1
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Dong Q, Wu J, Zhang H, Luo L, Wu W. The causal role of circulating inflammatory markers in osteoporosis: a bidirectional Mendelian randomized study. Front Immunol 2024; 15:1412298. [PMID: 39091505 PMCID: PMC11291241 DOI: 10.3389/fimmu.2024.1412298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Background Osteoporosis (OP) associated with aging exerts substantial clinical and fiscal strains on societal structures. An increasing number of research studies have suggested a bidirectional relationship between circulating inflammatory markers (CIMs) and OP. However, observational studies are susceptible to perturbations in confounding variables. In contrast, Mendelian randomization (MR) offers a robust methodological framework to circumvent such confounders, facilitating a more accurate assessment of causality. Our study aimed to evaluate the causal relationships between CIMs and OP, identifying new approaches and strategies for the prevention, diagnosis and treatment of OP. Methods We analyzed publicly available GWAS summary statistics to investigate the causal relationships between CIMs and OP. Causal estimates were calculated via a systematic analytical framework, including bidirectional MR analysis and Bayesian colocalization analysis. Results Genetically determined levels of CXCL11 (OR = 0.91, 95% CI = 0.85-0.98, P = 0.008, PFDR = 0.119), IL-18 (OR = 0.88, 95% CI = 0.83-0.94, P = 8.66×10-5, PFDR = 0.008), and LIF (OR = 0.86, 95% CI = 0.76-0.96, P = 0.008, PFDR = 0.119) were linked to a reduced risk of OP. Conversely, higher levels of ARTN (OR = 1.11, 95% CI = 1.02-1.20, P = 0.012, PFDR = 0.119) and IFNG (OR = 1.16, 95% CI = 1.03-1.30, P = 0.013, PFDR = 0.119) were associated with an increased risk of OP. Bayesian colocalization analysis revealed no evidence of shared causal variants. Conclusion Despite finding no overall association between CIMs and OP, five CIMs demonstrated a potentially significant association with OP. These findings could pave the way for future mechanistic studies aimed at discovering new treatments for this disease. Additionally, we are the first to suggest a unidirectional causal relationship between ARTN and OP. This novel insight introduces new avenues for research into diagnostic and therapeutic strategies for OP.
Collapse
Affiliation(s)
- Qiu Dong
- Department of Bone and Joint Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiayang Wu
- Medical Imaging Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huaguo Zhang
- Department of Ultrasonography, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Liangping Luo
- Medical Imaging Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Medical Imaging Center, The Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong, China
| | - Wenrui Wu
- Department of Bone and Joint Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Orthopedics, Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
| |
Collapse
|
3
|
Xie M, Zhang M, Dai M, Yue S, Li Z, Qiu J, Lu C, Xu W. IL-18/IL-18R Signaling Is Dispensable for ILC Development But Constrains the Growth of ILCP/ILCs. Front Immunol 2022; 13:923424. [PMID: 35874724 PMCID: PMC9304618 DOI: 10.3389/fimmu.2022.923424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) develop from ILC progenitors in the bone marrow. Various ILC precursors (ILCPs) with different ILC subset lineage potentials have been identified based on the expression of cell surface markers and ILC-associated key transcription factor reporter genes. This study characterized an interleukin (IL)-7Rα+IL-18Rα+ ILC progenitor population in the mouse bone marrow with multi-ILC lineage potential on the clonal level. Single-cell gene expression analysis revealed the heterogeneity of this population and identified several subpopulations with specific ILC subset-biased gene expression profiles. The role of IL-18 signaling in the regulation of IL-18Rα+ ILC progenitors and ILC development was further investigated using Il18- and Il18r1-deficient mice, in vitro differentiation assay, and adoptive transfer model. IL-18/IL-18R-mediated signal was found to not be required for early stages of ILC development. While Il18r1-/- lymphoid progenitors were able to generate all ILC subsets in vitro and in vivo like the wild-type counterpart, increased IL-18 level, as often occurred during infection or under stress, suppressed the growth of ILCP/ILC in an IL-18Ra-dependent manner via inhibiting proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Mengying Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingying Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Dai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan Yue
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| |
Collapse
|
4
|
Temporal Gene Expression Profiles Reflect the Dynamics of Lymphoid Differentiation. Int J Mol Sci 2022; 23:ijms23031115. [PMID: 35163045 PMCID: PMC8834919 DOI: 10.3390/ijms23031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the emergence of lymphoid committed cells from multipotent progenitors (MPP) is a great challenge in hematopoiesis. To gain deeper insight into the dynamic expression changes associated with these transitions, we report the quantitative transcriptome of two MPP subsets and the common lymphoid progenitor (CLP). While the transcriptome is rather stable between MPP2 and MPP3, expression changes increase with differentiation. Among those, we found that pioneer lymphoid genes such as Rag1, Mpeg1, and Dntt are expressed continuously from MPP2. Others, such as CD93, are CLP specific, suggesting their potential use as new markers to improve purification of lymphoid populations. Notably, a six-transcription factor network orchestrates the lymphoid differentiation program. Additionally, we pinpointed 24 long intergenic-non-coding RNA (lincRNA) differentially expressed through commitment and further identified seven novel forms. Collectively, our approach provides a comprehensive landscape of coding and non-coding transcriptomes expressed during lymphoid commitment.
