1
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406324. [PMID: 39754328 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| |
Collapse
|
2
|
Qian L, Wu L, Miao X, Xu J, Zhou Y. The role of TIGIT-CD226-PVR axis in mediating T cell exhaustion and apoptosis in NSCLC. Apoptosis 2024:10.1007/s10495-024-02052-2. [PMID: 39725799 DOI: 10.1007/s10495-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC. Bioinformatics analysis revealed that the TIGIT-CD226-PVR signaling axis is highly active in the CD27+/CD127+T cell subset and is closely associated with their functional decline and exhaustion. In vitro experiments further demonstrated that inhibiting the TIGIT-PVR pathway while activating the CD226-PVR pathway significantly restored T cell proliferation and effector function. Importantly, in vivo studies showed that targeting this axis can significantly alleviate T cell exhaustion, enhance their cytotoxicity against NSCLC cells, and promote apoptosis, thereby improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Liang Qian
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Ling Wu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Xiaohui Miao
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
| |
Collapse
|
3
|
Beene D, Miller C, Gonzales M, Kanda D, Francis I, Erdei E. Spatial nonstationarity and the role of environmental metal exposures on COVID-19 mortality in New Mexico. APPLIED GEOGRAPHY (SEVENOAKS, ENGLAND) 2024; 171:103400. [PMID: 39463888 PMCID: PMC11501077 DOI: 10.1016/j.apgeog.2024.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Worldwide, the COVID-19 pandemic has been influenced by a combination of environmental and sociodemographic drivers. To date, population studies have overwhelmingly focused on the impact of societal factors. In New Mexico, the rate of COVID-19 infection and mortality varied significantly among the state's geographically dispersed, and racially and ethnically diverse populations who are exposed to unique environmental contaminants related to resource extraction industries (e.g. fracking, mining, oil and gas exploration). By looking at local patterns of COVID-19 disease severity, we sought to uncover the spatially varying factors underlying the pandemic. We further explored the compounding role of potential long-term exposures to various environmental contaminants on COVID-19 mortality prior to widespread applications of vaccinations. To illustrate the spatial heterogeneity of these complex associations, we leveraged multiple modeling approaches to account for spatial non-stationarity in model terms. Multiscale geographically weighted regression (MGWR) results indicate that increased potential exposure to fugitive mine waste is significantly associated with COVID-19 mortality in areas of the state where socioeconomically disadvantaged populations were among the hardest hit in the early months of the pandemic. This relationship is paradoxically reversed in global models, which fail to account for spatial relationships between variables. This work contributes both to environmental health sciences and the growing body of literature exploring the implications of spatial nonstationarity in health research.
Collapse
Affiliation(s)
- Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Curtis Miller
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Melissa Gonzales
- Department of Environmental Health Studies, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA
| | - Deborah Kanda
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Isaiah Francis
- Division of Epidemiology and Response, New Mexico Department of Health, Santa Fe, NM, USA
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
4
|
Xu A, Huang F, Chen E, Zhang Z, He Y, Yu X, He G. Hyperbaric oxygen therapy attenuates heatstroke-induced hippocampal injury by inhibiting microglial pyroptosis. Int J Hyperthermia 2024; 41:2382162. [PMID: 39043380 DOI: 10.1080/02656736.2024.2382162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Background: Central nervous system (CNS) injury is the most prominent feature of heatstroke and the hippocampus is prone to damage. However, the mechanisms underlying the heatstroke-induced hippocampal injury remain unclear. Hyperbaric oxygen (HBO) therapy prevents CNS injury in heatstroke mice. However, the underlying mechanisms of HBO in heatstroke-induced hippocampal injury remain unclear. This study aimed to elucidate the protective effects of HBO against hippocampal injury and its potential role in microglial pyroptosis in heatstroke rats.Methods: A rat heatstroke model and a heat stress model with a mouse microglial cell line (BV2) were, respectively, used to illustrate the effect of HBO on heat-induced microglial pyroptosis in vivo and in vitro. We used a combination of molecular and histological methods to assess microglial pyroptosis and neuroinflammation both in vivo and in vitro.Results: The results revealed that HBO improved heatstroke-induced survival outcomes, hippocampal injury, and neurological dysfunction in rats. In addition, HBO mitigates microglial pyroptosis and reduces the expression of pro-inflammatory cytokines in the hippocampus of heatstroke rats. In vitro experiments showed that HBO attenuated BV2 cell injury under heat stress. Furthermore, HBO prevented heat-induced pyroptosis of BV2 cells, and the expression of pro-inflammatory cytokines IL-18 and IL-1β was reduced. Mechanistically, HBO alleviates heatstroke-induced neuroinflammation and hippocampal injury by preventing microglial pyroptosis. Conclusions: In conclusion, HBO attenuates heatstroke-induced neuroinflammation and hippocampal injury by inhibiting microglial pyroptosis.
Collapse
Affiliation(s)
- Ancong Xu
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Huang
- Wenzhou Medical University, Wenzhou, China
| | - Er Chen
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Yanxuan He
- Wenzhou Medical University, Wenzhou, China
| | - Xichong Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guoxin He
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
6
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
7
|
Qiu T, Wu C, Yao X, Han Q, Wang N, Yuan W, Zhang J, Shi Y, Jiang L, Liu X, Yang G, Sun X. AS3MT facilitates NLRP3 inflammasome activation by m 6A modification during arsenic-induced hepatic insulin resistance. Cell Biol Toxicol 2023; 39:2165-2181. [PMID: 35226250 PMCID: PMC8882720 DOI: 10.1007/s10565-022-09703-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
N6-methyladenosine (m6A) messenger RNA methylation is the most widespread gene regulatory mechanism affecting liver functions and disorders. However, the relationship between m6A methylation and arsenic-induced hepatic insulin resistance (IR), which is a critical initiating event in arsenic-induced metabolic syndromes such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), remains unclear. Here, we showed that arsenic treatment facilitated methyltransferase-like 14 (METTL14)-mediated m6A methylation, and that METTL14 interference reversed arsenic-impaired hepatic insulin sensitivity. We previously showed that arsenic-induced NOD-like receptor protein 3 (NLRP3) inflammasome activation contributed to hepatic IR. However, the regulatory mechanisms underlying the role of arsenic toward the post-transcriptional modification of NLRP3 remain unclear. Here, we showed that NLRP3 mRNA stability was enhanced by METTL14-mediated m6A methylation during arsenic-induced hepatic IR. Furthermore, we demonstrated that arsenite methyltransferase (AS3MT), an essential enzyme in arsenic metabolic processes, interacted with NLRP3 to activate the inflammasome, thereby contributing to arsenic-induced hepatic IR. Also, AS3MT strengthened the m6A methylase association with NLRP3 to stabilize m6A-modified NLRP3. In summary, we showed that AS3MT-induced m6A modification critically regulated NLRP3 inflammasome activation during arsenic-induced hepatic IR, and we identified a novel post-transcriptional function of AS3MT in promoting arsenicosis.
