase of ROS level and up-regulation of proinflammatory factors accompanied by depletion of GSH and down-regulation of antioxidative molecules in MO/MФ and IgM+ B cells, when stressed with CuO NPs or Cu ions, indicated the induction of oxidative damage due to the toxicological effects with copper exposure. Copper induced cell apoptosis through mitochondrial-dependent pathway in these two cell populations was demonstrated with disruption of mitochondrial membrane potential (ΔΨm) and activation of apoptosis factor. Furthermore, the phagocytic abilities for microspheres and bioparticle uptake significantly decreased in these two cell populations upon CuO NPs or Cu ions; meanwhile, antigen presentation of MO/MФ and antibody production of IgM+ B cells were also inhibited. However, vitamin C supplementation reversed all these biochemical indices, as well as cell apoptosis and phagocytic abilities in MO/MФ and IgM+ B cells that were induced by CuO NPs or Cu ions. In conclusion, these results revealed that vitamin C exerts cytoprotective effects against oxidative damage through its antioxidant properties and may be of therapeutic use in preventing toxicological effects caused by copper exposure.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Chen J, Lei Y, Dong Z, Fu S, Li L, Gao A, Wu L, Ye J. Toxicological damages on copper exposure to IgM + B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro 2022; 81:105334. [PMID: 35182770 DOI: 10.1016/j.tiv.2022.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/23/2023]
Abstract
Present investigation was carried out to study toxicological damages of copper exposure and mitigation of its adverse effects with β-glucan administration in IgM+ B cells which processes multiple roles similar to macrophages in Nile tilapia (Oreochromis niloticus). IgM+ B cells were pretreated with β-glucan (25 μg/mL) for 24 h before exposed to cupric oxide nanoparticles (CuO NPs) or cupric chloride (Cu ions) at the doses of 0, 5, 10, and 20 μg/mL for 24 h, respectively. Our results demonstrated that β-glucan increased reduced glutathione (GSH) to against oxidative damage from CuO NPs and Cu ions exposure in IgM+ B cells. The apoptosis process through mitochondrial signaling pathway was depressed in IgM+ B cells since the mitochondrial membrane potential (ΔΨm) was protected from copper exposure by β-glucan treatment. Furthermore, the inhibition on phagocytic abilities of IgM+ B cells caused by copper exposure could be enhanced with β-glucan treatment via evaluation of microspheres and bioparticles uptake and LPS-induced NO production. Importantly, β-glucan might participate in immunomodulation in IgM+ B cells through B cell antigen receptor (BCR) to suppress toxicological effect derived from copper exposure. Taken together, this study provides more information on the toxicological damages in IgM+ B cells upon copper exposure and explains the molecular mechanism to reverse adverse effects caused by copper exposure with β-glucan administration.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
32
|
Tang X, Ma X, Cao J, Sheng X, Xing J, Chi H, Zhan W. The Influence of Temperature on the Antiviral Response of mIgM+ B Lymphocytes Against Hirame Novirhabdovirus in Flounder (Paralichthys olivaceus). Front Immunol 2022; 13:802638. [PMID: 35197977 PMCID: PMC8858815 DOI: 10.3389/fimmu.2022.802638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) is an ongoing threat to the aquaculture industry. The water temperature for the onset of HIRRV is below 15°C, the peak is about 10°C, but no mortality is observed over 20°C. Previous studies found the positive signal of matrix protein of HIRRV (HIRRV-M) was detected in the peripheral blood leukocytes of viral-infected flounder. Flow cytometry and indirect immunofluorescence assay showed that HIRRV-M was detected in mIgM+ B lymphocytes in viral-infected flounder maintained at 10°C and 20°C, and 22% mIgM+ B lymphocytes are infected at 10°C while 13% are infected at 20°C, indicating that HIRRV could invade into mIgM+ B lymphocytes. Absolute quantitative RT-PCR showed that the viral copies in mIgM+ B lymphocytes were significantly increased at 24 h post infection (hpi) both at 10°C and 20°C, but the viral copies in 10°C infection group were significantly higher than that in 20°C infection group at 72 hpi and 96 hpi. Furthermore, the B lymphocytes were sorted from HIRRV-infected flounder maintained at 10°C and 20°C for RNA-seq. The results showed that the differentially expression genes in mIgM+ B lymphocyte of healthy flounder at 10°C and 20°C were mainly enriched in