Collapse
|
5
|
Ni F, Zhang T, Xiao W, Dong H, Gao J, Liu Y, Li J. IL-18-Mediated SLC7A5 Overexpression Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via the c-MYC Pathway. Front Cell Dev Biol 2021; 9:748831. [PMID: 34977008 PMCID: PMC8718798 DOI: 10.3389/fcell.2021.748831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the role of IL-18 in the regulation of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Methods: To assess whether IL-18 affects the osteogenic differentiation of hBMSCs through the c-MYC/SLC7A5 axis, IL-18 dose-response and time-course experiments were performed to evaluate its impact on osteogenic differentiation. To confirm osteogenic differentiation, alizarin red staining calcium measurement were performed. RT-qPCR and western blotting were used to determine the expression levels of bone-specific markers ALP, RUNX2, and BMP2, as well as those of SLC7A5 and c-MYC. Furthermore, SLC7A5 and c-MYC expression was evaluated via immunofluorescence. To elucidate the roles of SLC7A5 and c-MYC in osteoblast differentiation, cells were transfected with SLC7A5 or c-MYC siRNAs, or treated with the SLC7A5-specific inhibitor JPH203 and c-MYC-specific inhibitor 10058-F4, and the expression of SLC7A5, c-MYC, and bone-specific markers ALP, RUNX2, and BMP2 was assessed. Results: Our results demonstrated that IL-18 increased calcium deposition in hBMSCs, and upregulated the expression of SLC7A5, c-MYC, ALP, RUNX2, and BMP2. Silencing of SLC7A5 or c-MYC using siRNA reduced the expression of ALP, RUNX2, and BMP2, while IL-18 treatment partially reversed the inhibitory effect of siRNA. Similar results were obtained by treating hBMSCs with SLC7A5 and c-MYC specific inhibitors, leading to significant reduction of the osteogenesis effect of IL-18 on hBMSCs. Conclusion: In conclusion, our results indicate that IL-18 promotes the osteogenic differentiation of hBMSCs via the SLC7A5/c-MYC pathway and, therefore, may play an important role in fracture healing. These findings will provide new treatment strategies for delayed fracture healing after splenectomy.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanan Xiao
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Dong
- Liaoning Qifu Stem Cell Biotechnology Co, Ltd, Shenyang, China
| | - Jian Gao
- Liaoning Qifu Stem Cell Biotechnology Co, Ltd, Shenyang, China
| | - YaFeng Liu
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianjun Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jianjun Li,
| |
Collapse
|
6
|
Van Remmen H, Freeman WM, Miller BF, Kinter M, Wren JD, Chiao A, Towner RA, Snider TA, Sonntag WE, Richardson A. Oklahoma Nathan Shock Aging Center - assessing the basic biology of aging from genetics to protein and function. GeroScience 2021; 43:2183-2203. [PMID: 34606039 PMCID: PMC8599778 DOI: 10.1007/s11357-021-00454-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
The Oklahoma Shock Nathan Shock Center is designed to deliver unique, innovative services that are not currently available at most institutions. The focus of the Center is on geroscience and the development of careers of young investigators. Pilot grants are provided through the Research Development Core to junior investigators studying aging/geroscience throughout the USA. However, the services of our Center are available to the entire research community studying aging and geroscience. The Oklahoma Nathan Shock Center provides researchers with unique services through four research cores. The Multiplexing Protein Analysis Core uses the latest mass spectrometry technology to simultaneously measure the levels, synthesis, and turnover of hundreds of proteins associated with pathways of importance to aging, e.g., metabolism, antioxidant defense system, proteostasis, and mitochondria function. The Genomic Sciences Core uses novel next-generation sequencing that allows investigators to study the effect of age, or anti-aging manipulations, on DNA methylation, mitochondrial genome heteroplasmy, and the transcriptome of single cells. The Geroscience Redox Biology Core provides investigators with a comprehensive state-of-the-art assessment of the oxidative stress status of a cell, e.g., measures of oxidative damage and redox couples, which are important in aging as well as many major age-related diseases as well as assays of mitochondrial function. The GeroInformatics Core provides investigators assistance with data analysis, which includes both statistical support as well as analysis of large datasets. The Core also has developed number of unique software packages to help with interpretation of results and discovery of new leads relevant to aging. In addition, the Geropathology Research Resource in the Program Enhancement Core provides investigators with pathological assessments of mice using the recently developed Geropathology Grading Platform.