Collapse
Affiliation(s)
- Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Chenbing Wu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Qiuyue Han
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
- Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
8
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic Lupus Erythematosus Risk: The Role of Environmental Factors. Rheum Dis Clin North Am 2022; 48:827-843. [PMID: 36332998 DOI: 10.1016/j.rdc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease. The etiology of SLE is multifactorial and includes potential environmental triggers, which may occur sequentially (the "multi-hit" hypothesis). This review focuses on SLE risk potentially associated with environmental factors including infections, the microbiome, diet, respirable exposures (eg, crystalline silica, smoking, air pollution), organic pollutants, heavy metals, and ultraviolet radiation.
Collapse
Affiliation(s)
- Jia Li Liu
- McGill University, Montreal, Quebec, Canada
| | - Jennifer M P Woo
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin 2022; 43:2462-2473. [PMID: 35288674 PMCID: PMC9525650 DOI: 10.1038/s41401-022-00887-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, an inflammatory form of lytic cell death, is a type of cell death mediated by the gasdermin (GSDM) protein family. Upon recognizing exogenous or endogenous signals, cells undergo inflammasome assembly, GSDM cleavage, the release of proinflammatory cytokines and other cellular contents, eventually leading to inflammatory cell death. In this review, we discuss the roles of the GSDM family for anti-cancer functions and various antitumor drugs that could activate the pyroptosis pathways.
Collapse
Affiliation(s)
- Fan Yang
- Healthville LLC, Little Rock, AR, 72204, USA
| | - Sahana N Bettadapura
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
11
|
Hsp47 acts as a bridge between NLRP3 inflammasome and hepatic stellate cells activation in arsenic-induced liver fibrosis. Toxicol Lett 2022; 370:7-14. [PMID: 35963424 DOI: 10.1016/j.toxlet.2022.07.816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key event during the progression of liver fibrosis (LF). We have previously indicated that NLRP3 inflammasome plays a crucial role in arsenic-induced HSCs activation. However, the mechanism of cascade responses between NLRP3 inflammasome and HSCs activation is unclear. Here, we showed that the transcription and protein level of Hsp47 was upregulated after 4μM arsenic treatment, both in vivo and in vitro. Additionally, arsenic-induced HSCs activation was remarkably alleviated by the interference of Hsp47. Furthermore, blockage of NLRP3 significantly mitigated the activation of the NLRP3 inflammasome and decreased the expression of Hsp47, thereby attenuating the arsenic-induced HSCs activation. However, the ablation of Hsp47 did not affect the activation of the NLRP3 inflammasome. Notably, the protein-protein interaction between NLRP3 and Hsp47 was observed both in vivo and in vitro, and the target amino acid sequences were further identified. In summary, the present study indicated that NaAsO2 induced HSCs activation via the NLRP3 inflammasome-Hsp47 pathway. These findings provide direct evidence that Hsp47 may be a potential therapeutic target for arsenic-induced LF.
Collapse
|
12
|
Su Y, Sun X, Liu X, Qu Q, Yang L, Chen Q, Liu F, Li Y, Wang Q, Huang B, Huang XH, Zhang XJ. hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype. J Hematol Oncol 2022; 15:99. [PMID: 35864538 PMCID: PMC9306027 DOI: 10.1186/s13045-022-01315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Both extracellular vesicles from mesenchymal stromal cell-derived human umbilical cords (hUC-EVs) and arsenic trioxides (ATOs) have been demonstrated to treat acute graft-versus-host disease (aGVHD) via immunomodulation. Apart from immunomodulation, hUC-EVs have a unique function of drug delivery, which has been proposed to enhance their efficacy. In this study, we first prepared ATO-loaded hUC-EVs (hUC-EVs-ATO) to investigate the therapeutic effect and potential mechanisms of hUC-EVs-ATO in a mouse model of aGVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Methods An aGVHD model was established to observe the therapeutic effects of hUC-EVs-ATO on aGVHD. Target organs were harvested for histopathological analysis on day 14 after transplantation. The effects of hUC-EVs-ATO on alloreactive CD4+ were evaluated by flow cytometry in vivo and in vitro. Flow cytometry, RT-PCR, immunofluorescence colocalization analysis and Western blot (Wb) analysis were performed to examine macrophage polarization after hUC-EV-ATO treatment. The cytokines in serum were measured by a cytometric bead array (CBA). TEM, confocal microscopy and Wb were performed to observe the level of autophagy in macrophages. A graft-versus-lymphoma (GVL) mouse model was established to observe the role of hUC-EVs-ATO in the GVL effect. Results The clinical manifestations and histological scores of aGVHD in the hUC-EVs-ATO group were significantly reduced compared with those in the ATO and hUC-EVs groups. The mice receiving hUC-EVs-ATO lived longer than the control mice. Notably, hUC-EVs-ATO interfering with alloreactive CD4+ T cells differentiation were observed in aGVHD mice but not in an in vitro culture system. Additional studies showed that depletion of macrophages blocked the therapeutic effects of hUC-EVs-ATO on aGVHD. Mechanistically, hUC-EVs-ATO induced autophagic flux by inhibiting mammalian target of rapamycin (mTOR) activity to repolarize M1 to M2 macrophages. Additionally, using a murine model of GVL effects, hUC-EVs-ATO were found not only to reduce the severity of aGVHD but also to preserve the GVL effects. Taken together, hUC-EVs-ATO may be promising candidates for aGVHD treatment. Conclusions hUC-EVs-ATO enhanced the alleviation of aGVHD severity in mice compared with ATO and hUC-EVs without weakening GVL activity. hUC-EVs-ATO promoted M1 to M2 polarization via the mTOR-autophagy pathway. hUC-EVs-ATO could be a potential therapeutic approach in aGVHD after allo-HSCT. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01315-2.