metabolic pathways. Lipid metabolism and Amino acid metabolism were enhanced at 10°C, while Glucose metabolism was enhanced at 20°C. In contrast, HIRRV infection at 10°C induced the up-regulation of the Complement and coagulation cascades, FcγR-mediated phagocytosis, Platelets activation, Leukocyte transendothelial migration and Natural killer cell mediated cytotoxicity pathways at 72 hpi. HIRRV infection at 20°C induced the up-regulation of the Antigen processing and presentation pathway at 72 hpi. Subsequently, the temporal expression patterns of 16 genes involved in Antigen processing and presentation pathway were investigated by qRT-PCR, and results showed that the pathway was significantly activated by HIRRV infection at 20°C but inhibited at 10°C. In conclusion, HIRRV could invade into mIgM+ B lymphocytes and elicit differential immune response under 10°C and 20°C, which provide a deep insight into the antiviral response in mIgM+ B lymphocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Wenbin Zhan,
| |
Collapse
|
33
|
Variations in Rainbow Trout Immune Responses against A. salmonicida: Evidence of an Internal Seasonal Clock in Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020174. [PMID: 35205041 PMCID: PMC8869240 DOI: 10.3390/biology11020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
In poikilothermic vertebrates, seasonality influences different immunological parameters such as leukocyte numbers, phagocytic activity, and antibody titers. This phenomenon has been described in different teleost species, with immunological parameters peaking during warmer months and decreased levels during winter. In this study, the cellular immune responses of rainbow trout (Oncorhynchus mykiss) kept under constant photoperiod and water temperature against intraperitoneally injected Aeromonas salmonicida during the summer and winter were investigated. The kinetics of different leukocyte subpopulations from peritoneal cavity, spleen, and head kidney in response to the bacteria was measured by flow cytometry. Furthermore, the kinetics of induced A. salmonicida-specific antibodies was evaluated by ELISA. Despite maintaining the photoperiod and water temperature as constant, different cell baselines were detected in all organs analyzed. During the winter months, B- and T-cell responses were decreased, contrary to what was observed during summer months. However, the specific antibody titers were similar between the two seasons. Natural antibodies, however, were greatly increased 12 h post-injection only during the wintertime. Altogether, our results suggest a bias toward innate immune responses and potential lymphoid immunosuppression in the wintertime in trout. These seasonal differences, despite photoperiod and water temperature being kept constant, suggest an internal inter-seasonal or circannual clock controlling the immune system and physiology of this teleost fish.
Collapse
|
34
|
Zhan XL, Chen SY, Jiang R, Dai YW, Lu JF, Yang GJ, Chen J, Lu XJ. Two paralogs of CXCR4 in the Japanese sea bass (Lateolabrax japonica) are involved in the immune response of B lymphocytes. Mol Immunol 2022; 143:27-40. [PMID: 35016116 DOI: 10.1016/j.molimm.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
CXC chemokine receptor 4 (CXCR4), a member of the G-protein-coupled receptor family, plays an important role in host immune responses. Within the teleost lineage, there are two paralogs of CXCR4; however, the role of CXCR4 in teleost B cells is poorly understood. In this study, we determined the cDNA sequences of the two CXCR4 paralogs from the Japanese sea bass (Lateolabrax japonica; LjCXCR4a and LjCXCR4b). Sequence and phylogenetic tree analyses revealed that LjCXCR4a and LjCXCR4b are most closely related to CXCR4a and CXCR4b, respectively, in the large yellow croaker (Larimichthys crocea). CXCR4 transcripts were mainly expressed in the gills, and their expression in different tissues was altered upon infection with Vibrio harveyi. LjCXCR4a and LjCXCR4b protein levels were upregulated in infected B cells. Knockdown of LjCXCR4a and LjCXCR4b in B cells by RNA interference, the phagocytic activity of B cells was not affected. Furthermore, knockdown of LjCXCR4a, not of LjCXCR4b, was observed to inhibit LjIgM expression in lipopolysaccharide-stimulated B cells. In addition, knockdown of LjCXCR4a, not of LjCXCR4b, was found to reduce reactive oxygen species levels in B cells. Our results indicate that LjCXCR4a and LjCXCR4b modulate the immune response of Japanese sea bass B cells against bacterial infection, albeit via different pathways.