Collapse
Affiliation(s)
- Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma, City, OK, USA.
| | - Willard M Freeman
- Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma, City, OK, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma, City, OK, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy A Snider
- Department of Veterinary Pathology, Center for Veterinary Health Sciences at, Oklahoma State University, Stillwater, OK, USA
| | - William E Sonntag
- Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma, City, OK, USA
| | - Arlan Richardson
- Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma, City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Krishnamachary B, Cook C, Kumar A, Spikes L, Chalise P, Dhillon NK. Extracellular vesicle-mediated endothelial apoptosis and EV-associated proteins correlate with COVID-19 disease severity. J Extracell Vesicles 2021; 10:e12117. [PMID: 34262673 PMCID: PMC8254805 DOI: 10.1002/jev2.12117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has lead to a global pandemic with a rising toll in infections and deaths. Better understanding of its pathogenesis will greatly improve the outcomes and treatment of affected patients. Here we compared the inflammatory and cardiovascular disease-related protein cargo of circulating large and small extracellular vesicles (EVs) from 84 hospitalized patients infected with SARS-CoV-2 with different stages of disease severity. Our findings reveal significant enrichment of proinflammatory, procoagulation, immunoregulatory and tissue-remodelling protein signatures in EVs, which remarkably distinguished symptomatic COVID-19 patients from uninfected controls with matched comorbidities and delineated those with moderate disease from those who were critically ill. Specifically, EN-RAGE, followed by TF and IL-18R1, showed the strongest correlation with disease severity and length of hospitalization. Importantly, EVs from COVID-19 patients induced apoptosis of pulmonary microvascular endothelial cells in the order of disease severity. In conclusion, our findings support a role for EVs in the pathogenesis of COVID-19 disease and underpin the development of EV-based approaches to predicting disease severity, determining need for patient hospitalization and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Christine Cook
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ashok Kumar
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Leslie Spikes
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Prabhakar Chalise
- Department of Biostatistics & Data ScienceUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
8
|
Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, Das A, Heravi-Moussavi A, Marra MA, Bhandoola A, Takei F. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med 2020; 217:e20182293. [PMID: 31816636 PMCID: PMC7062532 DOI: 10.1084/jem.20182293] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Lung group 2 innate lymphoid cells (ILC2s) drive allergic inflammation and promote tissue repair. ILC2 development is dependent on the transcription factor retinoic acid receptor-related orphan receptor (RORα), which is also expressed in common ILC progenitors. To elucidate the developmental pathways of lung ILC2s, we generated RORα lineage tracer mice and performed single-cell RNA sequencing, flow cytometry, and functional analyses. In adult mouse lungs, we found an IL-18Rα+ST2- population different from conventional IL-18Rα-ST2+ ILC2s. The former was GATA-3intTcf7EGFP+Kit+, produced few cytokines, and differentiated into multiple ILC lineages in vivo and in vitro. In neonatal mouse lungs, three ILC populations were identified, namely an ILC progenitor population similar to that in adult lungs and two distinct effector ILC2 subsets that differentially produced type 2 cytokines and amphiregulin. Lung ILC progenitors might actively contribute to ILC-poiesis in neonatal and inflamed adult lungs. In addition, neonatal lung ILC2s include distinct proinflammatory and tissue-repairing subsets.