Collapse
Affiliation(s)
- Yan Su
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xueyan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qingyuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Liping Yang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Fengqi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Qianfei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Hui Huang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| | - Xiao-Jun Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
13
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|
14
|
Jia X, Qiu T, Yao X, Jiang L, Wang N, Wei S, Tao Y, Pei P, Wang Z, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces hepatic insulin resistance via mtROS-NLRP3 inflammasome pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123034. [PMID: 32544768 DOI: 10.1016/j.jhazmat.2020.123034] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Hepatic insulin resistance (IR) is the key event for arsenic-caused type 2 diabetes (T2D). However, the unequivocal mechanism of arsenic-induced hepatic IR remains unclear. The current study determined the role of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in arsenic-induced IR and revealed the underlying mechanism. Three-month NaAsO2 gavage led to glucose intolerance and insulin insensitivity, impaired hepatic insulin signaling. Additionally, NaAsO2 upregulated the level of oxidized mitochondrial DNA (ox-mtDNA) and mitophagy, thereby activating the NLRP3 inflammasome in SD rat liver. In vitro, we demonstrated that NaAsO2-induced IR depended upon the NLRP3 inflammasome activation. Moreover, inhibiting mitophagy mitigated the NLRP3 inflammasome activation and impaired insulin signaling induced by NaAsO2. Furthermore, mitochondrial reactive oxygen species (mtROS) scavenger alleviated the upregulated ox-mtDNA and mitophagy, thereby inhibiting the NLRP3 inflammasome activation, and improving insulin signaling. Taken together, these data demonstrated that mtROS-triggered ox-mtDNA, mitophagy, and the activation of NLRP3 inflammasome was involved in arsenic-induced hepatic IR.
Collapse
Affiliation(s)
- Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
15
|
Inflammasome inhibition under physiological and pharmacological conditions. Genes Immun 2020; 21:211-223. [PMID: 32681062 DOI: 10.1038/s41435-020-0104-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Inflammasomes are key regulators of the host response against microbial pathogens, in addition to limiting aberrant responses to sterile insults, as mediated by environmental agents such as toxins or nanoparticles, and also by endogenous danger signals such as monosodium urate, ATP and amyloid-β. To date at least six different inflammasome signalling platforms have been reported (Bauernfeind & Hornung, EMBO Mol Med. 2013;5:814-26; Broz & Dixit, Nat Rev Immunol. 2016;16:407). This review focuses on the complex molecular machinery involved in activation and regulation of the best characterised inflammasome, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), and the development of molecular agents to modulate NLRP3 inflammasome function. Activation of the NLRP3 inflammasome induces inflammation via secretion of interleukin-1β (IL-1β) and interleukin-18 (IL-18) proinflammatory cytokines, with orchestration of pyroptotic cell death, to eliminate invading microbial pathogens. This field has gradually moved from an emphasis on monogenic autoinflammatory conditions, such as cryopyrin-associated periodic syndromes (CAPS), to the broad spectrum of innate immune-mediated disease. NLRP3 inflammasome activation is also linked to a range of common disorders in humans including type 2 diabetes (Krainer et al., J Autoimmun. 2020:102421), cystic fibrosis (Scambler et al., eLife. 2019;8), myocardial infarction, Parkinson's disease, Alzheimer's disease (Savic et al., Nat Rev Rheumatol. 2020:1-16) and cancers such as mesotheliomas and gliomas (Moossavi et al., Mol Cancer. 2018;17:158). We describe how laboratory-based assessment of NLRP3 inflammasome activation is emerging as an integral part of the clinical evaluation and treatment of a range of undifferentiated systemic autoinflammatory disorders (uSAID) (Harrison et al., JCI Insight. 2016;1), where a DNA-based diagnosis has not been possible. In addition, this review summarises the current literature on physiological inhibitors and features various pharmacological approaches that are currently being developed, with potential for clinical translation in autoinflammatory and immune-mediated conditions. We discuss the possibilities of rational drug design, based on detailed structural analyses, and some of the challenges in transferring exciting preliminary results from trials of small-molecule inhibitors of the NLRP3 inflammasome, in animal models of disease, to the clinical situation in human pathology.
Collapse
|
16
|
Tupik JD, Nagai-Singer MA, Allen IC. To protect or adversely affect? The dichotomous role of the NLRP1 inflammasome in human disease. Mol Aspects Med 2020; 76:100858. [PMID: 32359693 DOI: 10.1016/j.mam.2020.100858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 01/06/2023]
Abstract
NLRP1 is an inflammasome forming pattern recognition receptor (PRR). When activated by pathogen- and damage- associated molecular patterns (PAMPS/DAMPS), NLRP1 inflammasome formation leads to inflammation through the production of proinflammatory cytokines IL-18 and IL-1β. As with other inflammasome forming NLR family members, NLRP1 also regulates cell death processes, termed pyroptosis. The domain structure of NLRP1 differs between mice and humans, making it possible for the function of the inflammasome to differ between species and adds complexity to the study of this NLR family member. In humans, mutations in both coding and non-coding regions of the NLRP1 gene are linked to a variety of diseases. Likewise, interruption of NLRP1 inhibitors or changes in the prevalence of NLRP1 activators can also impact disease pathobiology. Adding to its complexity, the NLRP1 inflammasome plays a dichotomous role in human diseases, functioning to either attenuate or augment miscellaneous biological processes in a tissue specific manner. For example, NLRP1 plays a protective role in the gastrointestinal tract by modulating the microbiome composition; however, it augments neurological disorders, cardio-pulmonary diseases, and cancer through promoting inflammation. Thus, it is critical that the role of NLRP1 in each of these disease processes be robustly defined. In this review, we summarize the current research landscape to provide a better understanding of the mechanisms associated with NLRP1 function and dysfunction in human disease pathobiology. We propose that a better understanding of these mechanisms will ultimately result in improved insight into immune system dysfunction and therapeutic strategies targeting inflammasome function in multiple human diseases.