Collapse
Affiliation(s)
- Xiao-Lin Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Wu Dai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
35
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Wu L, Gao A, Li L, Chen J, Li J, Ye J. A Single-Cell Transcriptome Profiling of Anterior Kidney Leukocytes From Nile Tilapia ( Oreochromis niloticus). Front Immunol 2021; 12:783196. [PMID: 35027916 PMCID: PMC8750066 DOI: 10.3389/fimmu.2021.783196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Teleost fish anterior kidney (AK) is an important hematopoietic organ with multifarious immune cells, which have immune functions comparable to mammalian bone marrow. Myeloid and lymphoid cells locate in the AK, but the lack of useful specific gene markers and antibody-based reagents for the cell subsets makes the identification of the different cell types difficult. Single-cell transcriptome sequencing enables single-cell capture and individual library construction, making the study on the immune cell heterogeneity of teleost fish AK possible. In this study, we examined the transcriptional patterns of 11,388 AK leukocytes using 10× Genomics single-cell RNA sequencing (scRNA-seq). A total of 22 clusters corresponding to five distinct immune cell subsets were identified, which included B cells, T cells, granulocytes, macrophages, and dendritic cells (DCs). However, the subsets of myeloid cells (granulocytes, macrophages, and DCs) were not identified in more detail according to the known specific markers, even though significant differences existed among the clusters. Thereafter, we highlighted the B-cell subsets and identified them as pro/pre B cells, immature/mature B cells, activated B/plasmablasts, or plasma cells based on the different expressions of the transcription factors (TFs) and cytokines. Clustering of the differentially modulated genes by pseudo-temporal trajectory analysis of the B-cell subsets showed the distinct kinetics of the responses of TFs to cell conversion. Moreover, we classified the T cells and discovered that CD3+CD4-CD8-, CD3+CD4+CD8+, CD4+CD8-, and CD4-CD8+ T cells existed in AK, but neither CD4+CD8- nor CD4-CD8+ T cells can be further classified into subsets based on the known TFs and cytokines. Pseudotemporal analysis demonstrated that CD4+CD8- and CD4-CD8+ T cells belonged to different states with various TFs that might control their differentiation. The data obtained above provide a valuable and detailed resource for uncovering the leukocyte subsets in Nile tilapia AK, as well as more potential markers for identifying the myeloid and lymphoid cell types.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Along Gao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianlin Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
37
|
Fu Q, Wei Z, Chen Y, Xie J, Zhang X, He T, Chen X. Development of monoclonal antibody against IgT of a perciform fish, large yellow croaker (Larimichthys crocea) and characterization of IgT + B cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104027. [PMID: 33516899 DOI: 10.1016/j.dci.2021.104027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Teleost immunoglobulin T (IgT) is considered to be a primitive immunoglobulin class specialized in mucosal immunity. In the present study, a recombinant protein containing the CH2 region of large yellow croaker (Larimichthys crocea) IgT heavy chain was expressed, purified, and used as an immunogen to produce a monoclonal antibody (mAb) against large yellow croaker IgT. Western blotting results indicated that the obtained mouse anti-IgT mAb could specifically recognize a 45 kDa protein in the skin mucus of large yellow croaker, which was identified as the IgT heavy chain by mass spectrometric analysis. Immunofluorescence assay (IFA) analysis further demonstrated that this mouse anti-IgT mAb could recognize membrane-bound IgT (mIgT) molecules on large yellow croaker IgT+ leukocytes. This mAb also could be used for sorting of large yellow croaker IgT+ B cells by flow cytometry sorting technology. Then, flow cytometric immunofluorescence analysis (FCIA) results showed that the percentages of IgT+ B cells in skin, gills, gut, spleen, head kidney and peripheral blood lymphocytes were 27.553% ± 3.312%, 12.588% ± 3.538%, 12.355% ± 3.352%, 13.075 ± 2.258%, 5.552 ± 3.275%, and 2.600 ± 0.521%, respectively, indicating that mucosal tissues (skin, gills, and gut) contained a high ratio of IgT+ B cells. Accordingly, the high protein levels of IgT were also detected in these mucosal tissues, suggesting that IgT may play a role in mucosal immunity in large yellow croaker. Taken together, our data demonstrated that the mouse anti-IgT mAb developed in this study could be used for characterizing IgT+ B cells and studying the functions of IgT in large yellow croaker.