Collapse
Affiliation(s)
- Maryam Ghaedi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada
| | - Zi Yi Shen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Itziar Martinez-Gonzalez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada
| | - Lisa Wei
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Xiaoxiao Lu
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alireza Heravi-Moussavi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fumio Takei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB, Scofield RH. Characterization of cxorf21 Provides Molecular Insight Into Female-Bias Immune Response in SLE Pathogenesis. Front Immunol 2019; 10:2160. [PMID: 31695690 PMCID: PMC6816314 DOI: 10.3389/fimmu.2019.02160] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Ninety percent of systemic lupus erythematosus (SLE) patients are women. X chromosome-dosage increases susceptibility to SLE and primary Sjögren's syndrome (pSS). Chromosome X open reading frame 21 (CXorf21) escapes X-inactivation and is an SLE risk gene of previously unknown function. We undertook the present study to delineate the function of CXorf21 in the immune system as well as investigate a potential role in the sex bias of SLE and pSS. Methods: Western blot protein analysis, qPCR, BioPlex cytokine immunoassay, pHrodo™ assays, as well as in vitro CRISPR-Cas9 knockdown experiments were employed to delineate the role of CXorf21 in relevant immunocytes. Results: Expressed in monocytes and B cells, CXorf21 basal Mrna, and protein expression levels are elevated in female primary monocytes, B cells, and EBV-transformed B cells compared to male cells. We also found CXorf21 mRNA and protein expression is higher in both male and female cells from SLE patients compared to control subjects. TLR7 ligation increased CXorf21 protein expression and CXorf21 knockdown abrogated TLR7-driven increased IFNA1 mRNA expression, and reduced secretion of both TNF-alpha and IL-6 in healthy female monocytes. Similarly, we found increased pH in the lysosomes of CXorf21-deficient female monocytes. Conclusion: CXorf21 is more highly expressed in female compared to male cells and is involved in a sexually dimorphic response to TLR7 activation. In addition, CXorf21 expression regulates lysosomal pH in a sexually dimorphic manner. Thus, sexually dimorphic expression of CXorf21 skews cellular immune responses in manner consistent with expected properties of a mediator of the X chromosome dose risk in SLE and pSS.
Collapse
Affiliation(s)
- Valerie M. Harris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kristi A. Koelsch
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Isaac T. W. Harley
- Division of Rheumatology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jonathan D. Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Medical and Research Services, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Moretto MM, Hwang S, Chen K, Khan IA. Complex and Multilayered Role of IL-21 Signaling during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:1242-1251. [PMID: 31341076 DOI: 10.4049/jimmunol.1800743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
Abstract
Unlike IL-7, which is known to be critical for T cell thymic development, the role of IL-21 in this process is still controversial. IL-21 has been shown to accelerate thymic recovery in mice treated with glucocorticoids and revives the peripheral T cell pool in aged animals. However, mice with a defect in IL-21 signaling exhibit normal thymic cellularity, challenging the importance of this cytokine in the thymic developmental process. Using mixed bone marrow chimeric mice, our studies describe a multilayered role for IL-21 in thymopoiesis. In this system, IL-21R-deficient cells are unable to compete with wild-type populations at different stages of the thymic development. Using a mixed bone marrow chimeric animal model, IL-21 seems to be involved as early as the double-negative 1 stage, and the cells from the knockout compartment have problems transitioning to subsequent double-negative stages. Also, similar to IL-7, IL-21 seems to be involved in the positive selection of double-positive lymphocytes and appears to play a role in the migration of single-positive T cells to the periphery. Although not as critical as IL-7, based on our studies, IL-21 plays an important complementary role in thymic T cell development, which, to date, has been underrecognized.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - SuJin Hwang
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Keer Chen
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - Imtiaz A Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| |
Collapse
|
11
|
Huang C, Fu C, Wren JD, Wang X, Zhang F, Zhang YH, Connel SA, Chen T, Zhang XA. Tetraspanin-enriched microdomains regulate digitation junctions. Cell Mol Life Sci 2018; 75:3423-3439. [PMID: 29589089 PMCID: PMC6615572 DOI: 10.1007/s00018-018-2803-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/18/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Tetraspanins co-emerged with multi-cellular organisms during evolution and are typically localized at the cell–cell interface, [corrected] and form tetraspanin-enriched microdomains (TEMs) by associating with each other and other membrane molecules. Tetraspanins affect various biological functions, but how tetraspanins engage in multi-faceted functions at the cellular level is largely unknown. When cells interact, the membrane microextrusions at the cell-cell interfaces form dynamic, digit-like structures between cells, which we term digitation junctions (DJs). We found that (1) tetraspanins CD9, CD81, and CD82 and (2) TEM-associated molecules integrin α3β1, CD44, EWI2/PGRL, and PI-4P are present in DJs of epithelial, endothelial, and cancer cells. Tetraspanins and their associated molecules also regulate the formation and development of DJs. Moreover, (1) actin cytoskeleton, RhoA, and actomyosin activities and (2) growth factor receptor-Src-MAP kinase signaling, but not PI-3 kinase, regulate DJs. Finally, we showed that DJs consist of various forms in different cells. Thus, DJs are common, interactive structures between cells, and likely affect cell adhesion, migration, and communication. TEMs probably modulate various cell functions through DJs. Our findings highlight that DJ morphogenesis reflects the transition between cell-matrix adhesion and cell-cell adhesion and involves both cell-cell and cell-matrix adhesion molecules.