Collapse
Affiliation(s)
- Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
17
|
Chung CJ, Bao BY, Lin YC, Huang YL, Shiue HS, Ao PL, Pu YS, Huang CY, Hsueh YM. Polymorphism of nucleotide binding domain-like receptor protein 3 (NLRP3) increases susceptibility of total urinary arsenic to renal cell carcinoma. Sci Rep 2020; 10:6640. [PMID: 32313131 PMCID: PMC7171170 DOI: 10.1038/s41598-020-63469-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/29/2020] [Indexed: 12/02/2022] Open
Abstract
Our study showed that total urinary arsenic concentrations were positively correlated with renal cell carcinoma (RCC). Chronic inflammation is a key player in the development of RCC. This study explored the association between nucleotide-binding domain-like receptor protein 3 (NLRP3) genotypes and the development of RCC. We also investigated whether any of the NLRP3 genotypes modified the risk between arsenic and RCC. We recruited 350 RCC patients and 700 age-sex matched controls. RCC was confirmed by pathological assessment following surgical resection or image-guided biopsy of a renal tumor. Fifteen sites of NLRP3 gene polymorphisms were identified using the Agena Bioscience MassARRAY platform. The concentrations of the urinary arsenic species were determined by HPLC-HG-AAS. There was a significant dose-dependent association between arsenic and RCC. In addition, six of thirteen NLRP3 alleles, including rs12239046 C, rs10925025 G, rs1539019 C, rs10925026 A, rs10157379 T, and rs12143966 A, had increased odds ratios (ORs) for RCC than other NLRP3 alleles. Among these sites, we found the novel haplotype of five tag-SNPs (C-A-A-A-A) was significantly related to RCC, the OR and 95% confidence interval was 1.44 (1.08–1.92). Furthermore, participants with high total urinary arsenic levels and the NLRP3 rs1539019 C allele had significantly multiplicative and additive interactions for the risk of RCC (p interaction = 0.012). This study is the first to identify the modified effects of NLRP3 risk alleles involved in the association between arsenic and RCC risk in a population with low arsenic exposure.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University Taoyuan, Taoyuan, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan.
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan. .,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Tian W, Wang Z, Tang NN, Li JT, Liu Y, Chu WF, Yang BF. Ascorbic Acid Sensitizes Colorectal Carcinoma to the Cytotoxicity of Arsenic Trioxide via Promoting Reactive Oxygen Species-Dependent Apoptosis and Pyroptosis. Front Pharmacol 2020; 11:123. [PMID: 32153415 PMCID: PMC7047232 DOI: 10.3389/fphar.2020.00123] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
Arsenic trioxide (ATO) is an effective therapeutic agent against acute promyelocytic leukemia (APL); however, its anti-tumor effect on solid tumors such as colorectal cancer (CRC) is still in debate. Ascorbic acid (AA) also produces a selective cytotoxic activity against tumor cells. Here, we exploit the potential benefit of ATO/AA combination in generating cytotoxicity to CRC cells, which may lay the groundwork for the potential combinational chemotherapy of CRCs. According to the results, we found that ATO and AA effectively inhibited the viability of human CRC cells in a synergistic manner. AA and ATO corporately activated caspase-3 to trigger apoptosis and upregulated the expression of caspase-1 and promoted formation of inflammasomes to induce pyroptosis. Furthermore, the stimulation of reactive oxygen species (ROS) overproduction was demonstrated as a subcellular mechanism for apoptosis and pyroptosis induced by ATO/AA combination treatment. Our findings suggest that ATO combination with a conventional dosage of AA offers an advantage for killing CRC cells. The synergistic action of ATO/AA combination might be considered a plausible strategy for the treatment of CRC and perhaps other solid tumors as well.
Collapse
Affiliation(s)
- Wei Tian
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Zhuo Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Nan-Nan Tang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Jia-Tong Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Yu Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Wen-Feng Chu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| | - Bao-Feng Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Liu P, Lu Z, Liu L, Li R, Liang Z, Shen M, Xu H, Ren D, Ji M, Yuan S, Shang D, Zhang Y, Liu H, Tu Z. NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152925. [PMID: 31465982 DOI: 10.1016/j.phymed.2019.152925] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Recently, many studies have reported that some botanicals and natural products were able to regulate NOD-like receptor signaling. NOD-like receptors (NLRs) have been established as crucial regulators in inflammation-associated tumorigenesis, angiogenesis, cancer cell stemness and chemoresistance. NLRs specifically sense pathogen-associated molecular patterns and respond by activating other signaling regulators, including Rip2 kinase, NF-κB, MAPK and ASC/caspase-1, leading to the secretion of various cytokines. PURPOSE The aim of this article is to review the molecular mechanisms of NOD-like receptor signaling in inflammation-associated cancers and the NLRs-targeted botanicals and synthetic small molecules in cancer intervention. RESULTS Aberrant activation of NLRs occurs in various cancers, orchestrating the tissue microenvironment and potentiating neoplastic risk. Blocking NLR inflammasome activation by botanicals or synthetic small molecules may be a valuable way to prevent cancer progression. Moreover, due to the roles of NLRs in regulating cytokine production, NLR signaling may be correlated with senescence-associated secretory phenotype. CONCLUSION In this review, we discuss how NLR signaling is involved in inflammation-associated cancers, and highlight the NLR-targeted botanicals and synthetic small molecules in cancer intervention.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Zhiquan Liang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mingxiang Shen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Han Xu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mengchen Ji
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Sirui Yuan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
21
|
Arnold MG, Gokulan K, Doerge DR, Vanlandingham M, Cerniglia CE, Khare S. A single or short time repeated arsenic oral exposure in mice impacts mRNA expression for signaling and immunity related genes in the gut. Food Chem Toxicol 2019; 132:110597. [PMID: 31233874 DOI: 10.1016/j.fct.2019.110597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Arsenic is prevalent in contaminated drinking water and affects more than 140 million people in 50 countries. While the wide-ranging effects of arsenic on neurological development and cancer draw the majority of concern, arsenic's effects on the gut mucosa-associated immune system are often overlooked. In this study, we show that 24 h after a single dose [low dose (50 μg/kg bw), medium dose (100 μg/kg bw) or high dose (200 μg/kg bw)] of arsenic by oral gavage, mice show significantly reduced gut mucosa-associated mRNA expression for the key genes involved in the signaling pathways central to immune responses, such as Nuclear factor κB (NFκB), Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38 and Myeloid differentiation protein 88-dependent (Myd88) pathways. Additionally, mRNA expression of apoptosis, inflammasomes and inflammatory response genes are significantly downregulated in the animals exposed to arsenic. Comparisons of time-dependent effects (24 h vs 48 h) from low dose arsenic exposed animals showed a significant shift in expression of Myd88 alone, suggesting that the down regulation was sustained for the key genes/signaling pathway. An extended eight-day exposure to arsenic showed a decreased state of immune preparedness, though not as diminished as seen in the single dose exposure.