Collapse
Affiliation(s)
- Qiuling Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Zuyun Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingguang Xie
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangyang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
38
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
39
|
Simón R, Díaz-Rosales P, Tafalla C. The Ancient Cytokine BAFF- and APRIL-like Molecule Regulates the Functionality of Teleost IgM + B Cells Similarly to BAFF and APRIL. THE JOURNAL OF IMMUNOLOGY 2021; 206:1765-1775. [PMID: 33762323 DOI: 10.4049/jimmunol.2000762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
TNF superfamily (TNFSF) members, such as BAFF and a proliferation-inducing ligand (APRIL), emerged in vertebrates as key regulators of B cell homeostasis and activation. Many cartilaginous and teleost fish contain an additional gene, designated as BAFF- and APRIL-like molecule (BALM), of unknown function and lost in tetrapods. In this study, we have performed a wide characterization of the functions of BALM on naive B cells for the first time, to our knowledge, in teleosts using rainbow trout (Oncorhynchus mykiss) as a model. Similar to BAFF and APRIL, BALM increased the survival and promoted the proliferation of peripheral blood IgM+ B cells and cooperated with BCR cross-linking to increase the proliferation rate of IgM+ B cells. BALM also seemed to be a differentiating factor for trout IgM+ B cells, as it increased IgM secretion and increased cell size. Additionally, BALM appeared to increase the Ag-presenting properties of IgM+ B cells, augmenting MHC class II surface expression and upregulating the phagocytic capacity of these cells. Finally, the fact that there was no synergy between BALM and BAFF/APRIL in any of these functions strongly suggests that BALM signals through the same receptors as BAFF and APRIL to carry out its functions. This hypothesis was further supported in competitive BALM binding assays. The results presented provide relevant information for understanding how these TNFSF members cooperate in teleost fish to regulate B cell functionality, helping us to interpret the evolutionary relations between molecules of this family.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology, Valdeolmos 28130, Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology, Valdeolmos 28130, Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology, Valdeolmos 28130, Madrid, Spain
| |
Collapse
|
40
|
Ji JF, Hu CB, Zhang N, Huang X, Shao T, Fan DD, Lin AF, Xiang LX, Shao JZ. New Insights into IgZ as a Maternal Transfer Ig Contributing to the Early Defense of Fish against Pathogen Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2001-2014. [PMID: 33858963 DOI: 10.4049/jimmunol.2001197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
IgZ or its equivalent IgT is a newly discovered teleost specific Ig class that is highly specialized in mucosal immunity. However, whether this IgZ/IgT class participates in other biological processes remains unclear. In this study, we unexpectedly discovered that IgZ is highly expressed in zebrafish ovary, accumulates in unfertilized eggs, and is transmitted to offspring from eggs to zygotes. Maternally transferred IgZ in zygotes is found at the outer and inner layers of chorion, perivitelline space, periphery of embryo body, and yolk, providing different lines of defense against pathogen infection. A considerable number of IgZ+ B cells are found in ovarian connective tissues distributed between eggs. Moreover, pIgR, the transporter of IgZ, is also expressed in the ovary and colocalizes with IgZ in the zona radiata of eggs. Thus, IgZ is possibly secreted by ovarian IgZ+ B cells and transported to eggs through association with pIgR in a paracrine manner. Maternal IgZ in zygotes showed a broad bacteriostatic activity to different microbes examined, and this reactivity can be manipulated by orchestrating desired bacteria in water where parent fish live or immunizing the parent fish through vaccination. These observations suggest that maternal IgZ may represent a group of polyclonal Abs, providing protection against various environmental microbes encountered by a parent fish that were potentially high risk to offspring. To our knowledge, our findings provide novel insights into a previously unrecognized functional role of IgZ/IgT Ig in the maternal transfer of immunity in fish, greatly enriching current knowledge about this ancient Ig class.