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Chenying Fu
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xuejun Wang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Feng Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Yanhui H Zhang
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Taosheng Chen
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Bordoni V, Viola D, Sacchi A, Pinnetti C, Casetti R, Cimini E, Tumino N, Antinori A, Ammassari A, Agrati C. IL-18 and Stem Cell Factor affect hematopoietic progenitor cells in HIV-infected patients treated during primary HIV infection. Cytokine 2018; 103:34-37. [PMID: 29324258 DOI: 10.1016/j.cyto.2017.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/27/2022]
Abstract
The impact of early antiretroviral therapy (ART) during Primary HIV Infection (PHI) on the hematopoietic progenitor cells (HPCs) homeostasis is not available. This study aimed to characterize HPCs and their relationship with cytokines regulating progenitors function in ART-treated patients with PHI. We enrolled HIV infected patients treated with ART during PHI. Circulating HPCs, Lymphoid-HPCs (L-HPCs) frequency and plasmatic concentrations of IL-7, IL-18 and Stem Cell Factor (SCF) were analysed at baseline and after 6 months of therapy. ART introduction during PHI restored the decline of L-HPCs, induced a decrease in the level of pro-inflammatory IL-18 cytokine and a parallel increase of SCF. Moreover, L-HPCs frequency positively correlated with IL-18 at baseline, and with SCF after 6 months of therapy, suggesting that different signals impact L-HPCs expansion and maintenance before and after treatment. Finally, the SCF receptor expression on HPCs decreased after early ART initiation. These insights may open new perspectives for the evaluation of cytokine-driven L-HPCs expansion and their impact on the homeostasis of hematopoietic compartment during HIV infection.
Collapse
Affiliation(s)
- Veronica Bordoni
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy.
| | - Domenico Viola
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Alessandra Sacchi
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Carmela Pinnetti
- Clinical Division, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Rita Casetti
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Eleonora Cimini
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Nicola Tumino
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical Division, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Adriana Ammassari
- Clinical Division, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, "Lazzaro Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Tipton AR, Wren JD, Daum JR, Siefert JC, Gorbsky GJ. GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms. J Cell Biol 2017; 216:3117-3132. [PMID: 28821562 PMCID: PMC5626529 DOI: 10.1083/jcb.201610012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
In mitosis, the dynamic assembly and disassembly of microtubules are critical for normal chromosome movement and segregation. Microtubule turnover varies among different mitotic spindle microtubules, dictated by their spatial distribution within the spindle. How turnover among the various classes of spindle microtubules is differentially regulated and the resulting significance of differential turnover for chromosome movement remains a mystery. As a new tactic, we used global microarray meta-analysis (GAMMA), a bioinformatic method, to identify novel regulators of mitosis, and in this study, we describe G2- and S phase-expressed protein 1 (GTSE1). GTSE1 is expressed exclusively in late G2 and M phase. From nuclear envelope breakdown until anaphase onset, GTSE1 binds preferentially to the most stable mitotic spindle microtubules and promotes their turnover. Cells depleted of GTSE1 show defects in chromosome alignment at the metaphase plate and in spindle pole integrity. These defects are coupled with an increase in the proportion of stable mitotic spindle microtubules. A consequence of this reduced microtubule turnover is diminished recruitment and activity of Aurora B kinase on chromosome arms. This decrease in Aurora B results in diminished binding of the chromokinesin Kif4A to chromosome arms.