Collapse
Affiliation(s)
- Matthew G Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
22
|
Erdei E, Shuey C, Pacheco B, Cajero M, Lewis J, Rubin RL. Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation. J Autoimmun 2019; 99:15-23. [PMID: 30878168 DOI: 10.1016/j.jaut.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Specific autoantibodies were assessed among residents of the Navajo Nation in New Mexico chronically exposed to metal mixtures from uranium mine wastes and in drinking water supplies. Age and the extent of exposure to legacy waste from 100 abandoned uranium mine and mill sites were associated with antibodies to denatured DNA, previously known to be an early indicator of medication-induced autoimmunity. Surprisingly, autoantibodies to native DNA and/or chromatin were also linked to environmental exposure, specifically uranium consumption through drinking water for both men and women, while urinary arsenic was negatively associated with these autoantibodies in women. These findings suggest that contaminants derived from uranium mine waste enhanced development of autoantibodies in some individuals, while arsenic may be globally immunosuppressive with gender-specific effects. Specific autoantibodies may be a sensitive indicator of immune perturbation by environmental toxicants, an adverse effect not considered in current drinking water standards or regulatory risk assessment evaluations.
Collapse
Affiliation(s)
- Esther Erdei
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive, SE, Albuquerque, NM 87106, USA
| | - Bernadette Pacheco
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Miranda Cajero
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Johnnye Lewis
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert L Rubin
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
23
|
Abstract
In 1992, arsenic trioxide (As2O3, ATO) was demonstrated to be an effective therapeutic agent against acute promyelocytic leukemia (APL), rekindling attention to ATO applications in U.S. Food and Drug Administration clinical trials for the treatment of cancers, such as leukemia, lymphomas, and solid tumors. ATO is a potent chemotherapeutic drug that can also be used to treat other diseases, such as autoimmune diseases, because it affects multiple pathways including apoptosis induction, differentiation stimulation, and proliferation inhibition. As inflammation is a critical component of disease progression, ATO is a feasible treatment option based on its ability to protect against inflammation. However, ATO is also a well-known carcinogen because of its pro-inflammatory effect. This review will focus on the double-sided effects of ATO on inflammation as well as the relevant mechanisms underlying these effects, aiming to provide a rational understanding of how ATO effects the immune system. We especially aim to provide a comprehensive overview of our current knowledge of how ATO influences inflammation.
Collapse
|
24
|
Liu W, Guo W, Zhu Y, Peng S, Zheng W, Zhang C, Shao F, Zhu Y, Hang N, Kong L, Meng X, Xu Q, Sun Y. Targeting Peroxiredoxin 1 by a Curcumin Analogue, AI-44, Inhibits NLRP3 Inflammasome Activation and Attenuates Lipopolysaccharide-Induced Sepsis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:2403-2413. [DOI: 10.4049/jimmunol.1700796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
|
25
|
Li JY, Gao K, Shao T, Fan DD, Hu CB, Sun CC, Dong WR, Lin AF, Xiang LX, Shao JZ. Characterization of an NLRP1 Inflammasome from Zebrafish Reveals a Unique Sequential Activation Mechanism Underlying Inflammatory Caspases in Ancient Vertebrates. THE JOURNAL OF IMMUNOLOGY 2018; 201:1946-1966. [PMID: 30150286 DOI: 10.4049/jimmunol.1800498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Abstract
NLRP1 inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, the existence of this inflammasome in nonmammalian species remains poorly understood. In this study, we report the molecular and functional identification of an NLRP1 homolog, Danio rerio NLRP1 (DrNLRP1) from a zebrafish (D. rerio) model. This DrNLRP1 possesses similar structural architecture to mammalian NLRP1s. It can trigger the formation of a classical inflammasome for the activation of zebrafish inflammatory caspases (D. rerio Caspase [DrCaspase]-A and DrCaspase-B) and maturation of D. rerio IL-1β in a D. rerio ASC (DrASC)-dependent manner. In this process, DrNLRP1 promotes the aggregation of DrASC into a filament with DrASCCARD core and DrASCPYD cluster. The assembly of DrNLRP1 inflammasome depends on the CARD-CARD homotypic interaction between DrNLRP1 and DrASCCARD core, and PYD-PYD interaction between DrCaspase-A/B and DrASCPYD cluster. The FIIND domain in DrNLRP1 is necessary for inflammasome assembly. To understand the mechanism of how the two DrCaspases are coordinated in DrNLRP1 inflammasome, we propose a two-step sequential activation model. In this model, the recruitment and activation of DrCaspase-A/B in the inflammasome is shown in an alternate manner, with a preference for DrCaspase-A followed by a subsequent selection for DrCaspase-B. By using morpholino oligonucleotide-based knockdown assays, the DrNLRP1 inflammasome was verified to play important functional roles in antibacterial innate immunity in vivo. These observations demonstrate that the NLRP1 inflammasome originated as early as in teleost fish. This finding not only gives insights into the evolutionary history of inflammasomes but also provides a favorable animal model for the study of NLRP1 inflammasome-mediated immunology and diseases.