Collapse
Affiliation(s)
- Jian-Fei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Chong-Bin Hu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Nan Zhang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Xiao Huang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
41
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|
42
|
Zhu L, Nie L, Xie S, Li M, Zhu C, Qiu X, Kuang J, Liu C, Lu C, Li W, Meng E, Zhang D, Zhu L. Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Rep 2021; 34:108600. [PMID: 33406425 DOI: 10.1016/j.celrep.2020.108600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology. RNA sequencing analysis demonstrates that the retinoic-acid-inducible gene (RIG)-I-like receptor (RLR) and the Toll-like receptor (TLR) signaling pathways are significantly compromised by simulated microgravity (Sμg). TRIM25, an essential E3 for RLR signaling, is inhibited under Sμg, hampering the K63-linked ubiquitination of RIG-I and the following function-induction positive feedback loop of antiviral immune response. These mechanisms provide insights into better understanding of the effects and principles of microgravity on host antiviral immunity and present broad potential implications for developing strategies that can prevent and control viral diseases during space flight.
Collapse
Affiliation(s)
- Lvyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P.R. China
| | - Sisi Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Ming Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chushu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chenyu Lu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Er Meng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| |
Collapse
|
43
|
Ji J, Hu C, Shao T, Fan D, Zhang N, Lin A, Xiang L, Shao J. Differential immune responses of immunoglobulin Z subclass members in antibacterial immunity in a zebrafish model. Immunology 2021; 162:105-120. [PMID: 32979273 PMCID: PMC7730029 DOI: 10.1111/imm.13269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Immunoglobulin Z (IgZ) or its equivalent immunoglobulin T (IgT) is a newly identified immunoglobulin (Ig) class from teleost fish. This Ig class is characterized by its involvement in mucosa-associated lymphoid tissues (MALTs) for mucosal defence against pathogen infection. Recently, several subclass members of IgZ/IgT, such as IgZ, IgZ2, Igτ1, Igτ2 and Igτ3, have been further identified from zebrafish, common carp and rainbow trout. However, the functional diversity and correlation among these subclasses remain uncertain. Here, we explored the differential immune reactions of the IgZ and IgZ2 subclasses in antibacterial immunity in a zebrafish model. IgZ was extensively distributed in the peripheral serum and skin/gill MALTs and showed a rapid induction upon bacterial infection. IgZ2 was specialized in skin/gill MALTs and showed a strong induction following IgZ production. Correspondingly, the IgZ+ B cells had a wider distribution in the systemic primary/secondary lymphoid tissues and MALTs than the IgZ2+ B cells, which were predominant in MALTs. IgZ and IgZ2 exhibited a complementary effect in antibacterial immunity by possessing differential abilities. That is, IgZ is preferentially involved in bactericidal reaction that is in part C1q-dependent, and IgZ2 participates in neutralization action through bacteria-coating activity. The production of IgZ largely depended on the αβ T/CD4+ T cells, whereas that of IgZ2 did not, suggesting the different dependencies of IgZ and IgZ2 on systemic immunity. Our findings demonstrate that the functional behaviour and mechanism of the IgZ/IgT family are more diverse than previously recognized and thus improve the current knowledge about this ancient Ig class.