Collapse
Affiliation(s)
- Aaron R Tipton
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
14
|
Bordoni V, Sacchi A, Cimini E, Casetti R, Tumino N, Ammassari A, Agrati C, Martini F. The Different Roles of Interleukin 7 and Interleukin 18 in Affecting Lymphoid Hematopoietic Progenitor Cells and CD4 Homeostasis in Naive Primary and Chronic HIV-Infected Patients. Clin Infect Dis 2016; 63:1683-1684. [PMID: 27664242 DOI: 10.1093/cid/ciw640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | | | | | | | | | - Adriana Ammassari
- Clinical Department, National Institute for Infectious Diseases "L. Spallanzani" I.R.C.C.S., Rome, Italy
| | | | | |
Collapse
|
15
|
Tafur AJ, Dale G, Cherry M, Wren JD, Mansfield AS, Comp P, Rathbun S, Stoner JA. Prospective evaluation of protein C and factor VIII in prediction of cancer-associated thrombosis. Thromb Res 2015; 136:1120-5. [PMID: 26475410 PMCID: PMC4679511 DOI: 10.1016/j.thromres.2015.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Venous thromboembolism (VTE) is a preventable disease, yet it is one of the leading causes of death among patients with cancer. Improving risk stratification mechanisms will allow us to personalize thrombo-prophylaxis strategies. We sought to evaluate Collagen and Thrombin Activated Platelets (COAT-platelets) as well as protein C and factor VIII as biomarkers predictive of cancer-associated thrombosis in a prospective cohort of patients with cancer. Protein C was selected as a candidate based on bioinformatics prediction. Blood samples were collected before chemotherapy. All specimen processing was blinded to clinical data. Surveillance and adjudication of the main outcome of VTE was performed for up to 1 year. We used Cox proportional hazard regression to measure the association of biomarkers and incident events using SAS 9.2 for all statistical analysis. Death was modeled as a competing event. Among 241 patients followed for an average of 10.4 months, 15% died and 13% developed a VTE. COAT-platelets were not predictive of VTE. Low levels of pre-chemotherapy protein C (<118%) (HR 2.5; 95% CI 1.1-5.5) and high baseline factor VIII (>261% I) (HR 3.0; 95% CI 1.1-8.0) were predictive of VTE after adjusting for age, Khorana prediction risk, metastatic disease and D dimer. In addition, low protein C was predictive of overall mortality independent of age, metastatic disease and functional status (HR 2.8; 95% CI 1.3-6.0). Addition of these biomarkers to cancer-VTE risk prediction models may add to risk stratification and patient selection to optimize thrombo-prophylaxis.
Collapse
Affiliation(s)
- A J Tafur
- Department of Medicine - Cardiology-Vascular Section, University of Oklahoma Health Sciences Center, United States.
| | - G Dale
- Department of Medicine - Cardiology-Vascular Section, University of Oklahoma Health Sciences Center, United States
| | - M Cherry
- Department of Medicine - Hematology-Oncology section, University of Oklahoma Health Sciences Center, United States
| | - J D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, United States
| | - A S Mansfield
- Department of Oncology, Division of Medical Oncology, Mayo Clinic Rochester, United States
| | - P Comp
- Department of Medicine - Hematology-Oncology section, University of Oklahoma Health Sciences Center, United States
| | - S Rathbun
- Department of Medicine - Cardiology-Vascular Section, University of Oklahoma Health Sciences Center, United States
| | - J A Stoner
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, United States
| |
Collapse
|
16
|
Fisch AS, Yerges-Armstrong LM, Backman JD, Wang H, Donnelly P, Ryan KA, Parihar A, Pavlovich MA, Mitchell BD, O’Connell JR, Herzog W, Harman CR, Wren JD, Lewis JP. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction. PLoS One 2015; 10:e0138795. [PMID: 26406321 PMCID: PMC4583223 DOI: 10.1371/journal.pone.0138795] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease.
Collapse
Affiliation(s)
- Adam S. Fisch
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Laura M. Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua D. Backman
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hong Wang
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Patrick Donnelly
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ankita Parihar
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mary A. Pavlovich
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William Herzog
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher R. Harman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Wren
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- Program in Arthritis & Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joshua P. Lewis
- Division of Endocrinology, Diabetes, and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|