Collapse
Affiliation(s)
- Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ke Gao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Cen-Cen Sun
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Wei-Ren Dong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
26
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
27
|
Amaral EP, Riteau N, Moayeri M, Maier N, Mayer-Barber KD, Pereira RM, Lage SL, Kubler A, Bishai WR, D'Império-Lima MR, Sher A, Andrade BB. Lysosomal Cathepsin Release Is Required for NLRP3-Inflammasome Activation by Mycobacterium tuberculosis in Infected Macrophages. Front Immunol 2018; 9:1427. [PMID: 29977244 PMCID: PMC6021483 DOI: 10.3389/fimmu.2018.01427] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 01/09/2023] Open
Abstract
Lysosomal cathepsin B (CTSB) has been proposed to play a role in the induction of acute inflammation. We hypothesised that the presence of active CTSB in the cytosol is crucial for NLRP3-inflammasome assembly and, consequently, for mature IL-1β generation after mycobacterial infection in vitro. Elevated levels of CTSB was observed in the lungs of mice and rabbits following infection with Mycobacterium tuberculosis (Mtb) H37Rv as well as in plasma from acute tuberculosis patients. H37Rv-infected murine bone marrow-derived macrophages (BMDMs) displayed both lysosomal leakage, with release of CTSB into the cytosol, as well as increased levels of mature IL-1β. These responses were diminished in BMDM infected with a mutant H37Rv deficient in ESAT-6 expression. Pharmacological inhibition of cathepsin activity with CA074-Me resulted in a substantial reduction of both mature IL-1β production and caspase-1 activation in infected macrophages. Moreover, cathepsin inhibition abolished the interaction between NLRP3 and ASC, measured by immunofluorescence imaging in H37Rv-infected macrophages, demonstrating a critical role of the enzyme in NLRP3-inflammasome activation. These observations suggest that during Mtb infection, lysosomal release of activated CTSB and possibly other cathepsins inhibitable by CA07-Me is critical for the induction of inflammasome-mediated IL-1β processing by regulating NLRP3-inflammasome assembly in the cytosol.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nicolas Riteau
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mahtab Moayeri
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nolan Maier
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rosana M Pereira
- Laboratory of Immunology of Infectious Diseases, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvia L Lage
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andre Kubler
- Department of Medicine, Imperial College London, London, United Kingdom.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maria R D'Império-Lima
- Laboratory of Immunology of Infectious Diseases, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, José Silveira Foundation, Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States.,Universidade Salvador (UNIFACS), Laureate University, Salvador, Bahia, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| |
Collapse
|
28
|
Wei Z, Zhang X, Wang J, Wang Y, Yang Z, Fu Y. The formation of canine neutrophil extracellular traps induced by sodium arsenic in polymorphonuclear neutrophils. CHEMOSPHERE 2018; 196:297-302. [PMID: 29306782 DOI: 10.1016/j.chemosphere.2017.12.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
As a novel defense effector mechanism of host innate immune system, neutrophil extracellular traps (NETs) plays an important role against pathogens infection and several diseases. In this study, we investigated the influence of sodium arsenic on novel effector mechanism of NETs generated by polymorphonuclear neutrophils (PMN) and the potential molecular mechanism. Sodium arsenic-induced NETs formation was observed by fluorescence confocal microscopy. Quantitation of NETs induced by sodium arsenic was determined by fluorescence microplate. In parallel experiments, inhibitors of ERK1/2-, p38 MAPK - signaling pathways were used. The results showed that sodium arsenic significantly induced formation of NETs-like structures in PMNs, and these extracellular thicker and thinner networks were mainly composed by DNA decorated with histones, neutrophils elastase (NE) and myeloperoxydase (MPO), which suggests main classical characteristics of NETs induced by sodium arsenic. Furthermore, arsenic markedly increased quantitation of NETs, which further confirmed that sodium arsenic indeed triggered NETs release. However, inhibition of NADPH oxidase, ERK1/2- and p38 MAPK-signaling pathways did not change sodium arsenic-induced NETs formation, suggesting sodium arsenic-induced NETs was a NADPH oxidase, ERK1/2-, p38 MAPK -signaling pathways-independent process. Even though more potential molecular mechanisms involved in sodium arsenic-induced NETs formation call for investigation, our study is the first to report the novel function of PMNs-NETs formation induced by sodium arsenic, which might provide an entirely new view of perceiving and understanding the role of sodium arsenic in therapeutic implications in clinics and overexposure diseases.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China
| | - Yanan Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China.
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, China.
| |
Collapse
|
29
|
NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Mol Neurobiol 2018; 55:8154-8178. [DOI: 10.1007/s12035-018-0957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
30
|
Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 2018; 19:ijms19020562. [PMID: 29438305 PMCID: PMC5855784 DOI: 10.3390/ijms19020562] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Martha Garstkiewicz
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Serena Grossi
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Lars E French
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
31
|
Yerramothu P, Vijay AK, Willcox MDP. Inflammasomes, the eye and anti-inflammasome therapy. Eye (Lond) 2017; 32:491-505. [PMID: 29171506 DOI: 10.1038/eye.2017.241] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammasomes, key molecular regulators that play an important role in inflammation, consist of a central protein, an adaptor protein ASC (apoptosis speck-like protein) and a caspase-1 protein. Upon activation, caspase-1 induces maturation of cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). The release of these cytokines can result in inflammation. Inflammasomes are activated by a variety of factors and their activation involves complex signalling leading to resolution of infection, but can also contribute to the pathology of inflammatory, autoimmune, and infectious diseases. The role of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in the pathogenesis of ocular diseases such as glaucoma, age related macular degeneration (AMD), diabetic retinopathy, dry eye and infections of the eye has been established over the past decade. In experimental studies and models, inhibition of inflammasomes generally helps to reduce the inflammation associated with these eye diseases, but as yet the role of these inflammasomes in many human eye diseases is unknown. Therefore, a need exists to study and understand various aspects of inflammasomes and their contribution to the pathology of human eye diseases. The goal of this review is to discuss the role of inflammasomes in the pathology of eye diseases, scope for anti-inflammasome therapy, and current research gaps in inflammasome-related eye disease.