Collapse
Affiliation(s)
- Jian‐fei Ji
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Chong‐bin Hu
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Tong Shao
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Dong‐dong Fan
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Nan Zhang
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Ai‐fu Lin
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Li‐xin Xiang
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Jian‐zhong Shao
- College of Life SciencesKey Laboratory for Cell and Gene Engineering of Zhejiang ProvinceZhejiang UniversityHangzhouChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
44
|
Deng JJ, Xu S, Li YW, Xu DD, Mo ZQ, Li JZ, Dan XM, Luo XC. Role of major histocompatibility complex II antigen-presentation pathway genes in orange-spotted grouper infected with Cryptocaryon irritans. JOURNAL OF FISH DISEASES 2020; 43:1541-1552. [PMID: 32924190 DOI: 10.1111/jfd.13256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Cryptocaryon irritans, a pathogen model for fish mucosal immunity, causes skin mucosal and systematic humoral immune response. Where and how MHC II antigen presentation occurs in fish infected with C. irritans remain unknown. In this study, the full-length cDNA of the grouper cysteine protease CTSS was cloned. The expression distributions of six genes (CTSB, CTSL, CTSS, GILT, MHC IIA and MHC IIB) involved in MHC II antigen presentation pathway were tested. These genes were highly expressed in systematic immune tissues and skin and gill mucosal-associated immune tissues. All six genes were upregulated in skin at most time points. Five genes expected CTSS was upregulated in spleen at most time points. CTSB, CTSL and MHC IIA were upregulated in the gill and head kidney at some time points. These results indicate that the presentation of MHC II antigen intensively occurred in local infected skin and gill. Spleen, not head kidney, had the most extensive systematic antigen presentation. In skin, six genes most likely peaked at day 2, earlier than in spleen (5-7 days), marking an earlier skin antibody peak than any recorded in serum previously. This significant and earlier mucosal antigen presentation indicates that specific immune response occurs in local mucosal tissues.
Collapse
Affiliation(s)
- Jun-Jin Deng
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shun Xu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dong-Dong Xu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jia-Zhou Li
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| |
Collapse
|
45
|
Identification and expression analysis of Langerhans cells marker Langerin/CD207 in grasscarp, Ctenopharyngodon idella. Gene 2020; 768:145315. [PMID: 33220343 DOI: 10.1016/j.gene.2020.145315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Langerhans cells (LCs) play an essential role in the initiation of immune response and maintenance of immune tolerance. However, the function and the molecular markers of grass carp LCs remains unclear. The grass carp LCs were firstly identified by immunofluorescence (IF) using a commercial anti-human Langerin/CD207 polyclonal antibody (pAb) and transmissionelectronmicroscope (TEM) technology in this study. After that, a cDNA sequence that homology with human and mouse CD207 gene was obtained by the bBLASTn program in NCBI. The open reading frame (ORF) of the grass carp CD207 gene contains 903 bp encoding 300 amino acids which consisted of a transmembrane domain, a coiled-coil domain and a CLECT domain. Furthermore, the result of quantitative real-time PCR (qRT-PCR) indicated that this gene was expressed in all tested tissues, and mainly expressed in immune organs such as the gill, trunk kidney, head kidney, spleen and skin. To explore the role of CD207 gene in the immune responses induced by bacteria, an immersed infection model of grass carp with Flavobacterium columnare was constructed, and the optimal infection dose was determined to be 1.0 × 108 CFU/mL. Moreover, the qRT-PCR results indicated that the expression levels of CD207 gene were significantly upregulated at 6 h, 12 h, 1 d, 3 d and 7 d in the spleen, and significantly downregulated at 5 d in the head kidney, at 12 h and 5 d in the gill, and at all time points in the skin after F. columnare infection. This result suggested that the grass carp CD207 gene may play an important role in antigen processing and presentation. Our results in this study suggested that CD207 gene is also existed in teleosts, and this study provided a molecular basis to analyzed the biological function of grass carp CD207 gene and the critical roles of LCs in the immune responses induced by bacterial infections.