Collapse
Affiliation(s)
- P Yerramothu
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - A K Vijay
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - M D P Willcox
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Mamik MK, Power C. Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain 2017; 140:2273-2285. [PMID: 29050380 DOI: 10.1093/brain/awx133] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/15/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammasome activation in the central nervous system occurs in both health and disease. Inflammasomes are cytosolic protein complexes that sense specific infectious or host stimuli and initiate inflammatory responses through caspase activation. Assembly of inflammasomes results in caspase-1-mediated proteolytic cleavage and release of the pro-inflammatory cytokines, interleukin-1β and interleukin-18, with initiation of pyroptosis, an inflammatory programmed cell death. Recent developments in the inflammasome field have uncovered novel molecular mechanisms that contribute to a broad range of neurological disorders including those associated with specific mutations in inflammasome genes as well as diseases modulated by inflammasome activation. This update focuses on recent developments in the field of inflammasome biology highlighting different inflammasome activators and pathways discovered in the nervous system. We also discuss targeted therapies that regulate inflammasomes and improve neurological outcomes.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Medicine (Division of Neurology), University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Department of Medicine (Division of Neurology), University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Qian H, Li Q, Shi W. Hyperbaric oxygen alleviates the activation of NLRP‑3‑inflammasomes in traumatic brain injury. Mol Med Rep 2017; 16:3922-3928. [PMID: 29067455 PMCID: PMC5646971 DOI: 10.3892/mmr.2017.7079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 11/16/2022] Open
Abstract
Growing evidence has demonstrated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP-3) inflammasome-mediated inflammatory pathways have been involved in the secondary injury of traumatic brain injury (TBI). In the present study, the authors investigated the effects of hyperbaric oxygen (HBO) therapy on the NLRP-3 inflammasome pathway following TBI. Following the evaluation of motor deficits and brain edema, the therapeutic effects of HBO on interleukin (IL)-1β and IL-18 expression were assessed, as well as NLRP-3 inflammasome activation following TBI. HBO may improve motor score and reduce brain edema, accompanied with the reduction of IL-1β and IL-18 during the 7-day observation period. Furthermore, HBO suppressed mRNA and protein expression of NLRP-3-inflammasome components, especially reducing NLRP-3 expression in microglia. Thus, these results suggested that HBO alleviates the inflammatory response in experimental TBI via modulating microglial NLRP-3-inflammasome signaling.
Collapse
Affiliation(s)
- Huihui Qian
- Department of Geriatrics, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| | - Qinghe Li
- Department of Nursing, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| | - Woda Shi
- Department of Cardiothoracic Surgery, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
34
|
Yu SX, Chen W, Hu XZ, Feng SY, Li KY, Qi S, Lei QQ, Hu GQ, Li N, Zhou FH, Ma CY, Du CT, Yang YJ. Liver X receptors agonists suppress NLRP3 inflammasome activation. Cytokine 2016; 91:30-37. [PMID: 27987394 DOI: 10.1016/j.cyto.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/15/2022]
Abstract
Inflammasomes are multiprotein complexes that control the production of IL-1β and IL-18. NLRP3 inflammasome, the most characterized inflammasome, plays prominent roles in defense against infection, however aberrant activation is deleterious and leads to diseases. Therefore, its tight control offers therapeutic promise. Liver X receptors (LXRs) have significant anti-inflammatory properties. Whether LXRs regulate inflammasome remains unresolved. We thus tested the hypothesis that LXR's anti-inflammatory properties may result from its ability to suppress inflammasome activation. In this study, LXRs agonists inhibited the induction of IL-1β production, caspase-1 cleavage and ASC oligomerization by NLRP3 inflammasome. The agonists also inhibited inflammasome-associated mtROS production. Importantly, the agonists inhibited the priming of inflammasome activation. In vivo data also showed that LXRs agonist prevented NLRP3-dependent peritonitis. In conclusion, LXRs agonists are identified to potently suppress NLRP3 inflammasome and the regulation of LXRs signaling is a potential therapeutic for inflammasome-driven diseases.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Zhu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shi-Yuan Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kun-Yu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuai Qi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qian-Qian Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chao-Ying Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
35
|
Srivastava RK, Li C, Wang Y, Weng Z, Elmets CA, Harrod KS, Deshane JS, Athar M. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions. Toxicol Appl Pharmacol 2016; 308:46-58. [PMID: 27461142 PMCID: PMC5978774 DOI: 10.1016/j.taap.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4(+/+) wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4(+/-) heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca(++) homeostasis. ATO induces Ca(++)-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca(++) homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changzhao Li
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiping Weng
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Lee J, Ahn H, Hong EJ, An BS, Jeung EB, Lee GS. Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell Immunol 2016; 306-307:53-60. [DOI: 10.1016/j.cellimm.2016.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
|
37
|
Zhang M, Qi Y, Li H, Cui J, Dai L, Frank JA, Chen J, Xu W, Chen G. AIM2 inflammasome mediates Arsenic-induced secretion of IL-1 β and IL-18. Oncoimmunology 2016; 5:e1160182. [PMID: 27471628 PMCID: PMC4938318 DOI: 10.1080/2162402x.2016.1160182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/13/2023] Open
Abstract
Chronic sterile inflammation has been implicated in the pathogenesis of many cancers, including skin cancer. Chronic arsenic exposure is closely associated with the development of skin cancer. However, there is a lack of understanding how arsenic induces chronic inflammation in the skin. Interleukin-1 family cytokines play a central role in regulating immune and inflammatory response. IL-1α, IL-1β and IL-18 are three pro-inflammatory cytokines in IL-1 family. Their secretion, especially the secretion of IL-1β and IL-18, is regulated by inflammasomes which are multi-protein complexes containing sensor proteins, adaptor protein and caspase-1. The data from current study show sub-chronic arsenic exposure activates AIM2 inflammasome which in turn activates caspase-1 and enhances the secretion of IL-1β and IL-18 in HaCaT cells and the skin of BALB/c mice. In addition, arsenic-promoted activation of AIM2 inflammasome and increase of IL-1β/IL-18 production are inhibited by PKR inhibitor in HaCaT cells or in the skin of PKR mutant mice, indicating a potential role of PKR in arsenic-induced sterile inflammation.
Collapse
Affiliation(s)
- Mingfang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University , Fuzhou, Fujian, China
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University , Fuzhou, Fujian, China
| | - Hui Li
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine , Lexington, KY, USA
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University , Yichun, Jiangxi, China
| | - Lu Dai
- Graduate Center for Toxicology, University of Kentucky College of Medicine , Lexington, KY, USA
| | - Jacqueline A Frank
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine , Lexington, KY, USA
| | - Jian Chen
- The First Affiliated Hospital of Xiamen University , Xiamen, Fujian, China
| | - Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Neurology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine , Lexington, KY, USA
| |
Collapse
|
38
|
Pedraza-Alva G, Pérez-Martínez L, Valdez-Hernández L, Meza-Sosa KF, Ando-Kuri M. Negative regulation of the inflammasome: keeping inflammation under control. Immunol Rev 2016; 265:231-57. [PMID: 25879297 DOI: 10.1111/imr.12294] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to its roles in controlling infection and tissue repair, inflammation plays a critical role in diverse and distinct chronic diseases, such as cancer, metabolic syndrome, and neurodegenerative disorders, underscoring the harmful effect of an uncontrolled inflammatory response. Regardless of the nature of the stimulus, initiation of the inflammatory response is mediated by assembly of a multimolecular protein complex called the inflammasome, which is responsible for the production of inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. The different stimuli and mechanisms that control inflammasome activation are fairly well understood, but the mechanisms underlying the control of undesired inflammasome activation and its inactivation remain largely unknown. Here, we review recent advances in our understanding of the molecular mechanisms that negatively regulate inflammasome activation to prevent unwanted activation in the resting state, as well as those involved in terminating the inflammatory response after a specific insult to maintain homeostasis.
Collapse
Affiliation(s)
- Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | |
Collapse
|
39
|
Yu SX, Du CT, Chen W, Lei QQ, Li N, Qi S, Zhang XJ, Hu GQ, Deng XM, Han WY, Yang YJ. Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression. Sci Rep 2015; 5:17935. [PMID: 26659006 PMCID: PMC4675967 DOI: 10.1038/srep17935] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023] Open
Abstract
Inflammasomes are cytoplasmic, multiprotein complexes that trigger caspase-1 activation and IL-1β maturation in response to diverse stimuli. Although inflammasomes play important roles in host defense against microbial infection, overactive inflammasomes are deleterious and lead to various autoinflammatory diseases. In the current study, we demonstrated that genipin inhibits the induction of IL-1β production and caspase-1 activation by NLRP3 and NLRC4 inflammasomes. Furthermore, genipin specifically prevented NLRP3-mediated, but not NLRC4-mediated, ASC oligomerization. Notably, genipin inhibited autophagy, leading to NLRP3 and NLRC4 inflammasome inhibition. UCP2-ROS signaling may be involved in inflammasome suppression by genipin. In vivo, we showed that genipin inhibited NLRP3-dependent IL-1β production and neutrophil flux in LPS- and alum-induced murine peritonitis. Additionally, genipin provided protection against flagellin-induced lung inflammation by reducing IL-1β production and neutrophil recruitment. Collectively, our results revealed a novel role in inhibition of inflammatory diseases for genipin that has been used as therapeutics for centuries in herb medicine.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qian-Qian Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuai Qi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Jing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xu-Ming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen-Yu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
40
|
Greaney AJ, Maier NK, Leppla SH, Moayeri M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 2015; 99:189-99. [PMID: 26269198 DOI: 10.1189/jlb.3a0415-155rr] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/28/2015] [Indexed: 12/18/2022] Open
Abstract
The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to our understanding of the beneficial effects of sulforaphane.
Collapse
Affiliation(s)
- Allison J Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Nolan K Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Maier NK, Leppla SH, Moayeri M. The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes. THE JOURNAL OF IMMUNOLOGY 2015; 194:2776-85. [PMID: 25681332 DOI: 10.4049/jimmunol.1401611] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammasomes are cytosolic protein complexes that respond to diverse danger signals by activating caspase-1. The sensor components of the inflammasome, often proteins of the nucleotide-binding oligomerization domain-like receptor (NLR) family, detect stress, danger stimuli, and pathogen-associated molecular patterns. We report that the eicosanoid 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2) and related cyclopentenone PGs inhibit caspase-1 activation by the NLR family leucine-rich repeat protein (NLRP)1 and NLRP3 inflammasomes. This inhibition was independent of the well-characterized role of 15d-PGJ2 as a peroxisome proliferator receptor-γ agonist, its activation of NF erythroid 2-related factor 2, or its anti-inflammatory function as an inhibitor of NF-κB. Instead, 15d-PGJ2 prevents the autoproteolytic activation of caspase-1 and the maturation of IL-1β through induction of a cellular state inhibitory to caspase-1 proteolytic function. The eicosanoid does not directly modify or inactivate the caspase-1 enzyme. Rather, inhibition is dependent on de novo protein synthesis. In a mouse peritonitis model of gout, using monosodium urate crystals to activate NLRP3, 15d-PGJ2 caused a significant inhibition of cell recruitment and associated IL-1β release. Furthermore, in a murine anthrax infection model, 15d-PGJ2 reversed anthrax lethal toxin-mediated NLRP1-dependent resistance. The findings reported in this study suggest a novel mechanism for the anti-inflammatory properties of the cyclopentenone PGs through inhibition of caspase-1 and the inflammasome.
Collapse
Affiliation(s)
- Nolan K Maier
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Newsholme P, de Bittencourt PIH. The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care 2014; 17:295-305. [PMID: 24878874 DOI: 10.1097/mco.0000000000000077] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Obesity is a chronic inflammatory disease in which the physiological resolution of inflammation is attenuated, leading to low-grade inflammation throughout the body. However, the heat shock response, which is a key component of the physiological response to resolve inflammation, is seriously hampered in adipose tissue and other metabolic organs (e.g. skeletal muscle, liver, pancreatic β-cells) in metabolic diseases. In this review, we hypothesize that adipocyte metabolic stress triggers the onset of fat cell senescence, and companion senescence-associated secretory phenotype (SASP), and that such a scenario is responsible for attenuating the resolution of inflammation. RECENT FINDINGS We shall discuss the role of the heat shock response in the context of the resolution of inflammation and the relevance of heat shock response blockade in chronic inflammatory diseases. Sirtuin-1 is responsible for the induction of heat shock transcription factor-1 mRNA expression and for the stabilization of heat shock transcription factor-1 in a high-profile activity state. However, adipose tissue-emanated SASP depress sirtuin-1 expression, leading adipocytes to a perpetual state of unresolved inflammation, due to a dampening of the heat shock response. SUMMARY The advance of inflammasome-mediated SASP from adipose to other tissues promotes cellular senescence in many other cells of the organism, aggravating obesity-dependent chronic inflammation. Inducers of heat shock response (e.g. heat shock itself, physical exercise and calorie restriction) may efficiently interrupt this vicious cycle and are envisaged as the best and also the most economical treatment for obesity-related chronic diseases.
Collapse
Affiliation(s)
- Philip Newsholme
- aSchool of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia bLaboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre cNational Institute of Hormones and Women's Health, Porto Alegre, RS, Brazil
| | | |
Collapse
|