Collapse
|
46
|
NF-κB signaling induces inductive expression of the downstream molecules and IgD gene in the freshwater carp, Catla catla. 3 Biotech 2020; 10:445. [PMID: 33014688 DOI: 10.1007/s13205-020-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptors (TLRs) in innate immune system act as primary sensors in detecting the microbial components and activate their signaling cascades to induce NF-κB (nuclear factor NF-κB) towards the augmentation of immunoglobulin (Ig) synthesis. To gain insights into the efficacy of NF-κB pathway in immunoglobulin D (IgD) synthesis in the Indian Major Carp Catla catla, cloning and sequencing of TLR-signaling downstream molecules [TRAF3 (TNF receptor-associated factor 3), NEMO (nuclear factor-kappa B essential modulator), NF-κB and BAFF (B cell activating factor)] were performed by infecting the fish with pathogens. mRNA expression analysis of the downstream molecules and IgD showed significant up-regulation of these genes in kidney (P ≤ 0.001) as compared to spleen (P ≤ 0.05). To ascertain the role of NF-κB pathway in IgD synthesis, the primary cell culture of kidney and spleen in monolayer cell suspension was treated with NF-κB inhibitor (BAY 11-7082) and down-regulation of BAFF, NEMO, NF-κB, and IgD gene was observed. These results highlight the importance of NF-κB signaling pathway in augmenting the IgD gene expression in the freshwater carp, Catla catla.
Collapse
|
47
|
Jenberie S, Peñaranda MMD, Thim HL, Styrvold MB, Strandskog G, Jørgensen JB, Jensen I. Salmonid Alphavirus Subtype 3 Induces Prolonged Local B Cell Responses in Atlantic Salmon ( Salmo salar) After Intraperitoneal Infection. Front Immunol 2020; 11:1682. [PMID: 33013821 PMCID: PMC7511533 DOI: 10.3389/fimmu.2020.01682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
B cell responses are a crucial part of the adaptive immune response to viral infection. Infection by salmonid alphavirus subtype 3 (SAV3) causes pancreas disease (PD) in Atlantic salmon (Salmo salar) and is a serious concern to the aquaculture industry. In this study, we have used intraperitoneal (IP) infection with SAV3 as a model to characterize local B cell responses in the peritoneal cavity (PerC) and systemic immune tissues (head kidney/spleen). Intraperitoneal administration of vaccines is common in Atlantic salmon and understanding more about the local PerC B cell response is fundamental. Intraperitoneal SAV3 infection clearly induced PerC B cell responses as assessed by increased frequency of IgM+ B cells and total IgM secreting cells (ASC). These PerC responses were prolonged up to nine weeks post-infection and positively correlated to the anti-SAV3 E2 and to neutralizing antibody responses in serum. For the systemic immune sites, virus-induced changes in B cell responses were more modest or decreased compared to controls in the same period. Collectively, data reported herein indicated that PerC could serve as a peripheral immunological site by providing a niche for prolonged maintenance of the ASC response in Atlantic salmon.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Ma Michelle D Peñaranda
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Morten Bay Styrvold
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
48
|
Kordon AO, Kalindamar S, Majors K, Abdelhamed H, Tan W, Karsi A, Pinchuk LM. Live attenuated Edwardsiella ictaluri vaccines enhance the protective innate immune responses of channel catfish B cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103711. [PMID: 32311387 DOI: 10.1016/j.dci.2020.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella ictaluri causes enteric septicemia of catfish. Our group developed two E. ictaluri live attenuated vaccines (LAVs). However, their effects on the innate functions of catfish B cells are still unexplored. We evaluated phagocytosis and killing of wild-type (WT) E. ictaluri opsonized with sera from vaccinated fish and the survival of B cells exposed to E. ictaluri strains. We assessed phagocytosis of the opsonized WT at 30 °C and 4 °C. B cells killed the internalized E. ictaluri opsonized with sera from vaccinated fish with LAVs more efficiently than other groups at 30 °C. However, catfish B cells were unable to destroy E. ictaluri at 4 °C. Furthermore, E. ictaluri opsonized with serum from fish exposed to WT induce apoptosis and decreased live B cells numbers. Results indicate that opsonization of E. ictaluri with sera from vaccinated fish enhanced phagocytosis and killing activity in B cells and inhibited apoptotic changes in the infected B cells.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Ordu University, 52200, Ordu, Turkey
| | - Kara Majors
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Wei Tan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
49
|
Wang H, Xu L, Wu Z, Chen X. CCR7, CD80/86 and CD83 in yellow catfish (Pelteobagrus fulvidraco): Molecular characteristics and expression patterns with bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 102:228-242. [PMID: 32325216 DOI: 10.1016/j.fsi.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Dendritic cells (DCs) have a strong ability to stimulate naive T lymphocyte proliferation, so DCs play an important regulatory role in the initiation of the specific immune response. DCs cannot play the role of antigen presentation without the expression of surface molecules. The chemokine receptor CCR7 and the costimulatory molecules CD80/86 and CD83 are not only markers of DC maturation but also important functional molecules in the immune response of DC-T cells. In this study, partial cDNA sequences of CCR7, CD80/86 and CD83 were obtained by rapid amplification of cDNA ends (RACE) technology from yellow catfish. Bioinformatics analysis of deduced amino acid sequences of these three genes showed that CCR7, CD80/86 and CD83 genes in yellow catfish have similar functional domains to the homologs in other vertebrates, which indicated that the functions of these genes may be somewhat conserved during the evolution process. Afterward, the expression characteristics of these three genes in different tissues were detected by q-PCR. This result indicated that CCR7, CD80/86 and CD83 were expressed in all examined tissues, and the highest expression levels of CCR7 and CD80/86 and CD83 were detected in the trunk kidney, muscle and midgut, respectively. Meanwhile, the expression levels of CCR7 and CD80/86 were lowest in the gill, and the expression of CD83 was lowest in the stomach. Finally, healthy yellow catfish were infected with A.hydrophila (1.0 × 107 CFU/mL) or E.ictaluri (1.0 × 106 CFU/mL), q-PCR results indicated that both pathogenic bacteria can induce significant upregulation of CCR7, CD80/86 and CD83 in immune organs, and the expression levels of these genes in the intestine were higher than those in the skin and gill. Our results in this study provide a molecular basis for exploring the role of CCR7, CD80/86 and CD83 in the immune responses induced by bacteria, and can help us to understand the difference of immune responses induced by extracellular and intracellular bacteria.
Collapse
Affiliation(s)
- Hui Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Lili Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Zhixin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Xiaoxuan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
50
|
Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol 2020; 11:824. [PMID: 32536909 PMCID: PMC7267004 DOI: 10.3389/fimmu.2020.00824] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
The momentous discovery of phagocytic activity in teleost B cells has caused a dramatic paradigm shift from the belief that phagocytosis is performed mainly by professional phagocytes derived from common myeloid progenitor cells, such as macrophages/monocytes, neutrophils, and dendritic cells. Recent advances on phagocytic B cells and their microbicidal ability in teleost fish position B cells at the crossroads, bridging innate with adaptive immunity. Most importantly, an increasing body of experimental evidence demonstrates that, in both teleosts and mammals, phagocytic B cells can recognize, take up, and destroy particulate antigens and then present those processed antigens to CD4+ T cells to elicit adaptive immune responses and that the phagocytosis is mediated by pattern recognition receptors and involves multiple cytokines. Thus, current findings collectively indicate that teleost phagocytic B cells, as well as their counterpart mammalian B1-B cells, can be considered one kind of professional phagocyte. The aim of this review is to summarize recent advances regarding teleost phagocytic B cells, with a particular focus on the recognizing receptors and modulating mechanisms of phagocytic B cells and the process of antigen presentation for T-cell activation. We also attempt to provide new insights into the adaptive evolution of the teleost fish phagocytic B cell on the basis of its innate and adaptive roles.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| |
Collapse
|